PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -"

Transcripción

1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones y/o rotaciones de figuras geométricas. Conceptos Básicos. Un movimiento o isometría es una transformación que preserva todas las distancias y por ello preserva el tamaño y la forma. ( iso significa igual y metría significa medida ). La imagen de una figura bajo esta transformación siempre es congruente con la figura original. Tipos de isometrías en el plano Traslaciones: Las traslaciones son aquellas isometrías que permiten desplazar en línea recta todos los puntos del plano. Este desplazamiento se realiza siguiendo una determinada dirección, sentido y distancia, por lo que toda traslación queda definida por lo que se llama su vector de traslación. Observaciones. La figura conserva todas sus dimensiones, tanto lineales como angulares. Una figura jamás rota, es decir, el ángulo que forma con la horizontal no varía. No importa el número de traslaciones que se realicen, siempre es posible resumirlas en una única. ) En la figura, cuál es el vector de traslación que se aplicó al triángulo A para obtener el triángulo B? 8 6 A B a) (8, ) b) (8, ) c) (, 0) d) (0, ) e) (0, ) ) Si un punto F = (, ) se traslada a F = (, ), qué vector traslación T(x, y) cambia F a F? a) T ( 9, ) b) T (, ) c) T (, ) d) T ( 9, ) e) T ( 9, ) ) Al aplicar una traslación a la figura se obtiene: q Fig. p r s t a) p b) q c) r d) t e) s

2 ) El cuadrado PQRS de la figura ha sido transformado mediante un vector de traslación, en el cuadrado ennegrecido. Cuál(es) de las afirmaciones siguientes es(son) verdadera(s)? I) El vector de traslación fue T(, 0) II) Los puntos Q y R permanecen invariantes. III) El área del cuadrado permanece constante. a) Sólo I b) Sólo I y II c) Sólo I y III d) Sólo II y III e) I, II y III A,, B, y C,. Si se aplica una ) Un triángulo ABC tiene coordenadas ( ) ( ) ( ) traslación según el vector (p, q) y las nuevas coordenadas de A son A (, ); cuál(es) de las siguientes afirmaciones es(son) verdadera(s)? I) (p, q) = (, 9) II) B = (, ) III) C = (, ) a) Sólo I b) Sólo II c) Sólo I y II d) Sólo II y III e) I, II y III 6) Cuál(es) de los siguientes casos representa(n) una traslación? I) II) III) a) Sólo I b) Sólo II c) Sólo III d) Sólo I y II e) Sólo I y III ) Qué vector de traslación reemplaza a una traslación del vector T (, ) seguido de un segundo vector T (, ) a) T (, 9) b) T ( 9, ) c) T ( 9, ) d) T ( 9, ) e) T (, 9) 8) Si Se aplica una traslación a los puntos A( 6, ), B(, ) y C(, ), de tal forma que dichos puntos se mueven dos unidades horizontalmente a la derecha y cinco unidades verticalmente hacia arriba, entonces uno de los vértices trasladados del triángulo ABC toma el valor: B A C a) (6, 0) b) (, ) c) (, ) d) (0, 6) e) (0, 9)

3 9) Los triángulos,,, se han obtenido a partir del triángulo. Cuál de ellos corresponde a la traslación del triángulo? a) Triángulo b) Triángulo c) Triángulo d) Triángulo e) Ninguno 0) El(los) números correspondiente(s) a las letras que son traslaciones de la figura de la izquierda es(son): 6 a) Sólo b) Sólo, y 6 c) Sólo y d) Sólo, y e) Todas Rotaciones Las rotaciones son aquellas isometrías que permiten girar todos los puntos del plano.- Cada punto gira siguiendo un arco que tiene un centro y un ángulo bien determinado, por lo que toda rotación queda definida por su centro de rotación y por su ángulo de giro. Si la rotación se efectúa en sentido contrario a las manecillas del reloj, recibe el nombre de rotación positiva o antihoraria, en caso contrario, se dice que la rotación es negativa u horaria. En la figura, O: centro de rotación y α : ángulo de rotación Observaciones. Una rotación con centro P y ángulo de giro α, se representa por R ( P, α ) rotación es negativa, se representa por R ( P, α ).. Si la Si rotamos el punto (x, y) con respecto al origen O(0, 0), en un ángulo de giro de 90º, 80º, 0º ó 60º, las coordenadas de los puntos obtenidos están dados en la siguiente tabla. Punto inicial R ( 0, 90º ) R ( 0, 80º ) R ( 0, 0º ) R ( 0, 60º ) ( x, y) ( y, x) ( x, y) ( y, x) ( x, y) (,) (,) (, ) (, ) (,) A la siguiente figura, una cara circular, le aplicamos una rotación en torno al centro de la circunferencia. Fig. original Fig. rotada en 90º Fig. rotada en 80º Fig. rotada en 0º (-90º)

4 ) Cuál de las siguientes alternativas representa una rotación de la figura en º con centro en p? P a) b) c) d) e) ) Qué figura se obtiene al aplicar una rotación de centro O y un ángulo de giro de 90º, en sentido antihorario, a la figura siguiente? O a ) b) c) d) e) ) Al aplicar una rotación de centro O y ángulo de giro de 80º, a la figura se obtiene: O a) b) c) d) e) ) Al punto P de la figura se le aplica una rotación de centro en el origen y ángulo de giro de 0º, en sentido antihorario, obteniendo el punto P cuyas coordenadas son: P a) (, ) b) (, ) c) (, ) d) (, ) e) (, ) ) El trazo de la figura intersecta a los ejes en los puntos (, 0) y (0, 6). Si al trazo se le realiza primero una rotación en 80º con respecto al origen (0,0) y después un desplazamiento de unidades hacia abajo, cuál de los siguientes gráficos representa mejor esta situación? 6) Mediante una rotación de centro O y un ángulo de 90º (en cualquier sentido), el ABC ocupa la posición A B C. Esto NO se cumple en: a) b ) c) d) e)

5 ) Si El triángulo ABC de la figura, se le aplica una rotación de 90º, con centro en el origen y luego una traslación T (, -), el vértice C sería: A 6 - C B a) (, 6) b) (6, ) c) (, -) d) (,) e) Ninguna de las anteriores. 8) La medida del ángulo de rotación con centro en O que transforma F en F es: F' F a) º b) 90º c) º d) 80º e) 0º 9) La edad de José es (x + ) años Cuántos años tenía hace (x - ) años? a) x + b) 8 c) d) x + 8 e) No se puede determinar 0) Las tres figuras son cuadrados. Cuánto mide el área no achurada? a) 0 cm b) 8 cm c) cm d)0cm e) n.a ) En cuál de los siguientes triángulos se cumple siempre que sus tres ángulos interiores son menores o igual que 90? I. Acutángulo II. Rectángulo III. Isósceles IV. Equilátero V. Escaleno a) I, II, III, IV b) III, V c) I, IV d) I, II, IV e) III, IV, V ) En la figura, ABCD es un rombo, S y R son puntos de la diagonal AC tales que CR = AS. Por cuál criterio los triángulos CDR y ABS son congruentes? a) L, A, L b) L, L, L c) A, L, A d) L, L, A e) A, A, A ) Si x = ; entonces x + =? x x a) b) 0 c) d) e) 9

6 6 ) Podemos decir que P es par si: I) P + es par II) P es par III) P es par a) Sólo I b) Sólo II c) Sólo III d) I y II e) I y III ) El área de un rectángulo es 8x + 6x, cuáles podrían ser las medidas del rectángulo? a) 8 x y x b) x y x + c) 8x y x d) x y 8x + 8 e) n.a. 6) El valor de x x x en la ecuación = es: a) b) 0 c) d) e) ) El de la figura es equilátero h: altura Cuánto mide la superficie sombreada? a a a a) b) c) d) No se puede determinar e) n.a. 8 8) Cuál es el perímetro de la figura, si se sabe que: AC = ED = 0 cm; BC = 6 cm, AE = cm a) cm b) 0 cm c) 6 cm d) 8 cm e) cm 9) La figura muestra una circunferencia C(O, ), donde x + y = 0, cuál es el valor del área achurada? a) 90 π cm b) 9 π cm c) 8 π cm d) π cm e) 9 log x + log x =, entonces x =? 0) Si ( ) 8 π cm 9 a) b) c) d) e) n.a.

7 ) En el triángulo rectángulo de la figura, CD = 6 cm, DB = cm, entonces AC=? a) cm b) 0 cm c) 0 cm d) cm e) 8 cm ) En la figura, el trazo PQ es paralelo al lado AB del triángulo ABC. Si CP es la tercera parte de PA y QB = 9 cm, entonces CQ =? a) cm b) 6 cm c) 9 cm d) cm e) cm ) Qué valor debe tener x para L // L? a) b) c) 6 d) e) Otro valor ) En la figura, la tangente PR mide 6 cm y la secante PB = 8 cm, entonces BA mide: a) 6 cm b) 6 cm c) 9 cm d) cm e) cm ) Si D es la mitad de la diagonal de un cuadrado, cuál es su perímetro? a) D b) D c) D d) D e) D 6) Cuál es la longitud de una circunferencia circunscrita a un triángulo equilátero de 6 cm de perímetro? a) π cm b) π cm c) 8 π cm d) 6 π cm e) π cm ) Si el total de diagonales de un polígono es, cuántos lados posee el polígono? a) b) c) 6 d) e) 8

8 8 8) En el rectángulo ABCD de lados a y b, E y F son puntos medios de BC y CD respectivamente. El área del triángulo ABF es: a) ab b) ab c) ab d) ab e) ab ) En el sistema cartesiano se le aplicó una traslación al segmento AB obteniéndose el segmento A B. Se puede determinar el vector de traslación si: () Se conocen las coordenadas de A y B () Se conocen las coordenadas de B y A a) () por sí sola b) () por sí sola c) Ambas juntas, () y () d) Cada una por sí sola, () ó () e) Se requiere información adicional 0) En una división exacta entre dos números enteros, se puede conocer su divisor si: () Se sabe que el dividendo es 60 y el resto es cero () El cuociente es un número primo, que dentro del conjunto es único en su especie a) () por sí sola b) () por sí sola c) Ambas juntas, () y () d) Cada una por sí sola, () ó () e) Se requiere información adicional Hoja de Respuestas. ) e ) e ) d ) c ) c 6) e ) e 8) d 9) c 0) c ) e ) d ) a ) d ) b 6) b ) b 8) e 9) b 0) b ) d ) a ) c ) e ) b 6) c ) c 8) c 9) d 0) d ) d ) c ) b ) a ) b 6) c ) d 8) d 9) c 0) c

PSU Matemática NM-4 Guía 24: Isometrías. Transformaciones isométricas en el plano

PSU Matemática NM-4 Guía 24: Isometrías. Transformaciones isométricas en el plano Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 4: Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza diferentes

Más detalles

TALLER TRANSFORMACIONES ISOMÉTRICAS. Transformaciones Isométricas

TALLER TRANSFORMACIONES ISOMÉTRICAS. Transformaciones Isométricas TALLER TRANSFORMACIONES ISOMÉTRICAS Introducción étricas Actividad: En los siguientes pares de transformaciones, reconoce aquellas en las que se mantiene la forma y el tamaño. Una transformación de una

Más detalles

ROTACIONES. R P,. Si la rotación es negativa se representa por EJEMPLOS

ROTACIONES. R P,. Si la rotación es negativa se representa por EJEMPLOS 1. TRASLACIONES CAPÍTULO XII TRANSFORMACIONES ISOMETRICAS ISOMETRIAS I Las traslaciones, son aquellas isometrías que permiten desplazar en línea recta todos los puntos del plano. Este desplazamiento se

Más detalles

Guía Práctica Segundos medios

Guía Práctica Segundos medios Fuente: Pre Universitario Pedro de Valdivia Guía Práctica Segundos medios ISMETRÍS Y TESELINES TRSLINES Las traslaciones, son aquellas isometrías que permiten desplazar en línea recta todos los puntos

Más detalles

Resumen de Transformaciones Isométricas. Traslaciones

Resumen de Transformaciones Isométricas. Traslaciones Resumen de Transformaciones Isométricas Una transformación es un procedimiento geométrico o movimiento que produce cambios en una figura. La palabra isometría proviene del griego y significa igual medida

Más detalles

Nombre: Curso: Fecha: -

Nombre: Curso: Fecha: - 1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 4: Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza

Más detalles

NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt

NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt 1 Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt Introducción: Una transformación de una figura geométrica indica que, de alguna manera, ella es alterada o sometida a algún cambio. En

Más detalles

PSU Matemática NM-4 Guía 14: Ángulos y Triángulos

PSU Matemática NM-4 Guía 14: Ángulos y Triángulos 1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía 1: Ángulos y Triángulos Nombre: Curso: Fecha: - Contenido: Geometría. Aprendizaje Esperado:

Más detalles

PSU Matemática NM-4 Guía 19: Circunferencia

PSU Matemática NM-4 Guía 19: Circunferencia 1 entro Educacional San arlos de ragón. pto. Matemática. Nivel: NM 4 Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 19: ircunferencia Nombre: urso: Fecha: - ontenido: Geometría. prendizaje Esperado:

Más detalles

Guía Nº 2 Transformaciones Isométricas

Guía Nº 2 Transformaciones Isométricas Colegio Raimapu Departamento de Matemática Nombre Alumno o Alumna: Guía Nº 2 Transformaciones Isométricas Curso: Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo indicando la respuesta

Más detalles

Tutorial MT-m1. Matemática Tutorial Nivel Medio. Transformaciones isométricas

Tutorial MT-m1. Matemática Tutorial Nivel Medio. Transformaciones isométricas 12345678901234567890 M ate m ática Tutorial MT-m1 Matemática 2006 Tutorial Nivel Medio Transformaciones isométricas Matemática 2006 Tutorial Transformaciones isométricas Marco Teórico El proceso de llevar

Más detalles

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Definición: Se llaman transformaciones

Más detalles

TRANSFORMACIONES ISOMÉTRICAS EN EL PLANO CARTESIANO

TRANSFORMACIONES ISOMÉTRICAS EN EL PLANO CARTESIANO Matemáticas Aplicadas Tema: Movimiento de los cuerpos geométricos. TRANSFORMACIONES ISOMÉTRICAS EN EL PLANO CARTESIANO Transformación isométrica Isometría proviene del griego iso, prefijo que significa

Más detalles

Transformaciones Isométricas

Transformaciones Isométricas Transformaciones Isométricas I o Medio Profesor: Alberto Alvaradejo Ojeda Índice 1. Transformación Isométrica 3 1.1. Traslación..................................... 3 1.2. Ejercicios.....................................

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

Guía Nº 12 PSU NM 4: Cuadriláteros + Circunferencia. Nombre: Curso: Fecha:

Guía Nº 12 PSU NM 4: Cuadriláteros + Circunferencia. Nombre: Curso: Fecha: 1 entro Educacional San arlos de ragón. Dpto. de Matemática. Prof.: Ximena Gallegos H. Guía Nº 1 PSU NM : uadriláteros + ircunferencia Nombre: urso: Fecha: prendizaje Esperado: Determina medidas angulares,

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

PSU Matemática NM-4 Guía 15 Ángulos y Triángulos

PSU Matemática NM-4 Guía 15 Ángulos y Triángulos entro Educacional San arlos de ragón. pto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 5 Ángulos y Triángulos Nombre: : urso: Fecha: - ontenido: Geometría. prendizaje Esperado: Utiliza

Más detalles

PSU Matemática NM-4 Guía 18: Circunferencia

PSU Matemática NM-4 Guía 18: Circunferencia 1 entro Educacional San arlos de ragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 18: ircunferencia Nombre: urso: Fecha: - ontenido: Geometría. prendizaje Esperado: Utiliza el

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Guía Nº 11PSU NM 4: Circunferencia. Nombre: Curso: Fecha:

Guía Nº 11PSU NM 4: Circunferencia. Nombre: Curso: Fecha: entro Educacional San arlos de ragón. pto. de Matemática. Prof.: Ximena Gallegos H. Guía Nº PSU NM 4: ircunferencia Nombre: urso: Fecha: prendizaje Esperado: etermina medidas angulares, utilizando propiedades

Más detalles

MATEMÁTICA N O 6. Santillana FASCÍCULO PSU N O 6 MATEMÁTICA. Santillana

MATEMÁTICA N O 6. Santillana FASCÍCULO PSU N O 6 MATEMÁTICA. Santillana FASCÍCULO PSU N O 6 MATEMÁTICA . El valor de 0, 0, + es igual: A) B) C) D) 4 45 6 45 5 8 9 E) 0 9. La medida del segmento AE es: A A) 8 cm B) 4 cm C) 0 cm D) cm E) cm. 4-4 - =? - A) - 4 B) 8 C) 4 D) -

Más detalles

Traslación: ABCDEF se ha transformado a la figura A B C D E F, en la dirección y longitud del vector d

Traslación: ABCDEF se ha transformado a la figura A B C D E F, en la dirección y longitud del vector d PROFESOR SANDRO JAVIER VELASQUEZ LUNA 1 TRANSFORMACIONES ISOMETRICAS Si a una figura geométrica se le aplica una transformación, y esta no produce un cambio en la medida de los lados y ángulos se llama

Más detalles

Guía Nº 3. CONTENIDOS: Perímetro y Área Nombre: Marque la alternativa correcta. Realice sus cálculos al costado de cada ejercicio.

Guía Nº 3. CONTENIDOS: Perímetro y Área Nombre: Marque la alternativa correcta. Realice sus cálculos al costado de cada ejercicio. SUBSECTOR : Electivo de Álgebra y Geometría NIVELES : IIIº/VIº Medio PROFESORES : Martín Andrés Martínez Santana AÑO : 017 CONTENIDOS: Perímetro y Área Nombre: Guía Nº IIIº/IV Marque la alternativa correcta.

Más detalles

PSU Matemática NM-4 Guía 17: Circunferencia

PSU Matemática NM-4 Guía 17: Circunferencia entro Educacional San arlos de ragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 7: ircunferencia Nombre: urso: Fecha: - ontenido: Geometría. prendizaje Esperado: Utiliza el método

Más detalles

PRUEBA DE MATEMÁTICA FACSÍMIL N 2

PRUEBA DE MATEMÁTICA FACSÍMIL N 2 PRUEBA DE MATEMÁTICA FACSÍMIL N. Si a - b = 5 y c d = 4, entonces 4a + c b 4d = A) 8 B) 9 C) 0 D) 9 E) 8. t es un número que cumple las siguientes tres condiciones: t > -6; 3t < 6. Entonces cuál de los

Más detalles

MATEMÁTICAS-FACSÍMIL N 12

MATEMÁTICAS-FACSÍMIL N 12 MATEMÁTICAS-FACSÍMIL N 12 1. Se define A) B) C) E) 1 1 9 1 6 21 9 49 2 m p m p 2 1 =, luego = s t s t 5 2 2. En la figura ABC es equilátero y DCB es recto. Cuál(es) de las siguientes afirmaciones es(son)

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU

EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU PROGRAMA EGRESADOS Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano Ejercicios PSU 1. Si P(3, 4) y Q(8, 2), entonces el punto medio de PQ es A) (11, 2) D) (5, 2) B) ( 5 2, 3 ) E)

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

Cuáles son las imágenes de los puntos M,N,O,P respecto eje x?

Cuáles son las imágenes de los puntos M,N,O,P respecto eje x? Guía N 3 Nombre: Curso: 1 Medio A-B-C-D Unidad Geometría Fecha: Profesora: Odette Castro M. Contenidos: Transformaciones isométricas en el plano cartesiano Simetría Axial 1. Dibuja la figura simétrica,

Más detalles

FACSÍMIL Nº 2 MATEMÁTICA

FACSÍMIL Nº 2 MATEMÁTICA FACSÍMIL Nº MATEMÁTICA 1. (0,15) = A) 0, B) 0,5 C) 0,5 0,05 E) 0,005. h y k son dos números reales tales que hk > 0 y h < 0. Cuál de las siguientes expresiones representa un número negativo? A) ( k) B)

Más detalles

TRANSFORMACIONES ISOMETRICAS

TRANSFORMACIONES ISOMETRICAS PreUnAB Clase # 22 Octubre 2014 TRANSFORMACONES ISOMÉTRICAS Concepto de Isometrías: Las transformaciones isométricas son movimientos que se aplican a figuras geométricas, produciendo cambios de posición,

Más detalles

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala.

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala. Conceptos de geometría Las figuras que acompañan a los ejercicios en la prueba tienen el propósito de proveerle información útil para resolver los problemas. Las figuras están dibujadas con la mayor precisión

Más detalles

DESARROLLO DE HABILIDADES ISOMETRIAS 8

DESARROLLO DE HABILIDADES ISOMETRIAS 8 DESARROLLO DE HABILIDADES ISOMETRIAS 8 NOMBRE:.. CURSO: Resolver los siguientes ejercicios y problemas relacionados con Transformaciones isométricas, realizando los procedimientos necesarios para marcar

Más detalles

ALGUNAS RELACIONES PARA RECORDAR:

ALGUNAS RELACIONES PARA RECORDAR: ALGUNAS RELACIONES PARA RECORDAR: División Áurea de un trazo: Consideremos el trazo: AB AP AP PB Se dice que P divide de modo áureo al trazo AB. Es decir el mayor de los trazos es media proporcional entre

Más detalles

GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS

GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS GEOMETRÍA ANALÍTICA La Geometría Analítica hace uso del Álgebra y la Geometría plana. Con ella expresamos y resolvemos fácilmente problemas geométricos de forma algebraica, siendo los sistemas de coordenadas

Más detalles

2. Dados los decimales 0,15 ; 0,149 ; 0,2 ; 0,1437 ; 0,07 ; al sumar el menor con el mayor se obtiene:

2. Dados los decimales 0,15 ; 0,149 ; 0,2 ; 0,1437 ; 0,07 ; al sumar el menor con el mayor se obtiene: MATEMÁTICA FACSÍMIL INSTRUCCIONES ESPECÍFICAS. Esta prueba consta de 70 preguntas. Usted dispone de dos horas y 5 minutos para responderla.. Las figuras que aparecen en la prueba NO ESTÁN necesariamente

Más detalles

TEMA 6: GEOMETRÍA EN EL PLANO

TEMA 6: GEOMETRÍA EN EL PLANO TEMA 6: GEOMETRÍA EN EL PLANO Definiciones/Clasificaciones Fórmulas y teoremas Dem. Def. y Clasificación de polígonos: Regular o irregular Cóncavo o convexo Por número de lados: o Triángulos: clasificación

Más detalles

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2. GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica

Más detalles

Geometría Prof. L. Solorza Curso: 1 medio. Guía de isometrías

Geometría Prof. L. Solorza Curso: 1 medio. Guía de isometrías Guía de isometrías A) Simetrías a) Reflexiones o Simetrías axiales Concepto: Una reflexión o simetría axial, con eje la recta L, es un movimiento del plano tal que a cada punto P del plano le hace corresponder

Más detalles

SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano

SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG04MT-A16V1 SOLUCIONARIO Ubicación de puntos, distancia longitudes en el plano cartesiano 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA UBICACIÓN DE PUNTOS, DISTANCIA Y LONGITUDES EN EL PLANO CARTESIANO Ítem

Más detalles

Actividad Reconociendo lo invariante en figuras simétricas

Actividad Reconociendo lo invariante en figuras simétricas Actividad 37.1. Reconociendo lo invariante en figuras simétricas Construir figuras simétricas respecto de un eje y describir las propiedades que se conservan. Recuerda que la simetría axial o simetría

Más detalles

EJERCICIOS ÁREAS DE REGIONES PLANAS

EJERCICIOS ÁREAS DE REGIONES PLANAS EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que

Más detalles

Bloque 33 Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG047EM33-A17V1

Bloque 33 Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG047EM33-A17V1 SGUICEG047EM33-A17V1 Bloque 33 Guía: Ubicación de puntos, distancia longitudes en el plano cartesiano TABLA DE CORRECCIÓN UBICACIÓN DE PUNTOS, DISTANCIAS Y LONGITUDES EN EL PLANO CARTESIANO N Clave Dificultad

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1 SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión

Más detalles

I) Resuelve y encierra en un círculo la alternativa correcta.

I) Resuelve y encierra en un círculo la alternativa correcta. entro Educacional San arlos de ragón. oordinación cadémica Enseñanza Media. Sector: Matemática. Prof.: Ximena Gallegos H. 1 Guía Nº 8 PSU Matemática NM : Áreas y Perímetros Nombre: urso: Fecha: ontenido:

Más detalles

DESAFÍO. Nunca es tarde para sumar FACSÍMIL 10 MATEMÁTICAS MÓDULO 3 PARA LA EDUCACIÓN SUPERIORPSU ENSAYA CON NOSOTROS

DESAFÍO. Nunca es tarde para sumar FACSÍMIL 10 MATEMÁTICAS MÓDULO 3 PARA LA EDUCACIÓN SUPERIORPSU ENSAYA CON NOSOTROS DESFÍO PR L EDUCCIÓN SUPERIORPSU Ejemplar de circulación gratuita - 11 de noviembre de 009 FCSÍMIL 10 ENS CON NOSOTROS Nunca es tarde para sumar MTEMÁTICS MÓDULO tención!!! Mira!! En el 010, el MINEDUC

Más detalles

MATEMÁTICA N O 2. Santillana FASCÍCULO PSU N O 2 MATEMÁTICA. Santillana

MATEMÁTICA N O 2. Santillana FASCÍCULO PSU N O 2 MATEMÁTICA. Santillana FASCÍCULO PSU N O 2 MATEMÁTICA 1 1. Al ordenar de mayor a menor los siguientes números racionales. Cuál es el orden correcto? I. II. 7 20 9 14 III. 25% IV. 2 5 A) IV, II, I, III B) II, IV, III, I C) II,

Más detalles

Apuntes de Dibujo Técnico

Apuntes de Dibujo Técnico APUNTES DE DIBUJO TÉCNICO 1. Materiales para trazados geométricos. - La Escuadra y el Cartabón. El juego de escuadra y cartabón constituye el principal instrumento de trazado. Se deben usar de plástico

Más detalles

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.

Más detalles

7 Geometría del plano. Movimientos

7 Geometría del plano. Movimientos Qué tienes que saber? 7 QUÉ tienes que saber? Lugares geométricos ctividades Finales 7 Teorema de Pitágoras. plicaciones Ten en cuenta Dos rectas secantes forman dos ángulos adyacentes si son consecutivos

Más detalles

SOLUCIONARIO SIMULACRO MT

SOLUCIONARIO SIMULACRO MT SOLUCIONARIO SIMULACRO MT-04 008 1 1. La alternativa correcta es E Razones, proporciones, porcentajes e interés El porcentaje de asistencia se calcula de la siguiente forma: asistentes 100 total invitados

Más detalles

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres DNI Tu Escuela.. Localidad Provincia

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres DNI Tu Escuela.. Localidad Provincia Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Problema 2. Usando sólo una regla sin marcas, dibujar en la cuadrícula

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4

Más detalles

3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO OBJETIVOS MÍNIMOS DE LA UNIDAD 12 1.- Reconocer los diferentes tipos de movimientos 2.- En cuanto a las traslaciones, saber construir la

Más detalles

PSU Matemática NM-4 Guía 21: Semejanza de Triángulos

PSU Matemática NM-4 Guía 21: Semejanza de Triángulos 1 entro ducacional San arlos de ragón. pto. Matemática. Nivel NM 4 Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 1: Semejanza de Triángulos Nombre: urso: Fecha: - ontenido: trazos proporcionales. prendizaje

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

AYUDAS SOBRE LA LINEA RECTA

AYUDAS SOBRE LA LINEA RECTA AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:

Más detalles

FORMAS POLIGONALES TEMA 8

FORMAS POLIGONALES TEMA 8 FORMAS POLIGONALES TEMA 8 1. LOS POLÍGONOS DEFINICIÓN: Un polígono es una figura geométrica plana limitada por segmentos llamados lados, y por vértices. A B C A Lado D Clasificación de los polígonos:

Más detalles

Universidad de Chile Vicerrectoría de Asuntos Académicos DEMRE FASCÍCULO DE PSU DE MATEMÁTICA

Universidad de Chile Vicerrectoría de Asuntos Académicos DEMRE FASCÍCULO DE PSU DE MATEMÁTICA FASCÍCULO DE PSU DE MATEMÁTICA INSTRUCCIONES ESPECÍFICAS. Esta prueba consta de 70 preguntas.. A continuación encontrará una serie de símbolos, los que puede consultar durante el desarrollo de los ejercicios..

Más detalles

Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre..

Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre.. Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre.. 1) En la figura, AC // BD, entonces x mide: 2) Con respecto a la figura, donde AB // CD // EF, cuál de las siguientes

Más detalles

Departamento de Matemática

Departamento de Matemática Departamento de Matemática Isometría, origen griego Igual Medida (ISO = misma METRÍA A = medir) Una trasformación Isométrica produce cambios en una figura que no alteran su tamaño Traslación Rotación Simetría

Más detalles

Esta prueba contiene 70 preguntas, divididas en las siguientes secciones:

Esta prueba contiene 70 preguntas, divididas en las siguientes secciones: MATEMÁTICA FACSÍMIL Esta prueba contiene 70 preguntas, divididas en las siguientes secciones: Números y proporcionalidad. Álgebra y funciones. Geometría. Estadística y probabilidades. Ejercicios de selección

Más detalles

Malas Identifíquese con un número secreto de cuatro dígitos en la carátula del examen y en la Tarjeta de Respuestas.

Malas Identifíquese con un número secreto de cuatro dígitos en la carátula del examen y en la Tarjeta de Respuestas. CÓDIGO: PUNTAJE EJÉRCITO DE CHILE COMANDO DE INSTITUTOS Y DOCTRINA Academia Politécnica Militar NOTA EXAMEN DE ADMISIÓN 010 GEOMETRÍA I.- GENERALIDADES: A.- OBJETIVO Determinar si el oficial postulante

Más detalles

Objetivos: Trasladar figuras en el plano cartesiano. Reconocer o identificar una traslación.

Objetivos: Trasladar figuras en el plano cartesiano. Reconocer o identificar una traslación. Guía N 19 Nombre: Fecha: Contenido: Transformaciones isométricas. Objetivos: Trasladar figuras en el plano cartesiano Reconocer o identificar una traslación. Las transformaciones geométricas están presentes

Más detalles

a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150

a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150 uno es agudo y el otro es obtuso. Á = (48. 5 ) / 2 = 120 D 2 = 20 2 + 10 2 + 6 2 = 536 ; D = 23 15 V = V S + V c = 2 / 3. π 125 + 1 / 3. π 25. 3 = 325/3. π Área = lado x lado = l 2 Los paralelepípedos

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

MATEMÁTICAS-FACSÍMIL N 16

MATEMÁTICAS-FACSÍMIL N 16 MTEMÁTIS-FSÍMIL N 16 1. Si 1 1 = 8 e y =, cuál de las siguientes afirmaciones es verdadera? 8 ) = y ) > y ) 1 = y ) + y = = y y. Según la siguiente tabla de frecuencia, la afirmación correcta es: ) Mediana

Más detalles

Taller de Matemática Preparación PSU

Taller de Matemática Preparación PSU octubre 01 Taller de Matemática Preparación PSU Marcar con una X la alternativa que considere correcta. 1. Cuando se divide cierto trazo armónicamente en la razón : 4, la distancia entre los puntos de

Más detalles

GUIA DOS CUADRILATEROS

GUIA DOS CUADRILATEROS PROF.: XIMN STRO NIVL IV MIO GUI OS URILTROS 1) Si el lado de un cuadrado mide m, entonces cuánto mide la altura de un triángulo de base m y cuya área es equivalente al del cuadrado? ) m ) m ) m ) m )

Más detalles

TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO ACADEMIA SABATINA TRANSFORMACIONES EN EL PLANO Llamaremos transformación geométrica a una operación que permite producir una nueva figura (imagen) de la dada originalmente. Las podemos clasificar en directas,

Más detalles

C u r s o : Matemática ENSAYO UNIVERSIA Nº 3 MATEMÁTICA

C u r s o : Matemática ENSAYO UNIVERSIA Nº 3 MATEMÁTICA u r s o : Matemática ENSYO UNIVERSI Nº MTEMÁTI PSU MTEMÁTI INSTRUIONES ESPEÍFIS. Esta prueba consta de 70 preguntas. Usted dispone de horas y 5 minutos para responderla.. continuación encontrará una serie

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Generalidades de ángulos, polígonos y cuadriláteros. Ejercicios PSU // L 2. 1.

EGRESADOS. Matemática PROGRAMA. Guía: Generalidades de ángulos, polígonos y cuadriláteros. Ejercicios PSU // L 2. 1. PROGRM GRSOS Guía: Generalidades de ángulos, polígonos y cuadriláteros jercicios PSU 1. n la figura, L 1 // L 2 // L 3, entonces α mide ) 82º ) 90º ) 122º ) 168º ) 238º L 1 L 2 110º a L 3 12º Matemática

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos.

Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos. Triángulos Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos. Teoremas 1) La suma de las medidas de los ángulos interiores de un triángulo es 180º. δ + β+ α = 180 0 2) Todo

Más detalles

MOVIMIENTOS EN EL PLANO

MOVIMIENTOS EN EL PLANO Ejercicio nº 1.- MOVIMIENTOS EN EL PLANO a) Aplica una traslación de vector t 3, 2 a las figuras y F. F1 2 b Qué habríamos obtenido en cada caso si, en lugar de aplicar la traslación, hubiéramos aplicado

Más detalles

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad TORNEOS GEOMÉTRICOS 2017. Primera Ronda Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Solución: El triángulo

Más detalles

Problemas de geometría analítica

Problemas de geometría analítica Universidad de Costa Rica Instituto Tecnológico de Costa Rica Problemas de geometría analítica Tomados del libro Geometría Moderna de Moise y Downs 1. Conteste para cada figura las preguntas siguientes:

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL Y EJERCITACION PERIODO GRADO No. FECHA DURACION 3 7 2 FEBRERO

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α

Más detalles

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué? Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a

Más detalles

Universidad de Chile Vicerrectoría de Asuntos Académicos DEMRE FASCÍCULO DE PSU DE MATEMÁTICA

Universidad de Chile Vicerrectoría de Asuntos Académicos DEMRE FASCÍCULO DE PSU DE MATEMÁTICA FASCÍCULO DE PSU DE MATEMÁTICA ESTA PUBLICACIÓN HA SIDO ELABORADA POR LOS COMITÉS CORRESPONDIENTES DEL DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL DE LA UNIVERSIDAD DE CHILE. UNIVERSIDAD

Más detalles

SGUICES029MT22-A17V1. Bloque 22 Guía: Teorema de Thales y división de segmentos

SGUICES029MT22-A17V1. Bloque 22 Guía: Teorema de Thales y división de segmentos SGUICES09MT-A17V1 Bloque Guía: Teorema de Thales y división de segmentos TABLA DE CORRECCIÓN TEOREMA DE THALES Y DIVISIÓN DE SEGMENTOS N Clave Dificultad estimada 1 C Comprensión Media B Comprensión Media

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1 TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los

Más detalles

El polígono es una porción del plano limitado por una línea poligonal cerrada.

El polígono es una porción del plano limitado por una línea poligonal cerrada. UNIDAD 12: GEOMETRÍA PLANA 12.1. Los polígonos: Elementos El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los

Más detalles

Esta prueba contiene 70 preguntas, divididas en las siguientes secciones:

Esta prueba contiene 70 preguntas, divididas en las siguientes secciones: MATEMÁTICA FACSÍMIL Esta prueba contiene 70 preguntas, divididas en las siguientes secciones: Números y proporcionalidad. Álgebra y funciones. Geometría. Estadística y probabilidades. Ejercicios de selección

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 27 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma ax 2 + bx + c = 0,

Más detalles

Cuadrilátero conocido su lado, AB, con la escuadra. Se apoya la escuadra por su hipotenusa sobre la regla y se traza el lado, AB, del cuadrado.

Cuadrilátero conocido su lado, AB, con la escuadra. Se apoya la escuadra por su hipotenusa sobre la regla y se traza el lado, AB, del cuadrado. Elementos geométricos / Cuadrilátero 47 Cuadrilátero conocido su lado, AB, con la escuadra Se apoya la escuadra por su hipotenusa sobre la regla y se traza el lado, AB, del cuadrado. Se desliza hacia arriba

Más detalles

ENSAYO PRUEBA DE SELECCIÓN UNIVERSITARIA 3º MEDIO MATEMÁTICA

ENSAYO PRUEBA DE SELECCIÓN UNIVERSITARIA 3º MEDIO MATEMÁTICA Código: PSU EXMA-0-3M-205 C u r s o : Matemática ENSAYO PRUEBA DE SELECCIÓN UNIVERSITARIA 3º MEDIO MATEMÁTICA 2 PSU MATEMÁTICA INSTRUCCIONES ESPECÍFICAS. Esta prueba consta de 80 preguntas. Usted dispone

Más detalles

Circunferencia y Círculo

Circunferencia y Círculo Circunferencia y Círculo APRENDIZAJES ESPERADOS Identificar los elementos primarios de Círculo y Circunferencia. Calcular área y perímetro del sector y segmento circular. Contenidos 1. Definición 1.1 Circunferencia

Más detalles

Matemática. Conociendo las Formas de 3D y 2D. Cuaderno de Trabajo. Básico

Matemática. Conociendo las Formas de 3D y 2D. Cuaderno de Trabajo. Básico Cuaderno de Trabajo 5 Básico Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Cuaderno de trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales

Más detalles

1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C.

1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C. 1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C. 2. En un triángulo rectángulo, los ángulos agudos están

Más detalles

MATEMÁTICA Teorema de Pitágoras Guía Nº 2

MATEMÁTICA Teorema de Pitágoras Guía Nº 2 MATEMÁTICA Teorema de Pitágoras Guía Nº 2 APELLIDO: Prof. Karina G. Rizzo 2. b) Trazar una recta y dividir en partes iguales ubicando, en la misma, desde el el año 700 hasta el año 0 (en múltiplos de 100).

Más detalles

Cuadriláteros. Paralelógramos

Cuadriláteros. Paralelógramos Cuadriláteros Sus características principales son: - Los ángulos interiores suman 360. - Los ángulos exteriores suman 360. - Se clasifican según el par de lados opuestos que son paralelos, en: Paralelógramos

Más detalles

Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d

Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d Semejanza Razones Razones y proporciones Teorema de Thales Triángulos semejantes Teoremas de semejanza Teoremas de Euclides Perímetro y Área a) Razón. Es el cuociente entre dos números (positivos). b)

Más detalles

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos. Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =

Más detalles

Contenidos y sub-contenidos

Contenidos y sub-contenidos Contenidos y sub-contenidos Definición de perímetro, área y polígono. Polígonos regulares e irregulares. Área de un polígono regular. Polígonos inscrito y circunscrito. Aplicaciones. Analicemos lo siguiente:

Más detalles