Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales."

Transcripción

1 TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales. Si los dos ángulos comparten el mismo arco, entonces el ángulo central es el doble que el inscrito. Ejercicios. 1. Halla las medidas de los siguientes ángulos.

2 2. Calcula los ángulos. a) b) c) d) e) f) g) h)

3 3. En esta figura se han dibujado varios ángulos en un hexágono regular inscrito en una circunferencia. Averiguar cuál es el valor de los ángulos marcados en la figura. 4. Calcula la medida de X en cada caso: 5. Calcula los ángulos desconocidos:

4 SEMEJANZA DE TRIÁNGULOS Dos triángulos son semejantes si: Sus lados son proporcionales. Sus ángulos son iguales. Para que dos triángulos sean semejantes basta que cumplan una de las dos condiciones. Dos triángulos están en posición de Tales cuando están de la forma: Dos triángulos en posición de Tales son semejantes Ejercicios. 6. Nos aseguran que estos dos triángulos son semejantes. Halla los lados y los ángulos que les faltan a cada uno de ellos. 7. Los lados de un triángulo miden 3 cm, 4 cm y 5 cm. Se construye otro semejante a él cuyo lado menor mide 15 cm. a) Cuál es e s la razón de semejanza? b) Halla los otros dos lados del segundo triángulo. c) El primer triángulo es rectángulo. Podemos asegurar que el segundo también lo será?

5 8. El gato de Leticia se ha subido a un poste. Leticia puede ver a su gato reflejado en un charco. Toma las medidas que se indican en el dibujo y mide la altura de sus ojos: 144 cm. A qué altura se encuentra el gato? TEOREMA DE PITÁGORAS. APLICACIONES El teorema de Pitágoras dice: En un triángulo rectángulo la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa. Ejercicios. 9. Calcular la longitud de la hipotenusa de un triángulo rectángulo sabiendo que sus catetos miden 33 cm y 56 cm, respectivamente. 10. En un triángulo rectángulo, la hipotenusa mide 97 cm, y uno de los catetos, 72 cm. Calcula la longitud del otro cateto. Para saber si un triángulo cuyos lados, de menor valor a mayor valor, valen a, b, c, es rectángulo se hace lo siguiente: a 2 + b 2 = c 2 c C 2 2 el triángulo es RECTÁNGULO el triángulo es OBTUSÁNGULO el triángulo es ACUTÁNGULO Ejercicios. 11. Averigua cómo son los triángulos de lados: a) 7 cm, 8 cm y 11 cm b)11 cm, 17 cm y 15 cm c)34 cm, 16 cm y 30 cm

6 12. Una circunferencia de centro O tiene un radio de 80 cm. Desde un punto P que dista 130 cm de O trazamos una tangente.. Cuál es la longitud del segmento tangente, PT? 13. Dos circunferencias de centros O y O y radios 9 cm y 5 cm tienen sus centros a 20 cm. Hallar la longitud del segmento tangente exterior común. 14. Una circunferencia tiene un radio de 15 cm. Una recta, r, corta a la circunferencia en dos puntos, A y B. La distancia entre A y B es de 18 cm. Cuál es la distancia del centro de la circunferencia a la recta? APLICACIÓN ALGEBRAICA DEL TEOREMA DE PITÁGORAS Vamos a ver algunos ejercicios de aplicación del teorema sobre triángulos no rectángulos y otras figuras. Ejercicios. 15. En un triángulo de lados 4 cm, 6 cm y 8 cm, calcular la altura sobre el lado mayor.

7 16. Los lados paralelos de un trapecio miden 17 cm y 38 cm. Loa otros dos, 13 cm y 20 cm. Halla su área. ÁREAS DE LOS POLÍGONOS Recordemos las áreas de los polígonos más conocidos. Rectángulo Cuadrado Paralelogramo Trapecio A= A= A= A= Rombo Triángulo rectángulo Triángulo Polígono A= A= A= A=

8 Ejercicios. 17. Halla el área de un trapecio isósceles cuyas bases miden 37 cm y 55 cm, y el lado oblicuo,, 14 cm. 18. Halla el área del hexágono regular en el que cada uno de sus lados mide 10 cm. 19. Halla el área de un rombo de 3 cm de lado, sabiendo que una diagonal mide 46 cm. ÁREA DE FIGURAS CURVAS Recordemos las áreas de las más importantes. Círculo Sector circular Corona circular A= A= A= Elipse Segmento de parábola 2 A=π.a.b A= a.b 3

9 Ejercicios. 20. Halla el área de la parte coloreada en las siguientes figuras. a) b) 1. Halla el valor del ángulo a en cada uno de estos casos: EJERCICIOS 2. Calcula la medida de los ángulos desconocidos. Sol: a) 75 b) 132 c) 130 d) 145 Sol: a) B=D=F=55º, C=A=G=E=125º b) X=65º, Y=25º y Z=155º. 3. Calcula los ángulos X, Y, Z en los siguientes polígonos regulares: Sol: a) X=120º, Y=60º, Z=300º b) X=90º, Y=90º, Z=270º c) X=60º, Y=120º, Z=240º d) X=45º, Y=135º, Z=225º

10 4. Indica cuánto miden los ángulos P y Q, sabiendo que el ángulo AOB = Cuánto miden los ángulos P, Q y R si el ángulo AOB es un ángulo recto? 6. El triángulo ABC es isósceles, AB = AC. Cuánto miden los ángulos de ese triángulo? 7. Justifica por qué los triángulos ABM y CDM tienen los ángulos iguales. Cómo son esos triángulos? 8. Dibuja un triángulo ABC inscrito en una circunferencia, de modo que los vértices A y B sean extremos de un diámetro y el arco AC sea la sexta parte de la circunferencia. Cuánto miden sus ángulos? Sol: A=60º, B=30º y C=90º 9. Una fotografía de 15 cm de ancho y 10 cm de alto tiene alrededor un marco de 2 cm de ancho. Son semejantes los rectángulos interior y exterior del marco? Responde razonadamente. 10. Hemos dividido en cuatro partes iguales el lado mayor del rectángulo ABCD y en tres partes iguales el lado menor. a) Es semejante cada uno de los doce rectángulos obtenidos con el inicial? b) Si dividimos los dos lados en tres partes iguales, obtendríamos rectángulos semejantes? Sol: a) No b) Si 11. En un mapa cuya escala es 1: , la distancia entre dos ciudades es de 3,5 cm. a) Cuál es la distancia real entre ellas? b) Cuál será la distancia en ese mapa entre dos ciudades cuya distancia real es 250 km? Sol: a) 52,5 km b) 16,67 cm.

11 12. En una oficina de venta de pisos han hecho este plano a escala 1:50: a) Calcula las dimensiones reales del salón y halla su área. b) Halla las dimensiones de la mesa B y del sillón A. Te parecen razonables? Es posible que los vendedores hayan dibujado los muebles para dar la sensación de que la habitación es más grande de lo que realmente es? Sol: a) 6 m 2 b) Las dimensiones de la mesa B en la realidad: 40 cm x 80 cm. Las s dimensiones del sillón A: 35 cm x 35 cm. 13. Dos triángulos ABC y A'B'C' son semejantes y su razón de semejanza es 1,2. Calcula los lados del triángulo A'B'C' sabiendo que: AB= 16 cm, BC= 25 cm y AC= 39 cm. Sol: 19,2 ; 30 y 46,8 cm. 14. Halla las longitudes de los lados a y b sabiendo que estos dos triángulos tienen sus lados paralelos: Sol: a = 37,5 m y b = 13 m. 15. Cuál es la altura de una casa que proyecta una sombra de 68 m, al mismo tiempo que una persona de 1,65 m de altura proyecta una sombra de 2 m? Sol: 56,1 m 16. Para calcular la altura de un árbol, Eduardo ve la copa reflejada en un charco y toma las medidas que indica el dibujo. Cuál es la altura del árbol? Sol: 5,4 m. 17. Cuál es la profundidad de un pozo, si su anchura es 1,5 m y alejándote 0,5 m del borde, desde una altura de 1,7 m, ves que la visual une el borde del pozo con la línea del fondo? Sol: 5,1 m. 18. a) Por qué son semejantes los triángulos APQ y ACB? b) Calcula x = BQ Sol: b) x = 8,75 cm.

12 19. Si DF = 4 cm, cuál es el área y el perímetro del trapecio EFAC? Sol: área= 100,8 cm 2 y Perímetro= 56,8 cm. 20. En un triángulo ABC, la base AB mide 5,7 m y la altura relativa a esa base mide 9,5 m. Cuánto mide el área de otro triángulo semejante a ABC en el que A'B'= 4,14 m? Sol: 14,28 m 2. Si BD es paralelo a AE, y AC = 15 cm, CE = 11 cm, BD = 6,4 cm, AE = 18 cm: a) Calcula CD y BC. b) Si A = 37 y C = 80, calcula los ángulos E, B y D. 21. Calcula el valor de x en estos polígonos: Sol: a) 5,2 m b) 17 cm c) 13 dm d) 11,3 m. 22. Calcula x en cada caso: Sol: a) 5,2 m b) 10,4 cm c) 6,9 m d) 8,5 cm e) 8,5 dm. 23. La diagonal de un rectángulo mide 37 cm, y uno de sus lados, 12 cm. Calcula su perímetro y su área. Sol: Perímetro= 94 cm y Área=420 cm En un triángulo rectángulo, los catetos miden 9 cm y 12 cm. En otro triángulo rectángulo, un cateto mide 14,4 cm, y la hipotenusa, 15 cm. Cuál de los dos tiene mayor perímetro? Sol: El primer triángulo tiene mayor perímetro. 25. La diagonal de un rectángulo de lados 7 cm y 24 cm mide igual que el lado de un cuadrado. Halla la diagonal de ese cuadrado. Sol: 35,36 cm. 26. Calcula x en estos trapecios y halla su área: Sol: a) x = 8 cm y A=70 cm 2 b) x=8 cm y A=144 cm Clasifica en rectángulos, acutángulos u obtusángulos los triángulos de lados: a) 11 m, 13 m, 20 m. b) 20 m, 21 m, 29 m. c) 25 m, 29 m, 36 m. d) 7 m, 24 m, 25 m. Sol: a) obtusángulo. b) rectángulo. c) acutángulo. d) rectángulo. 28. Halla el área de las figuras coloreadas. Sol: a) 240 cm 2 b) 50 cm 2 c) 192 m 2 d) 651 m 2 d) 3 487,5 m 2 e) 160 cm 2.

13 29. Calcula el área de las figuras coloreadas. Sol: a) 185,45 m 2 b) 509,6 m 2 c) 86,6 cm 2 d) 228,13 cm 2 e) 30,92 cm 2 f) 377 cm Halla el área de la zona coloreada en cada figura: Sol: a) 72 cm 2 b) 18 cm Las diagonales del rombo inscrito en la elipse miden 16 cm y 30 cm. Halla el área de la parte coloreada. Sol: 137 cm En una circunferencia de 56,52 cm de longitud, dibuja los cuadrados circunscrito e inscrito. Calcula el área y el perímetro de cada cuadrado (toma π = 3,14). Sol: A CUADRADO GRANDE = 324 cm 2 P CUADRADO GRANDE = 72 cm A CUADRADO PEQUEÑO = 162,1 cm 2 P CUADRADO PEQUEÑO = 50,92 cm. 33. Halla, en cada caso, el área de un sector circular de un círculo de 15 cm de radio y cuya amplitud es: a) 90 b) 120 c) 65 d) 140 Sol: a) 176,71 cm 2 b) 235,62 cm 2 c) 127,63 cm 2 d) 274,89 cm Calcular el área de un segmento circular de 60 de amplitud en un círculo de 12 cm de radio. Sol: 3 cm Calcula el área de un segmento circular de 90 de amplitud en un círculo de 18 cm de radio. Sol: 92,47 cm Cierta finca tiene la forma y las dimensiones indicadas en la figura. Calcula su área. Sol: 780 m Calcula el área de la parte coloreada de cada uno de estos cuadrados de 12 m de lado: Sol: a) 30,9 m 2 b) 56,61 m 2 c) 30,9 m 2 d) 61,8 m 2 e) 82,2 m 2 f) 82,2 m 2

14 38. Calcula la altura del triángulo siguiente, aplicando el teorema de Pitágoras a los dos triángulos rectángulos que aparecen. Después, halla su área: Sol: 210 cm Halla la altura del trapecio siguiente. Después, calcula su área. 40. a) Calcula el radio de esta circunferencia: Sol: 390 m 2. b) Cuál será la longitud de una cuerda cuya distancia al centro es 2,9 cm? Sol: a) 3,9 cm b) 5,2 cm. 41. En un círculo de 52 cm de diámetro se traza una cuerda a 10 cm del centro. Halla el área del cuadrilátero que se forma uniendo los extremos de la cuerda con los del diámetro paralelo a ella. Sol: 500 cm El área de una corona circular es 20π cm2, y la circunferencia interna mide 8π cm. Calcula el radio de la circunferencia externa. Sol: 6 cm. 43. Calcula: a) La longitud de PT. b) El área de la parte coloreada. Sol: a) 13,86 cm b) 20,73 cm Calcula el área del triángulo curvilíneo comprendido entre tres circunferencias tangentes y cuyo radio mide 5 cm. Sol: 4,09 cm a) A un cuadrado de 1 dm de lado le cortamos triangulitos isósceles en las cuatro esquinas. Calcula x para que el octógono resultante sea regular. b) Calcula el área de un octógono regular de 8 cm de lado. Sol: a) 0,35 dm b) 309,12 cm 2.

15 46. Observa la primera figura en forma de huevo (compuesta por un semicírculo, una semielipse y dos circulitos de 1 cm de diámetro), y la segunda figura en forma de corazón (compuesta por dos semicírculos, una semielipse y dos circulitos de 1 cm de diámetro): Halla los radios, x e y, de los dos semicírculos de la segunda figura para que la superficie del corazón sea el 80% de la superficie del huevo (con los dos circulitos incluidos en las dos figuras). Sol: 3 cm y 4 cm. 1. Calcula los ángulos marcados con números de la figura. AUTOEVALUACIÓN 2. En un libro de biología observamos el dibujo de una célula. Sabemos que su diámetro real es de 10-5 m y en el dibujo mide 4 cm. a) Calcula la escala con la que ha sido dibujada. b) Una pulga cuyo tamaño es de 2 mm, cuánto medirá si la dibujas con la misma escala? 3. Sabiendo que estos triángulos tiene sus lados paralelos, indica razonadamente si son semejantes y calcula los lados a y b. 4. a) La distancia de un punto P, exterior a una circunferencia, al punto de tangencia es de 15 cm; y el radio de la circunferencia es de 8 cm. Cuál es la distancia de P al centro de la circunferencia? b) En otra circunferencia de 41 dm de radio trazamos una cuerda de 18 dm de longitud. Halla la distancia de la cuerda al centro de la circunferencia. 5. Calcula el área de un trapecio isósceles cuyas bases miden 10cm y 18 cm y cuyos lados oblicuos miden 15 cm. 6. Halla el área de la parte sombreada. 7. Los radios de dos circunferencias miden 3 cm y 8 cm, respectivamente. El segmento de tangente común externa mide 12 cm. Calcula la distancia entre sus centros. 8. Calcula el área de la zona sombreada de esta figura sabiendo que el radio del círculo vale 5 cm

16 9. Calcula el área de la siguiente figura: 10. Calcula el área de este octógono regular de 6 cm de lado. 11. Calcula el área de un hexágono de 10 cm de lado. 12. Calcula el área de este triángulo:

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS: TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS

Más detalles

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo? FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que

Más detalles

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es: TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

C 1 2 +C 2. 2 = h 2. El teorema de Pitágoras solo se aplica a triángulos rectángulos y relaciona los catetos con la hipotenusa.

C 1 2 +C 2. 2 = h 2. El teorema de Pitágoras solo se aplica a triángulos rectángulos y relaciona los catetos con la hipotenusa. TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA TEOREMA DE PITÁGORAS Un triángulo rectángulo es aquel que tiene un ángulo recto. A los lados que forman el ángulo recto se les llama catetos y al lado mayor, hipotenusa.

Más detalles

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)

Más detalles

Unidad didáctica 9 Geometría plana

Unidad didáctica 9 Geometría plana Unidad didáctica 9 Geometría plana 1.- Ángulos Un ángulo es la porción de plano limitada por dos semirrectas que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo forman. El vértice

Más detalles

RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA

RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA 1. Halla el perímetro y el área de las siguientes figuras: 2. Entre las dos diagonales de un rombo suman 100 cm, siendo la menor 20 cm más corta que la mayor.

Más detalles

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras.

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras. Tema 5: Semejanza. En este tema nos dedicaremos al estudio de los triángulos y polígonos, y dedicaremos un apartado a un famoso teorema, que nos será de utilidad para entender la semejanza entre ellos:

Más detalles

EJERCICIOS ÁREAS DE REGIONES PLANAS

EJERCICIOS ÁREAS DE REGIONES PLANAS EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

Tema 10: Problemas métricos en el plano

Tema 10: Problemas métricos en el plano Tema 10: Problemas métricos en el plano 10.1 Relaciones angulares Construye un polígono de cinco lados, divídelo en triángulos para averiguar la suma de los ángulos interiores del pentágono. Nuestro pentágono

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

Tema 8. Teorema de Pitágoras. Semejanza

Tema 8. Teorema de Pitágoras. Semejanza Material necesario: Escuadra Cartabón Regla Transportador de ángulos Compás Calculadora Libro de texto nuevo!!!!!!!!!!!!!! Tema 8. Teorema de Pitágoras. Semejanza 8.1 Teorema de Pitágoras Página 17 Actividades

Más detalles

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior? Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos

Más detalles

FORMULARIO (ÁREAS DE FIGURAS PLANAS)

FORMULARIO (ÁREAS DE FIGURAS PLANAS) FORMULARIO (ÁREAS DE FIGURAS PLANAS) Rectángulo Triángulo Paralelogramo Cuadrado Cuadrilátero cuyos lados forman ángulos de 90º. Es la porción de plano limitada por tres segmentos de recta. Cuadrilátero

Más detalles

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo 1. Construir un triángulo equilátero conocida la altura. 2. Construir un triángulo isósceles conocida

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Página 70 PRTI Semejanza de figuras opia en una hoja de papel cuadriculado estas dos figuras. Modifica la de la derecha para que sean semejantes. En un mapa cuya escala es : 500 000, la distancia

Más detalles

MATEMÁTICAS 2º E.S.O. TEMA 7 GEOMETRÍA PLANA.

MATEMÁTICAS 2º E.S.O. TEMA 7 GEOMETRÍA PLANA. MATEMÁTICAS 2º E.S.O. TEMA 7 GEOMETRÍA PLANA. 7.1 Figuras planas elementales. 7.2 Circunferencia, círculo, arcos y sectores circulares. 7.3 Figuras semejantes. Planos, mapas, maquetas. 7.4 Teorema de Thales.

Más detalles

Clasificación de polígonos según sus lados

Clasificación de polígonos según sus lados POLÍGONOS Polígonos Un polígono es la región del plano limitada por tres o más segmentos. Elementos de un polígono Lados Son los segmentos que lo limitan. Vértices Son los puntos donde concurren dos lados.

Más detalles

TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA

TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA 8.1 Teorema de Pitágoras Tareas 13-04-2015 2A: todas las actividades de la página 172. Tareas 13-04-2015 2B: todas las actividades de la página 172. Ejemplo Aplica

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

10 SEMEJANZA. TEOREMA DE PITÁGORAS EJERCICIOS

10 SEMEJANZA. TEOREMA DE PITÁGORAS EJERCICIOS 0 SEMEJNZ. TEOREM DE PITÁGORS EJERCICIOS Indica qué rectángulos son semejantes: a) ase cm, altura cm y base 0 cm, altura cm. b) ase 0 m, altura m y base 0 m, altura 8 m. c) ase 0,7 dm, altura 0, dm y base,0

Más detalles

TEMA 6 SEMEJANZA. APLICACIONES -

TEMA 6 SEMEJANZA. APLICACIONES - TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO 8 GEOMETRÍ DEL PLNO EJERIIOS PR ENTRENRSE Ángulos y triángulos 8.6 Halla la medida del ángulo p en el siguiente triángulo. 6 4 180 6 p 4 p 180 6 4 11 8.7 alcula la suma de los ángulos interiores de un

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 139

6Soluciones a los ejercicios y problemas PÁGINA 139 ÁGIN 9 ág. RTI Figuras semejantes uáles de estas figuras son semejantes? uál es la razón de semejanza? F F F F es semejante a F. La razón de semejanza es. a) Son semejantes los triángulos interior y eterior?

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

Unidad 7 Figuras planas. Polígonos

Unidad 7 Figuras planas. Polígonos Polígonos 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono.- Halla la medida de los ángulos interiores de: a) Un octógono regular.

Más detalles

APUNTES DE GEOMETRÍA

APUNTES DE GEOMETRÍA Colegio Sagrado Corazón de Jesús Sevilla MATEMÁTICAS 2º ESO APUNTES DE GEOMETRÍA pág. 1 DEFINICIONES: 1). PUNTO: Intersección de 2 rectas. 2). LÍNEA: Intersección de dos superficies. Las líneas pueden

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

Lugares geométricos. Áreas y perímetros

Lugares geométricos. Áreas y perímetros Lugares geométricos. Áreas y perímetros CLAVES PARA EMPEZAR A r B r a r a Triángulo equilátero Cuadrado VIDA COTIDIANA Del centro del rectángulo al punto medio de los lados habrá al largo 2 m y al ancho,5

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

Figuras planas. Definiciones

Figuras planas. Definiciones Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan

Más detalles

FORMAS POLIGONALES TEMA 8

FORMAS POLIGONALES TEMA 8 FORMAS POLIGONALES TEMA 8 1. LOS POLÍGONOS DEFINICIÓN: Un polígono es una figura geométrica plana limitada por segmentos llamados lados, y por vértices. A B C A Lado D Clasificación de los polígonos:

Más detalles

FIGURAS PLANAS. SEMEJANZA

FIGURAS PLANAS. SEMEJANZA DPTCIÓN CURRICULR FIGURS PLNS. SEMEJNZ 1. Polígonos 2. Figuras circulares 3. Triángulos rectángulos. Teorema de Pitágoras 4. plicaciones del teorema de Pitágoras 5. Figuras semejantes. Razón de semejanza

Más detalles

ÁNGULOS EN POLÍGONOS. Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c. Ejercicio nº 2.-

ÁNGULOS EN POLÍGONOS. Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c. Ejercicio nº 2.- ÁNGULOS EN POLÍGONOS Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c Ejercicio nº.- Halla el valor del ángulo en cada uno de estos casos: a b c Ejercicio nº 3.- Halla el

Más detalles

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2. 1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73

Más detalles

5. Aplicando e teorema de Tales, calcula la longitud de los segmentos desconocidos:

5. Aplicando e teorema de Tales, calcula la longitud de los segmentos desconocidos: Geometría plana.odt IES Isaac Díaz Pardo. Sada Departamento de Matemáticas. Proporcionalidad geométrica. Figuras planas Nombre:...Nº:... Curso:... Grupo:. A) Proporcionalidad geométrica:- 1. Calcula la

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

El polígono es una porción del plano limitado por una línea poligonal cerrada.

El polígono es una porción del plano limitado por una línea poligonal cerrada. UNIDAD 12: GEOMETRÍA PLANA 12.1. Los polígonos: Elementos El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los

Más detalles

FIGURAS GEOMETRICAS PLANAS

FIGURAS GEOMETRICAS PLANAS UNIDAD 9 FIGURAS GEOMETRICAS PLANAS Objetivo General Al terminar esta Unidad entenderás y aplicaras los conceptos generales de las figuras geométricas planas, y resolverás ejercicios y problemas con figuras

Más detalles

- 1 - RECTAS Y ÁNGULOS. Tipos de ángulos Los ángulos se clasifican según su apertura: -Agudos: menores de 90º. Rectas

- 1 - RECTAS Y ÁNGULOS. Tipos de ángulos Los ángulos se clasifican según su apertura: -Agudos: menores de 90º. Rectas Alonso Fernández Galián Geometría plana elemental Rectas RECTAS Y ÁNGULOS Una recta es una línea que no está curvada, y que no tiene principio ni final. Tipos de ángulos Los ángulos se clasifican según

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

8Soluciones a los ejercicios y problemas PÁGINA 179

8Soluciones a los ejercicios y problemas PÁGINA 179 PÁGIN 179 Pág. 1 T eorema de Pitágoras 1 Calcula el área del cuadrado verde en cada uno de los siguientes casos: 14 cm 2 45 m2 60 m 2 30 cm 2 = 44 cm 2 = 15 m 2 2 Cuál es el área de los siguientes cuadrados?:

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

GEOMETRÍA PLANA: EJERCICIOS DE CONSOLIDACIÓN Y REPASO:

GEOMETRÍA PLANA: EJERCICIOS DE CONSOLIDACIÓN Y REPASO: GEOMETRÍA PLANA: EJERCICIOS DE CONSOLIDACIÓN Y REPASO: Ejemplo 1.- Sea " = 85º ; $ = 53º 43' 54" y (= 13º 52' 38". Calcular: a) "- $ b) $ + ( c) $ - ( d) 5( Solución: a) "- $ = 85º - 53º 43' 54" para poder

Más detalles

ELEMENTOS DE GEOMETRÍA

ELEMENTOS DE GEOMETRÍA LONGITUDES Y ÁREAS. 1. Perímetro y área. 1.1. Medidas del rectángulo. 1.2. Medidas del cuadrado. 1.3. Medidas del rombo. 1.4. Medidas del romboide. 1.5. Medidas de un paralelogramo cualquiera. 1.6. Medidas

Más detalles

GEOMETRÍA LLANA: CONCEPTOS BÁSICOS (1ESO)

GEOMETRÍA LLANA: CONCEPTOS BÁSICOS (1ESO) GEOMETRÍA LLANA: CONCEPTOS BÁSICOS (1ESO) PUNTOS, RECTOS Y PLANES 1.- Punto: Intersección de dos rectos. No tiene dimensiones (ni largo, ni ancho, ni alto). 2.- Recta: Conjunto de puntos con una sola dimensión.

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

Matemáticas 3º E.S.O. 2014/15

Matemáticas 3º E.S.O. 2014/15 Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50

Más detalles

27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo?

27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo? EJERCICIOS 1.- Calcular la altura a la hipotenusa de un triángulo rectángulo cuyos catetos miden 6 y 8 cm. 5 2.- En un triángulo rectángulo, un cateto mide 15 cm., y la proyección del otro sobre la hipotenusa

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α

Más detalles

1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C.

1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C. 1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C. 2. En un triángulo rectángulo, los ángulos agudos están

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de: UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

1. Calcula el área de las siguientes figuras (algunas medidas no tendrás que

1. Calcula el área de las siguientes figuras (algunas medidas no tendrás que 1. Calcula el área de las siguientes figuras (algunas medidas no tendrás que utilizarlas): a) Un trapecio b) Un semicírculo c) Una corona circular d) Cuatro esquinitas tiene mi cama Bloque XII. Tema 1,

Más detalles

Tema 2 2 Geometría métrica en el pla no

Tema 2 2 Geometría métrica en el pla no Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el

Más detalles

Halla los siguientes perímetros y áreas:

Halla los siguientes perímetros y áreas: 73 CAPÍTULO 9: LONGITUDES Y ÁREAS.. Matemáticas 1º y º de ESO 1. TEOREMA DE PITÁGORAS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes

Más detalles

TEMA 4. Geometría. Teoría. Matemáticas

TEMA 4. Geometría. Teoría. Matemáticas 1 1.- Rectas y ángulos La geometría se basa en tres conceptos fundamentales que forman parte del espacio geométrico, es decir, el conjunto formado por todos los puntos: El punto La recta El plano Partiendo

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por

Más detalles

a) Forma de Escalera:

a) Forma de Escalera: Chía, Febrero 8 de 2016 Buenos días Señores Estudiantes de los grados 902,903,y 904 a continuación encontrarán el trabajo que deben realizar de forma escrita en el cuaderno y debe ser entregado el día

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

Figura 1 Figura 2 Figura 3

Figura 1 Figura 2 Figura 3 Sesión 1. Áreas en tangram y tramas 1. Este ejercicio se realiza con las piezas del Tangram. Figura 1 Figura 2 Figura 3 a) Tomando como unidad de superficie la figura 1, calcular la superficie de la figura

Más detalles

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una

Más detalles

TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad

TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad TORNEOS GEOMÉTRICOS 2016 Primera Ronda Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O.

Más detalles

1º.- Halla el área y el perímetro de las siguientes figuras, calculando previamente el elemento que falta:

1º.- Halla el área y el perímetro de las siguientes figuras, calculando previamente el elemento que falta: Matemáticas 3º E.S.O. pág. 1 HOJA 1: GEOMETRÍA 1º.- Halla el área y el perímetro de las siguientes figuras, calculando previamente el elemento que falta: 2º.- Halla el área de las figuras marcadas: 3º.-

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado.

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado. REPARTIDO Nº 6 1) Calcular la hipotenusa de un triángulo rectángulo sabiendo que los catetos miden 6 cm y 8 cm respectivamente. 2) Si la hipotenusa de un triángulo rectángulo mide 13 cm y uno de sus catetos

Más detalles

EJERCICIOS PARA REPASAR EL TEMA SE SEMEJANZA

EJERCICIOS PARA REPASAR EL TEMA SE SEMEJANZA EJERCICIOS PARA REPASAR EL TEMA SE SEMEJANZA 1. Un muro proyecta una sombra de 3 m al mismo tiempo que un bastón de 1, m proyecta una sombra de 97 cm. Calcula la altura del muro. Puesto que se trata de

Más detalles

TRIÁNGULOS Y CUADRILÁTEROS.

TRIÁNGULOS Y CUADRILÁTEROS. TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,

Más detalles

250 Si la razón entre las longitudes de la realidad y de la representación es razón entre las áreas es ( 20 )

250 Si la razón entre las longitudes de la realidad y de la representación es razón entre las áreas es ( 20 ) Soluciones a las actividades de cada epígrafe PÁGIN Entrénate 1 Una parcela con forma de cuadrilátero irregular tiene 80 m de área y su lado menor mide 40 m. Hacemos un plano de la parcela en el que el

Más detalles

PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA

PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA CURSO PRE FACULTATIVO II-01 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del

Más detalles

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009 I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula

Más detalles

P RACTICA. 1 Di cuáles de estos triángulos son: 2 Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes:

P RACTICA. 1 Di cuáles de estos triángulos son: 2 Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes: P RCTIC Polígonos: clasificación 1 Di cuáles de estos triángulos son: a) cutángulos. b) Rectángulos. c) Obtusángulos isósceles. B C D G E a) cutángulos: C, F y G. b) Rectángulos: D y E. c) Obtusángulos

Más detalles

SOLUCIONES TRIGONOMETRÍA19

SOLUCIONES TRIGONOMETRÍA19 SOLUCIONES EJERCICIOS DE TRIGONOMETRÍA Ejercicio nº 1.- Halla las razones trigonométricas de los ángulos y del triángulo ABC sabiendo que es rectángulo. Sea x la longitud de la hipotenusa; por el teorema

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

ÁREAS DE FIGURAS PLANAS

ÁREAS DE FIGURAS PLANAS 6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS

Más detalles

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.

Más detalles

1º ESO TEMA 13 LONGITUDES Y ÁREAS

1º ESO TEMA 13 LONGITUDES Y ÁREAS 1º ESO TEMA 13 LONGITUDES Y ÁREAS 1 1.- PERÍMETRO Y ÁREA DE UNA FIGURA PLANA Perímetro de una figura 1.- PERÍMETRO Y ÁREA DE UNA FIGURA PLANA Área de una figura Tareas Ejercicios: 1,, 3, 46 y 47 3 .- MEDIDAS

Más detalles

2. Calcula las alturas de los dos árboles sabiendo que los triángulos están en posición de Tales.

2. Calcula las alturas de los dos árboles sabiendo que los triángulos están en posición de Tales. Triángulos en posición de Tales. Criterios de semejanza 1. Los siguientes triángulos están en posición de Tales. Halla el valor de x. 2. Calcula las alturas de los dos árboles sabiendo que los triángulos

Más detalles

PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA

PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA CURSO PRE FACULTATIVO 1-011 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del

Más detalles