EL PROBLEMA DE TRANSPORTE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL PROBLEMA DE TRANSPORTE"

Transcripción

1 1 EL PROBLEMA DE TRANSPORTE La TÉCNICA DE TRANSPORTE se puede aplicar a todo problema físico compatible con el siguiente esquema: FUENTES DESTINOS TRANSPORTE DE UNIDADES Donde transporte de unidades puede ser, por ejemplo: flujo de energía transporte de mercaderías prestaciones de servicios transporte de materia prima etc. OBJETIVO: Minimizar los costos de transporte desde las fuentes a los destinos. DEFINICIÓN DEL MODELO: Suponemos: m fuentes i n destinos j a i ( i = 1,..., m) n de unidades disponibles en la fuente i b j (j = 1,...,n) n de unidades demandadas por el destino j. c i j costo de transporte de una unidad desde la fuente i al destino j x i j n de unidades transportadas desde las fuente i al destino j. REPRESENTACIÓN MATEMÁTICA: MIN Z = Σ Σ c i j x i j Sujeto a: Σ x i j = a i i = 1,..., m ( restricciones de disponibilidad) Σ x i j = b j j = 1,..., n ( restricciones de demanda) x i j >= 0 i ; j Las etapas básicas para resolver un Problema de Transporte son:

2 2 Etapa 1: Balancear el problema Etapa 2: Encontrar una solución básica factible inicial Etapa 3: Optimización Etapa 1: Para que un problema esté balanceado el n de unidades disponibles debe ser igual al n de unidades requeridas. Cuando la condición de balance no se cumple naturalmente, se utilizarán fuentes o destinos ficticios para balancear el problema y poder aplicar la Técnica de Transporte. Si la demanda excede el suministro, se utilizará una fuente ficticia que suministra la cantidad faltante. Si la disponibilidad excede la demanda se utilizará un destino ficticio que consuma la cantidad sobrante. Los costos utilizados en las fuentes o destinos ficticios deben ser todos iguales, convenimos en que sean cero. Etapa 2: Encontrar una solución básica factible inicial (S.B.F.I.) Hay varios Métodos para encontrar una solución inicial. Aquí veremos dos de ellos: El Método del Extremo Noroeste (Regla del Noroeste) El Método del Mínimo Costo Utilizaremos la siguiente matriz de costos para desarrollar ambos Métodos: D1 D2 D3 D4 D5 D6 Disponib. O O O O requerim Regla del Noroeste El algoritmo es el siguiente: Asignar la mayor cantidad posible a la variable x 11 La columna (fila) satisfecha es tachada, indicando que las restantes variables de esa columna (fila) no son básicas

3 3 Continuar asignando la mayor cantidad posible a la próxima variable de la columna o fila no tachada El algoritmo finaliza cuando queda solo sin tachar una fila o una columna que es la que recibe la cantidad restante Una vez realizada la asignación, corroborar que la cantidad de asignaciones sea igual a m + n 1. En nuestro ejemplo la S.B.F.I. por Noroeste es: (tabla 1) D1 D2 D3 D4 D5 D6 Disponib. O O O O requerim Z = 70 x x x x x x x x 9 = $ 4570 Método del Mínimo Costo El algoritmo es el siguiente: Asignar la mayor cantidad posible a la variable que posee el menor costo unitario, en caso de existir más de una elegir arbitrariamente. La columna o fila satisfecha se tacha. Continuar asignando la mayor cantidad posible a la variable no tachada con menor costo unitario El algoritmo finaliza cuando sólo queda sin tachar una fila o una columna que recibe lo que quedó sin asignar aún. Una vez realizada la asignación, corroborar que la cantidad de asignaciones sea igual a m + n 1. En nuestro ejemplo la S.B.F.I. por Mínimo Costo es: (tabla 2) D1 D2 D3 D4 D5 D6 Disponib. O O O O requerim

4 4 Z = $ 2950 Etapa 3: Optimización Para optimizar utilizaremos el Método iterativo MODI. Método MODI Trabajaremos con una matriz de costos indirectos. Los costos indirectos cumplen la condición: que se pueden descomponer en un valor u i correspondiente a fila y otra v j correspondiente a columnas. (C i j = u i + v j ). Cómo lo aplicamos en el Método MODI? Luego de obtener una S.B.F.I. construimos una nueva matriz en la cuál ubicamos los valores de la matriz inicial de costos en aquellos lugares donde aparecen las soluciones (asignaciones de valores) correspondientes a la 1era. Solución (utilizaré la solución encontrada por Mínimo Costo); luego fijamos un valor marginal ( u i o v j ) y automáticamente quedarán fijados todos los restantes. En nuestro ejemplo: (tabla 3) D1 D2 D3 D4 D5 D6 u i O O O O v j Luego de construir esta tabla hacemos la diferencia entre ella y la tabla de costos iniciales,; esta diferencia puede ser mayor, menor o igual a cero. Si la diferencia es negativa colocamos el signo _ en la tabla de costos indirectos, si es positiva colocamos el signo + y el resultado de la operación y si es cero colocamos 0. Las diferencias con signo + son las que nos interesan, ya que nos indican que podemos mejorar la solución anterior introduciendo en ese lugar una nueva solución, en nuestro ejemplo la introducimos en el casillero (3, 5), indicamos esto colocando en la tabla 2 un ; luego construimos un circuito cerrado que tome a lo largo de filas y columnas otros elementos (asignaciones distintas de cero). Los circuitos pueden ser únicos o no, se elige cualquier sentido para realizarlo, pues la solución no varía. Si hay más de una diferencia positiva elegimos el casillero que da la mayor diferencia, si hay 2 o más diferencias positivas iguales y menores elegimos el que corresponde al menor costo en la tabla de costos iniciales. Luego colocamos signos + y en forma alternada empezando por + en los vértices del polígono determinado por el circuito (este vértice siempre debe tener un valor).

5 5 Cómo elegimos el valor a introducir en el casillero (3,5)?. Al valor a introducir lo llamamos θ y deberá cumplir la condición de ser el mínimo de los valores que poseen el signo + en el circuito, en nuestro ejemplo: θ = mín ( 20, 10, 150) θ = 10. Construimos una nueva tabla (Tabla 4), colocando en el casillero (3,5) el valor 10, los valores que no eran vértices o no pertenecían al circuito se mantienen y los vértices del polígono que tenían signo + cambian colocando en su lugar el valor anterior menos θ y los que tenían signo negativo cambian por la suma del anterior y θ. (tabla 4) D1 D2 D3 D4 D5 D6 Disponib. O O O O requerim Z = $ 2930 Volvemos a repetir el proceso (hacer tabla de costos indirectos). Continuar como ejercicio y comprobar que se alcanza el óptimo en Z = $2920. Podemos observar que al hacer la diferencia entre la tabla de costos indirectos y la de costos iniciales aparecen ceros en aquellos lugares que corresponden a las asignaciones (en nuestro caso hay 9 asignaciones), con lo que podemos afirmar que si el número de soluciones es n deben aparecer como mínimo n ceros; si aparecen más significa que el problema tiene soluciones alternativas.

6 6 MODELOS O PROBLEMAS DE ASIGNACIÓN PERSONAL EL PROBLEMA DE ASIGNACIÓN se aplica a todo problema que requiere asignar m elementos (tareas, máquinas, equipos, operarios, etc.) a otros n elementos (máquinas, tareas, equipos, operarios, etc.), disponiéndose de más de una alternativa de asignación posible. Para simplificar el tema y sin pérdida de generalidad, consideremos el caso particular de asignar m tareas a n máquinas. OBJETIVO Asignar las tareas a las máquinas (una tarea por máquina) de tal forma de optimizar un índice de performance (objetivo) establecido. En nuestro caso particular será minimizar el costo total de asignación. Este problema es un caso particular del PROBLEMA DE TRANSPORTE en el cuál las FUENTES son cada una de las tareas y los DESTINOS cada una de las máquinas, la disponibilidad de cada fuente es 1 y la demanda de cada destino es 1. REPRESENTACIÓN TABULAR MÁQUINAS T j... n Ai A 1 C11 C12 C1j C1n 1 R E i Ci1 Ci2 CiJ Cin 1 A S m Cm1 Cm2 Cmj Cmn 1 Bj Ai: disponibilidad Bj: requerimientos REPRESENTACIÓN MATEMÁTICA: MIN Z = Σ Σ c i j x i j Sujeto a: Σ x i j = 1 i = 1,..., m ( restricciones de disponibilidad) Σ x i j = 1 j = 1,..., n ( restricciones de demanda) x i j = 0 ó x i j = 1 i ; j

7 7 donde: x i j = 0 si la i-ésima tarea no es asignada a la j-ésima máquina x i j = 1 si la i-ésima tarea es asignada a la j-ésima máquina Por lo tanto un problema de Asignación Personal puede resolverse por el Método Simplex. Condición de balance: Para que un problema esté balanceado el n de tareas a asignar debe ser igual al número de máquinas. Cuando no se cumple la condición de balance será necesario adicionar tantas tareas o máquinas como sea necesario para balancearlo Los costos utilizados en las tareas o máquinas ficticias deben ser todos iguales. RESOLUCIÓN DE UN PROBLEMA DE MINIMIZACIÓN EL MÉTODO HÚNGARO Para explicar los pasos del Método Húngaro utilizaremos el siguiente ejemplo: Se desea asignar en forma óptima 7 trabajos a 7 equipos. La tabla siguiente muestra los costos que ocasionarían cada una de las posibles asignaciones. Tabla 1 E1 E2 E3 E4 E5 E6 E7 T T T T T T T Mínimo Método Húngaro El algoritmo es el siguiente: 1) Se eligen los valores mínimos de cada una de las columnas de la matriz de costos (tabla 1) y se anotan en el margen inferior (lo hacemos en la tabla 1). 2) Formamos una nueva matriz restando a los elementos de la tabla 1 (por columna) los elementos que figuran en el margen inferior de la misma.

8 8 Tabla 2 E1 E2 E3 E4 E5 E6 E7 Mínimo T T T T T T T Podemos observar que en la tabla 2 aparecen varios ceros, éstos son de gran importancia en la resolución del problema. Definición Llamaremos ceros esenciales o independientes a aquellos ceros que son únicos en su fila o en su columna. En la tabla 2 es esencial el cero de la posición x 47, por ejemplo. El Método Húngaro busca que efectuando transformaciones en la matriz inicial de costos aparezcan sobre la nueva matriz ceros esenciales. 3) Se trazan el menor número de líneas posibles sobre filas, sobre columnas o en forma combinada sobre filas y columnas que cumplan la condición de cubrir todos los ceros de la matriz. Llamaremos con n 1, al número de líneas que cubren los ceros y con n al número de filas o columnas de la matriz de los datos. Para hacer la prueba de optimidad comparamos n 1 con n y si: n 1 < n el problema aún no está resuelto y debo continuar con el método. n 1 = n el problema finalizó y se llegó a la solución óptima. En el ejemplo n 1 < n entonces: 4) Colocamos ahora en la tabla 2 los mínimos por fila en el margen derecho y procedemos a hacer una nueva tabla (tabla 3), restando a las filas de la tabla 2 el mínimo correspondiente. Tabla 3 E1 E2 E3 E4 E5 E6 E7 T T T T T T T h

9 9 Tachamos los ceros y nuevamente n 1 < n por lo tanto, el problema no llegó al óptimo, continuamos con un proceso cíclico que consiste en lo siguiente: 5) Se elige de las filas o columnas descubiertas el valor mínimo que llamaremos h, este mínimo se ubica en el margen de la derecha en aquellos lugares que corresponde a una fila descubierta y el valor cero en las filas cubiertas. En el margen inferior colocamos el valor - h (h cambiado de signo) en aquellos lugares que corresponde a columnas cubiertas (tabla 3). En nuestro ejemplo h = 1 Se forma entonces una nueva matriz o tabla restando a cada uno de los elementos de la última matriz sus dos valores marginales correspondientes. En el ejemplo obtenemos: Tabla 4 E1 E2 E3 E4 E5 E6 E T T T T T T h Como n 1 < n el problema aún no está resuelto y debo continuar con el método. Comenzamos entonces el proceso cíclico, repito el paso 5) eligiendo h = 2. La nueva matriz será: Tabla 4 E1 E2 E3 E4 E5 E6 E7 T1 6 4 φ T T3 3 2 [0] T φ T5 [0] T [0] T7 13 φ 10 φ 1 [0] 8 Como n 1 = n el problema está resuelto. Cómo realizamos las asignaciones? Se hacen primero las asignaciones fijas en aquellos lugares donde están los ceros esenciales.

10 10 En nuestro ejemplo tenemos 4 ceros esenciales por lo que tendremos 4 asignaciones fijas. Y las restantes cómo las elijo, ya que hay que hacer 7 asignaciones? Éstas se hacen en aquellos lugares donde aparecen los otros ceros en la matriz final (tabla 5), podemos observar que hay 6 ceros no esenciales de los cuáles hay que elegir 3 para que se cumpla la condición de que ningún equipo se quede sin utilizar y ningún trabajo sin realizar y cuidando de que no se otorgue dos o más trabajos a un mismo equipo (asignación 1 a 1). Teniendo en cuenta lo anterior la elección de los ceros se hace en forma arbitraria ya que con cualquier elección posible el costo total será el mismo. Podemos hacer lo siguiente: Asignaciones fijas: T5 T3 T7 T6 E1 E3 E6 E7 Restantes Asignaciones T2 T1 T4 E2 E4 E5 El costo total mínimo será de $ 25. Realizar como ejercicio otras asignaciones, modificando la elección de los ceros no esenciales.

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación

Más detalles

TRANSPORTE Y TRANSBORDO

TRANSPORTE Y TRANSBORDO TRANSPORTE Y TRANSBORDO En ésta semana estudiaremos un modelo particular de problema de programación lineal, uno en el cual su resolución a través del método simplex es dispendioso, pero que debido a sus

Más detalles

Problemas de transporte, asignación y trasbordo

Problemas de transporte, asignación y trasbordo Problemas de transporte, asignación y trasbordo 1. Plantear un problema de transporte Tiene como objetivo encontrar el mejor plan de distribución, generalmente minimizando el coste. Un problema está equilibrado

Más detalles

UNIDAD DOS MODELOS DE TRANSPORTE

UNIDAD DOS MODELOS DE TRANSPORTE Ing. César Urquizú UNIDAD DOS MODELOS DE TRANSPORTE Ing. César Urquizú Modelos de Transporte Método de la Esquina Noroeste Método del Costo Mínimo o Menor Método de Aproximación de Vogel (MAV) Método del

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Programación Lineal Modelo de transporte Asignación

Programación Lineal Modelo de transporte Asignación Programación Lineal Modelo de transporte Asignación Curso: Investigación de Operaciones Ing. Javier Villatoro MODELO DE ASIGNACIÓN Modelo de Asignación Consiste en asignar al mínimo costo los requerimientos

Más detalles

UNIDAD 7 MODELO DE TRANSPORTE

UNIDAD 7 MODELO DE TRANSPORTE UNIDAD 7 MODELO DE TRANSPORTE Obtendrá el modelo de transporte asociado a un problema. Construirá el esquema y la tabla inicial asociada al modelo de transporte. Resolverá problemas de transporte utilizando

Más detalles

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas

Más detalles

PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I

PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Julio Rito Vargas Avilés. Método Húngaro: Los problemas de asignación incluyen aplicaciones tales como

Más detalles

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI Carrera: Ingeniería de Sistemas Nombre de la asignatura: Investigación de Operaciones I Año académico: Tercer año Semestre: Sexto - Contenido I-

Más detalles

INVESTIGACION DE OPERACIONES:

INVESTIGACION DE OPERACIONES: METODO SIMPLEX El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal Un problema

Más detalles

Unidad 6 Método de transporte

Unidad 6 Método de transporte Unidad 6 Método de transporte Como ya se vio en la unidad 3, los problemas de transporte son problemas de programación lineal (pl), pero con una estructura muy particular de la matriz de los coeficientes

Más detalles

El Problema de Transporte

El Problema de Transporte El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Julio 202 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el cual

Más detalles

Modelos de Transporte: Problemas de asignación. M. En C. Eduardo Bustos Farías

Modelos de Transporte: Problemas de asignación. M. En C. Eduardo Bustos Farías Modelos de Transporte: Problemas de asignación M. En C. Eduardo Bustos Farías as Problemas de Asignación 2 Problemas de Asignación: Son problemas balanceados de transporte en los cuales todas las ofertas

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

X m,j. X m,n C m,n C m,j. X m, C m,1. X i,n. C i,n MODELO DE TRANSPORTE. Matemáticamente:

X m,j. X m,n C m,n C m,j. X m, C m,1. X i,n. C i,n MODELO DE TRANSPORTE. Matemáticamente: MODELO DE TRANSPORTE El modelo de transporte se define como una técnica que determina un programa de transporte de productos o mercancías desde unas fuentes hasta los diferentes destinos al menor costo

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías Modelos de Transporte: Problemas de asignación M. En C. Eduardo Bustos Farías as Problemas de Asignación Problemas de Asignación: Son problemas balanceados de transporte en los cuales todas las ofertas

Más detalles

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 1.1 Modelo de transporte Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos TEMA N

Más detalles

Fundamentos de Investigación de Operaciones Modelos de Grafos

Fundamentos de Investigación de Operaciones Modelos de Grafos Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Unidad 5 Modelo de transporte

Unidad 5 Modelo de transporte Unidad 5 Modelo de transporte Objetivos: Al nalizar la unidad, el alumno: Construirá el modelo de transporte asociado a un problema. Resolverá problemas de transporte con los métodos de la esquina noroeste,

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

Examen de Investigación Operativa (Plan 96) Febrero de er Parcial

Examen de Investigación Operativa (Plan 96) Febrero de er Parcial Examen de Investigación Operativa (Plan 96) Febrero de 2010 1 er Parcial Solución del Ejercicio 1. Definimos las variables de decisión ½ 1, si se coloca una cámara en el punto de localización i x i = 0,

Más detalles

UNIDAD DOS MODELO DE ASIGNACIÓN

UNIDAD DOS MODELO DE ASIGNACIÓN Ing. César Urquizú UNIDAD DOS MODELO DE ASIGNACIÓN Ing. César Urquizú Modelos de Transporte Método de la Esquina Noroeste Método del Costo Mínimo o Menor Método de Aproximación de Vogel (MAV) Método del

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

Lección 8. Problemas del transporte, transbordo y asignación

Lección 8. Problemas del transporte, transbordo y asignación Lección 8. Problemas del transporte, transbordo y asignación 8.1. El problema de transporte 8.1.1.Propiedades del sistema de transporte. 8.1.2.Método general de solución- algoritmo de transporte. 8.1.3.Determinación

Más detalles

Universidad Nacional de Ingeniería UNI-RUACS 01/09/11

Universidad Nacional de Ingeniería UNI-RUACS 01/09/11 Universidad Nacional de Ingeniería UNI-RUACS 01/09/11 Elaborado por: Deall Daniel Irías Estelí, Nicaragua El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso.

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio Formato para prácticas de laboratorio CARRERA INGENIERIA INDUSTRIAL PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE 2007-1 9013 NOMBRE DE LA UNIDAD DE APRENDIZAJE METODOLOGIA PARA LA RESOLUCION DE PROBLEMAS

Más detalles

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

1 $10 $0 $20 $11 15 2 $12 $7 $9 $20 25 3 $0 $14 $16 $18 10 Total demanda

1 $10 $0 $20 $11 15 2 $12 $7 $9 $20 25 3 $0 $14 $16 $18 10 Total demanda UNIDAD V. ALGORITMOS ESPECIALES 5.4. Métodos de aproximación para obtener una solución básica inicial Para resolver problemas de transporte se debe crear una solución básica inicial, la obtención de esta

Más detalles

RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX

RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX Prof. MSc. Julio Rito Vargas ================================================================================ Resolver por el método Simplex,

Más detalles

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30 Grafos AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Grafos / 0 Objetivos Al finalizar este tema tendréis que: Conocer la terminología básica de la teoría de grafos. Pasar

Más detalles

El Problema de Transporte

El Problema de Transporte El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Octubre 2008 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74

2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 74.5 Dependencia Lineal, Independencia Lineal, Wronskiano Dependencia Lineal Definición.5. Se dice que un conjunto de funciones f, f,... fn ( ) es

Más detalles

Prueba de optimalidad con. Métodos de Transporte. Autor : Ing. Germán D. Mendoza R.

Prueba de optimalidad con. Métodos de Transporte. Autor : Ing. Germán D. Mendoza R. Prueba de optimalidad con algoritmo STEPPING-STONE en Métodos de Transporte Autor : Ing. Germán D. Mendoza R. PROBLEMAS DE TRANSPORTE FASE 1: Algoritmos de solución básica Inicial: Método de la esquina

Más detalles

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Programación Lineal María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Qué es la Programación Lineal? Introducción La Programación

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma:

Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma: TEORIA DE LA DUALIDAD. Cada problema de programación lineal tiene un segundo problema asociado con él. Uno se denomina primal y el otro dual. Los 2 poseen propiedades muy relacionadas, de tal manera que

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Forma estándar de un PPL con m restricciones y n variables. (b 0)

Forma estándar de un PPL con m restricciones y n variables. (b 0) Forma estándar de un PPL con m restricciones y n variables Maximizar (minimizar) Z = c 1 x 1 + c 2 x 2 +... + c n x n a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 +a 22 x 2 +... + a 2n x n = b 2...

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles

Dirección de Operaciones

Dirección de Operaciones Dirección de Operaciones 1 Sesión No. 9 Nombre: Problemas de transporte y asignación. Primera parte. Objetivo Al finalizar la sesión, el alumno será capaz de Contextualización Cuál es el valor de estudiar

Más detalles

PFC. José Luis Pichardo Muñoz 5. Heurística basada en Grafos

PFC. José Luis Pichardo Muñoz 5. Heurística basada en Grafos 5.1. Introducción. En este capítulo vamos a describir una heurística basada en el cálculo de índices mediante un problema de flujo a coste mínimo. Inicialmente se implementó una metaheurística GRASP, pero

Más detalles

Teniendo en cuenta los valores de las variables se tienen 3 tipos de modelos lineales enteros:

Teniendo en cuenta los valores de las variables se tienen 3 tipos de modelos lineales enteros: Tema 5 Programación entera En este tema introducimos problemas lineales en los que algunas o todas las variables están restringidas a tomar valores enteros. Para resolver este tipo de problemas se han

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Forma estándar de un programa lineal

Forma estándar de un programa lineal Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Programación Lineal Encuentro #9 Tema: PROBLEMA DE ASIGNACIÓN Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /201 Objetivos: Resolver problemas de asignación

Más detalles

Dirección de Operaciones

Dirección de Operaciones Dirección de Operaciones 1 Sesión No.5 Nombre: El método simplex. Segunda parte. Objetivo Al finalizar la sesión, el alumno será capaz de identificar las herramientas que permiten resolver problemas de

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL Algoritmo del método simplex que mejora la eficiencia de los cálculos, se realizan los mismos pasos del método simplex visto, sólo se diferencia en la manera de

Más detalles

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.

Más detalles

METODO SIMPLEX: SOLUCION DE PROBLEMAS DE PROGRAMACION LINEAL.

METODO SIMPLEX: SOLUCION DE PROBLEMAS DE PROGRAMACION LINEAL. METODO SIMPLEX: SOLUCION DE PROBLEMAS DE PROGRAMACION LINEAL. El método Simplex es un procedimiento general para resolver problemas de programación lineal. Desarrollado por George Dantzig en 1947, esta

Más detalles

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Tema 2: Optimización lineal Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario El modelo de programación lineal Formulación de modelos Método gráfico

Más detalles

maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa.

maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. UNIDAD 5 MÉTODO SÍMPLEX maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. minimización (con restricciones de la forma mayor que). tenga

Más detalles

CALCULO I UNIDAD I MATRICES. Instituto Profesional Iplacex

CALCULO I UNIDAD I MATRICES. Instituto Profesional Iplacex CALCULO I UNIDAD I MATRICES 1.3 Transformación de matrices A las matrices se les pueden realizar ciertas transformaciones o cambios internos, siempre y cuando no afecten ni el orden ni el rango de la misma.

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds PROBLEMA Una empresa dedicada a la fabricación de diferentes artículos, ante la inminente llegada de la estación invernal se plantea establecer su política de fabricación almacenae de estufas de gas para

Más detalles

MÉTODO DE DETERMINANTES. Es una notación matemática formada por una tabla cuadrada de números y está formada por una Matriz Cuadrada.

MÉTODO DE DETERMINANTES. Es una notación matemática formada por una tabla cuadrada de números y está formada por una Matriz Cuadrada. MÉTODO DE DETERMINANTES Es una notación matemática formada por una tabla cuadrada de números y está formada por una Matriz Cuadrada. El orden de una determinante cuadrada es el número de elementos de cada

Más detalles

Método de las dos fases

Método de las dos fases Método de las dos fases Max X 0 = 3x 1 + 5x 2 Sujeta a 4 x 1 + x 2 4 - x 1 + 2x 2 2 x 2 3 x 1, x 2 0 1. Se obtiene el problema aumentado con variables artificiales. Max X 0 = 3x 1 + 5x 2 + 0x 3 + 0x 4

Más detalles

Tema 1 Introducción. José R. Berrendero. Departamento de Matemáticas Universidad Autónoma de Madrid

Tema 1 Introducción. José R. Berrendero. Departamento de Matemáticas Universidad Autónoma de Madrid Tema 1 Introducción José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Información de contacto José Ramón Berrendero Díaz Correo electrónico: joser.berrendero@uam.es Teléfono:

Más detalles

Tema No. 6 Transporte y Asignación. Introducción

Tema No. 6 Transporte y Asignación. Introducción UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 6 Transporte y Asignación Introducción

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

El Problema del Transporte

El Problema del Transporte ASIGNATURA PROGRAMACIÓN LINEAL El Problema del Transporte Maestro Ing. Julio Rito Vargas Avilés Octubre 2014 1 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para

Más detalles

TEMA 8. Sistemas de Ecuaciones Lineales: Método de Gauss. 1. Sistemas de ecuaciones lineales. Generalidades

TEMA 8. Sistemas de Ecuaciones Lineales: Método de Gauss. 1. Sistemas de ecuaciones lineales. Generalidades TEMA 8 F MATEMÁTICOS TEMA 8 Sistemas de Ecuaciones Lineales: Método de Gauss 1 Sistemas de ecuaciones lineales Generalidades Uno de los problemas centrales del álgebra lineal es la resolución de ecuaciones

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal

Más detalles

Programación Lineal III. Análisis Post-Optimal

Programación Lineal III. Análisis Post-Optimal Programación Lineal III. Análisis Post-Optimal P.M. Mateo y David Lahoz 7 de mayo de 009 En este tema se estudia al análisis post-optimal, qué ocurre en un problema de programación lineal que ya hemos

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN)

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN) UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Ing. Julio Rito Vargas Avilés (SOLUCIÓN) I. Representar gráficamente la región determinada

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

Formulación del Modelo de Transporte.

Formulación del Modelo de Transporte. Formulación del Modelo de Transporte La programación lineal es un campo tan amplio que se extiende a subclases de problemas para los cuales existen métodos de solución especiales Una de estas subclases

Más detalles

Flujo en Redes. IN34A: Clase Auxiliar. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial

Flujo en Redes. IN34A: Clase Auxiliar. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Flujo en Redes Marcel Goic F. 1 1 Esta es una versión bastante preliminar por

Más detalles

ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA

ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA UNIDAD OBJETIVO: Resolverá situaciones y problemas en los que se apliquen ecuaciones de primer grado con una incógnita, sistemas de ecuaciones lineales con dos y tres incógnitas, mediante métodos algebraicos

Más detalles

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex UNIDAD 3 MÉTODO SIMPLEX Fundamentos del método simplex Teoría Este método busca la solución, en cada paso, de forma mejorada hasta que no pueda seguir mejorando dicha solución. Al comienzo el vértice principal

Más detalles

TEMA 1. Álgebra matricial y programación lineal

TEMA 1. Álgebra matricial y programación lineal TEMA 1 Álgebra matricial y programación lineal Muchos problemas en las matemáticas y sus aplicaciones conducen a sistemas de ecuaciones lineales, del tipo: a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1

Más detalles

2. Cual es el contexto histórico y evolución de la investigación de operaciones?

2. Cual es el contexto histórico y evolución de la investigación de operaciones? 1. Que es la Investigación de operaciones? Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística y algoritmos con objeto de realizar un proceso de toma de decisiones.

Más detalles

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja. Dado el PL: Maximizar x + x x s.a x + x + x x x x x, x, x Calcula la solución del problema aplicando el algoritmo del Simplex. Existe más de una solución óptima?

Más detalles

Flujos de redes (Network Flows NF)

Flujos de redes (Network Flows NF) Fluos de redes (Network Flows NF). Terminología. Árbol generador mínimo. Camino mínimo 4. Fluo máximo 5. Fluo de coste mínimo TEORÍA DE GRAFOS. OPTIMIZACIÓN EN REDES Terminología Red o grafo (G) Nodos

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

La lección de hoy de febrero de Notación. Solución factible básica

La lección de hoy de febrero de Notación. Solución factible básica 1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso

Más detalles

Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones:

Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones: MÉTODO DE TRANSPORTE Es un método de programación lineal para la asignación de artículos de un conjunto de origines a un conjunto de destinos de tal manera que se optimice la función objetivo. Esta técnica

Más detalles

Guía de Problemas para el Control 2

Guía de Problemas para el Control 2 Guía de Problemas para el Control 2 Geometría Problema 1 Demuestre que la intersección de conjuntos convexos es un conjunto convexo. Utilizando esto demuestre que todo poliedro es un conjunto convexo.

Más detalles

Análisis y síntesis de sistemas digitales combinacionales

Análisis y síntesis de sistemas digitales combinacionales Análisis Algoritmo de análisis, para un circuito lógico combinacional Síntesis. Conceptos Circuitos combinacionales bien construidos Circuitos combinacionales mal construidos Criterios de optimización

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

PAIEP. Sistemas de Ecuaciones Lineales

PAIEP. Sistemas de Ecuaciones Lineales Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Sistemas de Ecuaciones Lineales Consideremos el sistema lineal de dos ecuaciones y dos incógnitas x + y = 2 2x

Más detalles

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

ANÁLISIS DE SENSIBILIDAD.

ANÁLISIS DE SENSIBILIDAD. ANÁLISIS DE SENSIBILIDAD. En la mayoría de las aplicaciones practicas, algunos datos del problema no son conocidos con exactitud y por esto son estimados tan bien como sea posible. Es importante poder

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

Introducción.- Problema dual.-

Introducción.- Problema dual.- 30 Unidad 3 Análisis de dualidad y sensibilidad Competencia-el estudiante debe convertir un modelo estático en dinámico a través del análisis de sensibilidad basado en dos situaciones cambios en la función

Más detalles

1. GRAFOS : CONCEPTOS BASICOS

1. GRAFOS : CONCEPTOS BASICOS 1. GRAFOS : CONCEPTOS BASICOS Sea V un conjunto finito no vacio y sea E V x V. El par (V, E) es un grafo no dirigido, donde V es un conjunto de vértices o nodos y E es un conjunto de aristas. Denotaremos

Más detalles