Ejemplo. Consideremos el sistema de retraso unitario dado por

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejemplo. Consideremos el sistema de retraso unitario dado por"

Transcripción

1 Tema 2: Descripción de Sisemas - Pare I - Virginia Mazzone Inroducción Los sisemas que esudiaremos, ienen alguna enrada y alguna salida, 1. Suponemos que si aplicamos una enrada obenemos una salida única. u) y) Conenidos Inroducción Sisemas Lineales Conclusiones u) u[k] u[k] k Caja negra y) y[k] Figura: Sisema y[k] k Un sisema con una enrada y una salida se llama SISO. Un sisema con dos o más enradas y dos o más salidas se llama sisema mulivariable MIMO). Un sisema se dice a iempo coninuo si acepa señales coninuas en la enrada y genera señales coninua en la salida. Denoaremos u) para una enrada o u)para múliples enradas. Si enemos p enradas, u) es p 1, u) = [u 1 u 2 u p ] T Un sisema se dice a iempo discreo si acepa señades discreas en la enrada y genera señales discreas a la salida. Todas las señales discreas en un sisema se suponen con el mismo período de muesreo T. La enrada o salida serán denoados como u[k] := ukt ) e y[k] := ykt ). Los sisemas esáicos suelen llamarse ambién sin memoria. Un sisema es causal o no anicipaivo si la salida en un insane dado depende de los valores presenes y pasados de la enrada, y no de valores fuuros. La salida acual de un sisema causal depende del pasado de la enrada. Pero cuáno iempo arás ienen efeco valores pasados de la enrada? Esricamene, habría que volver arás en el iempo hasa 1, lo que no es muy prácico. El concepo de esado salva ese problema. Definición El esado x ) de un sisema en el insane es la información en que juno con la enrada u) para deermina unívocamene la salida y) para odo.

2 El esado x ) resume oda la hisoria del sisema desde 1 hasa : conociendo el valor del esado en, podemos conocer y) luego de conociendo la enrada u) aplicada anes de. Podemos pensar que la enrada para y las condiciones iniciales x ) deerminan la evolución del sisema para x); x ) u); Un sisema se dice que es finio-dimensional si el número de variables de esado es finia o su esado es un vecor de dimensión finia. Un sisema se dice que es infinio-dimensional si su esado iene infinias variables de esado. Ejemplo Consideremos el sisema de reraso uniario dado por y) = u 1): La salida es simplemene la enrada rerasada un segundo. Para deerminar la salida desde el conocimieno de la enrada, necesiamos la información fu); < g. Así el reardo uniario es un sisema infinio-dimensional Consideremos el problema de regulación de la emperaura del aula por medio de acondicionadores de aire. La emperaura aparece como una disribución en odo el volumen del aula, y su caracerización complea requiere un número infinio de daos la emperaura en odos los punos del aula). Sisemas Lineales Un sisema se llama lineal si cumple con el principio de superposición, es decir, dados dos pares de condiciones iniciales y enradas, enemos que x i ); xi ) u i ); para i = 1;2 x1 ) + x 2 ) x 1 ) + x 2 ); adiividad u 1 ) + u 2 ); x i ) x i ); 2 R homogeneidad u i ); La combinación de ambas es la propiedad de superposición La propiedad de adiividad permie considerar la respuesa del sisema como la superposición de la respuesa a condiciones iniciales y exciación aplicadas por separado. x) = x l )+x f ); 8 >< >: x l ); x f ); x ) u) = ; x ) = u); Repuesa = respuesa libre + respuesa forzada Los sisemas no lineales, no cumplen con el principio de superposición.

3 Sisema lineales invarianes en el iempo Un sisema es esacionario si para cada par condiciones iniciales y enrada x); y cada T 2 R, enemos que x T ); + T x ) u); 1) x + T ) u T ) + u 2 ); + T : Es decir, el sisema responde da la misma respuesa, corrida en iempo, si se le aplica la misma enrada corrida con iguales condiciones iniciales. 2) Un sisema que no cumple esa propiedad se dice inesacionario. Represenación enrada-salida: Por superposición se deduce la represenación de sisemas lineales mediane la inegral de convolución y) = Z 1 g; )u)d ; 3) 1 donde g; ) es respuesa al impulso: la salida del sisema a un impulso uniario ) en el insane. La causalidad implica que causalidad, g; ) = para <, y como las condiciones iniciales se asumen nulas, 3) se reduce a Z y) = g; )u)d : Si el sisema iene p enradas y q salidas, enonces hablamos de la mariz de respuesa al impulso G; ) 2 R q p. Si el sisema es esacionario enonces para cualquier T se cumple g; ) = g + T ; + T ) = g ;) : Así podemos redefinir g ; ) simplemene como g ). La represenación enrada-salida del sisema se reduce a Z Z y) = g )u)d = g)u )d : La condición de causalidad para un sisema lineal esacionario se reduce a g) = para <. Mariz Función de Transferencia La ransformada de Laplace es una herramiena imporane para esudiar sisemas LTI. Sea ŷs) = Lfy)g = Z 1 y)e s d = ĝs)ûs) donde ĝs) es la función ransferencia del sisema y es la ransformada de Laplace de la respuesa al impulso.

4 Para un sisema con p enradas y q salidas, ŷs) = Ĝs)ŷs) puede exenderse ŷ 1 s) ŷ 2 s). ŷ q s) = ĝ 11 s) ĝ 12 s) ĝ 1p s) ĝ 21 s) ĝ 22 s) ĝ 2p s) ĝ q1 s) ĝ q2 s) ĝ qp s) û 1 s) û 2 s). û p s) donde ĝ ij s) es la función ransferencia desde la j-ésima enrada a la i-ésima salida. La mariz q p, Ĝs) se llama mariz función de ransferencia o simplemene mariz de ransferencia. Ĝs) se dice que es propia, si cada elemeno es propio, o si Ĝ1) es la mariz nula. Llamamos un polo de Ĝs) si es polo de alguno de los elemenos de Ĝs). Exisen varias formas de definir los ceros de Ĝs) Represenación en Espacio de Esados: Todo sisema lineal finio-dimensional puede describirse mediane ecuaciones de esado EE) ẋ) = A)x) + B)u) y) = C)x) + D)u) : Para un sisema de orden n, el vecor de esados es un vecor n 1, es decir que iene n variables de esado, x) 2 R n para cada. Si el sisema iene p enradas y q salidas, enonces u) 2 R p e y) 2 R q. Las marices A;B;C;D se suelen llamar A 2 R n n : de evolución B 2 R n p : de enrada C 2 R q n : de salida D 2 R q p : de ganancia direca Cuando el sisema es además invariane en el iempo, enonces la represenación en EE se reduce a ẋ) = Ax) + Bu) y) = Cx) + Du) : Aplicando la ransformada de Laplace a 4) obenemos de donde siguen sˆxs) x) = Aˆxs) + Bûs) ŷs) = Cˆxs) + Dûs) ; ˆxs) = si A) 1 x) + si A) 1 Bûs) ŷs) = si A) 1 x) + [CsI A) 1 B + D]ûs) : 4) 5) Las ecuaciones algebraicas 5) permien compuar ˆxs) y ŷs) de x) y ûs). Las ransformadas inversas dan x) e y). Asignando x) = vemos que la mariz ransferencia del sisema es Ĝs) = CsI A) 1 B + D Para esudiar sisemas varianes en el iempo no se uiliza la ransformada de Laplace. La ransformada de g; ) es una función de dos variables y L[A)x)] 6= L[A)]L[x)]; así la ransformada de Laplace no ofrece ninguna venaja para esudiar sisemas varianes en el iempo.

5 Ejemplo Consideremos un cohee a reacción que asciende en forma verical de la superficie de la ierra. La fuerza de propulsión es el produco v e u, donde v e < es la velocidad relaiva de escape de gases, y u < la velocidad de variación de masa ṁ), supuesas consanes. m v Figura: Cohee h Asumiendo la aceleración de la gravedad g consane, m)ḧ) = m)g + v eu : Como ṁ) = u, enonces m) = m + u. Definiendo x 1 ) := h) y x 2 ) := ḣ) y omando como salida la alura, llegamos a la represenación en EE "ẋ1 ) = ẋ 2 ) " 1 " x1 ) x 2 ) h i " x y) = 1 1 ) x 2 ) + " g + veu ; x) = m +u El sisema es lineal, de dimensión 2, e inesacionario. Conclusiones Tipo de sisema Rep. inerna Rep. exerna dim. infinia lineal y) = R 1 G ; )u)d dim. finia, lineal ẋ = A)x + B)u y) = R G ; )u)d y = C)x + D)u dim. inf., lineal, es. y) = R 1 G ; )u)d ŷs) = Ĝs)ûs) dim. fin., lineal, es. ẋ = Ax + Bu y) = R 1 G ; )u)d y = Cx + Du ŷs) = Ĝs)ûs) La mariz ransferencia es racional sii el sisema es lineal, esacionario y de dimensión finia. Las represenaciones exernas asumen condiciones iniciales nulas. Los sisemas de dimensión infinia no pueden describirse en EE.

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. La función dela de Dirac.3. Definición de la convolución.3.. propiedades de la convolución.3.. Méodo Gráfico

Más detalles

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s).

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s). Unidad 5. a ransformada de aplace Inroducción. En nuesro curso de cálculo elemenal aprendimos que la derivación y la inegración son ransformadas, es decir, que esas operaciones ransforman una función en

Más detalles

Correlación. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Correlación. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Correlación Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. Correlación Cruzada.. Auocorrelación.4. Calculo de la correlación y de la auocorrelación.5.

Más detalles

Solución de la ecuación homogénea

Solución de la ecuación homogénea Solución de la ecuación de esado en modelos lineales Solución de la ecuación homogénea Mariz de ransición Propiedades de la mariz de ransición Solución de la ecuación complea Cálculo de la mariz de ransición

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

Tema 3: Análisis de sistemas realimentados

Tema 3: Análisis de sistemas realimentados Tema : Análisis de sisemas realimenados Conrol Auomáico º Curso. Ing. Indusrial Escuela Técnica Superior de Ingenieros Universidad de Sevilla Curso 8-9 Índice Función de ransferencia del sisema en bucle

Más detalles

Tema 3. Circuitos capacitivos

Tema 3. Circuitos capacitivos Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...

Más detalles

Tema 5: 5 Técnicas de Evaluación de la Fiabilidad

Tema 5: 5 Técnicas de Evaluación de la Fiabilidad Tema 5: 5 Técnicas de Evaluación de la Fiabilidad.- Inroducción 2.- Funciones para la evaluación de STFs 3.- Técnicas de modelado Arboles de fallos Modelos combinaorios Cadenas de Markov 4.- Modelado con

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

OPTIMIZACIÓN DINÁMICA

OPTIMIZACIÓN DINÁMICA OPIMIZACIÓN DINÁMICA Francisco Alvarez González fralvare@ccee.ucm.es EMA 5 Problemas en iempo coninuo: principio del máximo de Ponryagin 1. Formulación en iempo coninuo. 2. Ejemplos. 3. Función valor.

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

Sistemas de coordenadas en movimiento relativo

Sistemas de coordenadas en movimiento relativo Capíulo 4 Sisemas de coordenadas en movimieno relaivo 4.1 Sisemas de coordenadas acelerados y Principio de Equivalencia Para complear la descripción de los sisemas de coordenadas no inerciales, consideremos

Más detalles

Señales. Apéndice 3. A3.1 Representación de formas de ondas. Una señal es una función del tiempo. La gráfica de una señal se denomina forma de onda.

Señales. Apéndice 3. A3.1 Representación de formas de ondas. Una señal es una función del tiempo. La gráfica de una señal se denomina forma de onda. Apéndice 3 1 Señales Una señal es una función del iempo. La gráfica de una señal se denomina forma de onda. A3.1 Represenación de formas de ondas Esudiaremos algunas propiedades de la represenación de

Más detalles

Capítulo 4: Caracterización de la planta

Capítulo 4: Caracterización de la planta Capíulo 4: Caracerización de la plana En el presene capíulo se describe la obención del modelo maemáico de la plana del experimeno de Franck-Herz, así como algunos concepos preliminares relacionados con

Más detalles

5. MODELOS DE FLUJO EN REACTORES REALES

5. MODELOS DE FLUJO EN REACTORES REALES 5. MODLOS D FLUJO N RACTORS RALS 5.1 INTRODUCCIÓN n el caso de los reacores homogéneos isoérmicos, para predecir el comporamieno de los mismos deben enerse en cuena dos aspecos: - La velocidad a la cual

Más detalles

Curso 2006/07. Tema 1: Procesos Estocásticos. Caracterización de los procesos ARIMA. stico

Curso 2006/07. Tema 1: Procesos Estocásticos. Caracterización de los procesos ARIMA. stico Curso 6/7 Economería II Tema : Procesos Esocásicos. Caracerización de los procesos ARIMA. Concepo de proceso esocásico sico. Esacionariedad fuere y débil de los procesos esocásicos. Teoremas de ergodicidad

Más detalles

Circuitos eléctricos paralelos RLC en Corriente Alterna

Circuitos eléctricos paralelos RLC en Corriente Alterna Circuios elécricos paralelos RLC en Corriene Alerna Beelu Gonzalo Esudiane de Ingeniería en Sisemas de Compuación Universidad Nacional del Sur, Avda. Alem 253, B8000CPB Bahía Blanca, Argenina beelugonzalo@gmail.com

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Procesamieno Digial de Señal Tema : Análisis de Señal e Inroducción a los Sisemas Definición de señal sisema Señales coninuas discreas Transformaciones elemenales Funciones elemenales coninuas discreas

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Esadísico de Daos Climáicos SERIES TEMPORALES I Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Monevideo, Uruguay 2011 CONTENIDO Esudio de las series emporales en Climaología.

Más detalles

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de:

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de: Procesos socásicos Procesos socásicos I Inroducción y concepos básicos sadísicos de un proceso esocásico Referencias: Capíulo 8 de Inroducción a los Sisemas de Comunicación. Sremler, C.G. 993 Apunes de

Más detalles

Sistemas Secuenciales

Sistemas Secuenciales Sisemas Secuenciales Un circuio secuencial es un circuio en donde las salidas no sólo dependen de los valores de las enradas en el presene, sino que ambién dependen de un esado inerno del circuio. Ese

Más detalles

Motivación. Gran parte de las señales de nuestra experiencia cotidiana son continuas; sin embargo, cada vez más, se procesan digitalmente.

Motivación. Gran parte de las señales de nuestra experiencia cotidiana son continuas; sin embargo, cada vez más, se procesan digitalmente. c Luis Vielva, Grupo de raamieno Avanzado de Señal. Dp. Ingeniería de Comunicaciones. Universidad de Canabria. Señales y sisemas. ema 5: Muesreo. OpenCourseWare p. /?? ema 5: Muesreo. Moivación. 2. Esquema.

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

Resolviendo la Ecuación Diferencial de 1 er Orden

Resolviendo la Ecuación Diferencial de 1 er Orden Resolviendo la Ecuación Diferencial de er Orden J.I. Huircán Universidad de La Fronera February 6, 200 bsrac El siguiene documeno planea disinos méodos para resolver una ecuación diferencial de primer

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

Y K AN AN AN MODELO SOLOW MODELO

Y K AN AN AN MODELO SOLOW MODELO MODELO SOLOW MODELO Rendimienos consanes a escala decrecienes en uso de facores. Tasa de ahorro exógena, s. Crecimieno exógeno, a asa g, de eficiencia del rabajo. Equilibrio mercado de bienes de facores.

Más detalles

Sistemas Lineales Tema 2: Sistemas Lineales e Invariantes en el Tiempo (LTI)

Sistemas Lineales Tema 2: Sistemas Lineales e Invariantes en el Tiempo (LTI) Sisemas Lineales Tema 2: Sisemas Lineales e Invarianes en el Tiempo (LTI). Inroducción e las propiedades básicas de los sisemas, visas en el ema anerior, la linealidad y la invarianza en el iempo juegan

Más detalles

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO hp://comunidad.udisrial.edu.co/elecriciyprojecudisrial/ Elecriciy Projec UD 2017 CORRIENTE ELÉCTRICA La corriene es la asa de variación de la carga respeco al iempo [1]. La Unidad de medida es el Ampere

Más detalles

ECONOMETRÍA EMPRESARIAL II ADE

ECONOMETRÍA EMPRESARIAL II ADE 4 Bernardí Cabrer Economería Empresarial II Tema 8 ECONOMETRÍA EMPRESARIAL II ADE TEMA 8 MODELOS LINEALES SIN ESTACIONALIDAD I ( Modelos regulares 4 Bernardí Cabrer Economería Empresarial II Tema 8 8.

Más detalles

CONTROL BÁSICO. Sistemas de Control Realimentados. Reguladores o Controladores. Facultad de Ingeniería - UNER. Asignaturas: Control Básico 1

CONTROL BÁSICO. Sistemas de Control Realimentados. Reguladores o Controladores. Facultad de Ingeniería - UNER. Asignaturas: Control Básico 1 Faculad de Ingeniería - UNER CONTROL BÁSICO TEMAS: - Tipos de Reguladores Faculad de Ingeniería UNER Carrera: Bioingeniería Plan de esudios: 2008 Sisemas de Conrol Realimenados Consideramos el lazo básico

Más detalles

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2)

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2) SISTEMAS LINEALES Tema 4. Análisis de Fourier para Señales y Sisemas de Tiempo Coninuo (Sesión ) 18 de noviembre de 010 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 4 Conenidos. Relación con la ransformada

Más detalles

Los Procesos de Poisson y su principal distribución asociada: la distribución exponencial

Los Procesos de Poisson y su principal distribución asociada: la distribución exponencial Los Procesos de Poisson y su principal disribución asociada: la disribución exponencial Lucio Fernandez Arjona Noviembre 2004. Revisado Mayo 2005 Inroducción El objeivo de esas noas es inroducir al esudio

Más detalles

Análisis estocástico de series temporales

Análisis estocástico de series temporales Análisis esocásico de series emporales Ernes Pons (epons@ub.edu) Análisis esocásico de Series Temporales Moivación Ejemplos 4500000 8 4000000 6 3500000 4 3000000 2 0 2500000-2 2000000-4 500000-6 000000-8

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

Tema 2. Modelos matemáticos de los sistemas físicos

Tema 2. Modelos matemáticos de los sistemas físicos Tema. Modelos maemáicos de los sisemas físicos Objeivos Definir modelo maemáico en el ámbio de la ingeniería de sisemas Conocer la meodología de modelado de sisemas físicos Reconocer un modelo lineal de

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Procesamieno Digial de Señal Análisis de Fourier en iempo coninuo eorema de Fourier Serie de Fourier ransormada de Fourier Fórmulas de análisis y de sínesis Respuesa en recuencia de sisemas LI Dominio

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan Señales Elemenales Dr. Luis Javier Morales Mendoza FIEC Universidad Veracruzana Poza Rica Tuxpan Índice 3.1. Señales elemenales en iempo coninuo: impulso uniario, escalón uniario, rampa uniaria y la señal

Más detalles

LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR)

LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR) LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR) ESPECIFICACION La meodología VAR es, en ciera forma, una respuesa a la imposición de resricciones a priori que caraceriza a los modelos economéricos keynesianos:

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

TRABAJO PRÁCTICO N 1 Introducción al Control de Procesos

TRABAJO PRÁCTICO N 1 Introducción al Control de Procesos TRABAJO PRÁCTICO N Inroducción al Conrol de Procesos OBJETIVOS: Adquirir una primera aproximación de la forma en que acúan los sisemas de conrol realimenados, aprendiendo a idenificar ipos de variables.

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

Por ejemplo, la línea que deberemos escribir para definir la forma de onda de la figura, para una frecuencia de 50Hz, es:

Por ejemplo, la línea que deberemos escribir para definir la forma de onda de la figura, para una frecuencia de 50Hz, es: Prácica S4: Especro de Fourier 1. Objeivos Los objeivos de la prácica son: 1.- Uilizar el simulador Pspice para el esudio de la respuesa en frecuencia de circuios elécricos pasivos, aplicando la serie

Más detalles

Análisis de sistemas lineales con ondas cuadradas o pulsos

Análisis de sistemas lineales con ondas cuadradas o pulsos Mediciones Elecrónicas Análisis de sisemas lineales con ondas cuadradas o pulsos Sisema Bajo Prueba?? Repaso: Caracerización mediane ondas senoidales: Se analiza la respuesa de un sisema en el dominio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

4. Modelos de series de tiempo

4. Modelos de series de tiempo 4. Modelos de series de iempo Los modelos comunes para el análisis de series de iempo son los que se basan en modelos auorregresivos y modelos de medias móviles o una combinación de ambos. Es posible realizar

Más detalles

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS)

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) Anexo VI Prácicas de Sismología e Ingeniería Sísmica PRACTICA 5. TRATAMIENTO DE ACELEROGRAMAS. 1. OBJETIVO Aprender a llevar a cabo

Más detalles

Introducción a la Representación en Variable de

Introducción a la Representación en Variable de ELC-3303 Teoría de Conrol Inrodcción a la Represenación en Variable de Esado Prof. Francisco M. Gonzalez-Longa fglonga@ieee.org hp://www.giaelec.org/fglonga/sp.hm Inrodcción a Represenación en Espacio

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

SISTEMAS DISCRETOS. 1. Qué son?

SISTEMAS DISCRETOS. 1. Qué son? SISTEMAS DISCRETOS. Qué sn? Sn sisemas que rabajan cn das muesreads Ess sisemas sn cnrlads pr cmpuadr Ls cnrladres se desarrllan en cmpuadres. Ejempl de das muesreads Prces Reenr Muesreadr D/A Cmpuadr

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

Modelo de crecimiento con educación (Jones)

Modelo de crecimiento con educación (Jones) César Anúnez. I Noas de Crecimieno Económico UNIVERSIDAD NACIONA MAOR DE SAN MARCOS FACUTAD DE CIENCIAS ECONÓMICAS (Universidad del Perú, Decana de América) Modelo de crecimieno con educación (Jones) Charles

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

TEMA 5. CONTROL ADAPTATIVO. CONTROL AVANZADO DE PROCESOS Prof. M.A. Rodrigo TEMA 3. CONTROL ADAPTATIVO

TEMA 5. CONTROL ADAPTATIVO. CONTROL AVANZADO DE PROCESOS Prof. M.A. Rodrigo TEMA 3. CONTROL ADAPTATIVO TEMA 5. CONTROL ADAPTATIVO 1 DINÁMICA DE PROCESOS. LINEALIZACIÓN INTRODUCCIÓN ANÁLISIS DINÁMICO Definición: esudio del comporamieno no esacionario de un sisema Objeivo: sisemaizar comporamienos de sisemas

Más detalles

Definición. Elementos de un Sistema de Control

Definición. Elementos de un Sistema de Control TEORÍA DE CONTROL. Tema 1. Inroducción a los Sisemas de Conrol Sisema de Conrol Los conroles auomáicos o sisemas de conrol consiuyen una pare muy imporane en los procesos indusriales modernos, donde se

Más detalles

Laboratorio N 3, Funciones vectoriales, Curvas. Introducción.

Laboratorio N 3, Funciones vectoriales, Curvas. Introducción. Universidad Diego Porales Faculad de Ingeniería Insiuo de Ciencias Básicas Asignaura: Cálculo III Laboraorio N, Funciones vecoriales, Curvas Inroducción En la primera pare de ese laboraorio vamos a esudiar

Más detalles

TEMA 5 TRABAJO Y ENERÍA MECÁNICA. En el presente tema trataremos exclusivamente de la energía mecánica.

TEMA 5 TRABAJO Y ENERÍA MECÁNICA. En el presente tema trataremos exclusivamente de la energía mecánica. TEMA 5 TRABAJO Y ENERÍA MECÁNICA ENERGÍA Se denomina energía a la capacidad que ienen los cuerpos para producir ransformaciones, como, por ejemplo, realizar un rabajo. Hay múliples formas de energía: Energía

Más detalles

La ecuación del calor

La ecuación del calor Facula de Maemàiques i Esadísica Universia Poliècnica de Caalunya Lección inaugural del curso 3-4 de seiembre de 3 La ecuación del calor Professor Luis Caffarelli Deparamen of Mahemaics Universiy of Teas

Más detalles

Temas a tratar. Análisis de Fourier DFT/FFT. Análisis en frecuencias. Un poco de historia... Un poco de historia... Un poco de historia...

Temas a tratar. Análisis de Fourier DFT/FFT. Análisis en frecuencias. Un poco de historia... Un poco de historia... Un poco de historia... emas a raar Análisis de Fourier DF/FF Inroducción Series de Fourier ransformada coninua de Fourier Propiedades y ransformada inversa ransformada discrea de Fourier Alias de muesreo en el dominio de la

Más detalles

Modelado de Sistemas Dinámicos

Modelado de Sistemas Dinámicos A Modelado de Sisemas Dinámicos Ese ema esá dedicado al modelado de sisemas dinámicos. Eso es, a la obención de un conjuno de ecuaciones maemáicas que describen el comporamieno de un sisema físico. No

Más detalles

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS.

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. El objeivo de esas noas complemenarias al ema de solución numérica de ecuaciones diferenciales ordinarias es dar una inroducción simple al ema,

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

Reducción de matrices. Caso no diagonalizable

Reducción de matrices. Caso no diagonalizable Tema 5 Reducción de marices. Caso no diagonaliable Ejemplo inroducorio. El siguiene es un ejemplo de lo que se llama una recurrencia vecorial. Un curso de Algebra Ecuaciones Diferenciales se impare en

Más detalles

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez Ejercicios de Economería para el ema 4 Curso 2005-06 Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez 1 1. Considérese el modelo siguiene: Y X + u * = α + β 0 Donde: Y* = gasos deseados

Más detalles

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas 2 Elemenos de un sisema domóico Conenidos 2.1 Unidad de conrol 2.2 Disposiivos de enrada 2.3 Acuadores 2.4 Elecrodomésicos domóicos 2.5 Medios de comunicación en redes domésicas 2.6 Tecnologías aplicadas

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 007 Insiuo de Física Faculad de Ineniería UdelaR TITULO AUTORES MAQUINA DE ATWOOD EPERIMENTAL Maximiliano Bellas, Erneso Pasarisa INTRODUCCIÓN Geore Awood (745-807),

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

Medición del tiempo de alza y de estabilización.

Medición del tiempo de alza y de estabilización. PRÁCTICA # 2 FORMAS DE ONDA 1. Finalidad Esudiar la respuesa de configuraciones circuiales simples a diferenes formas de exciación. Medición del iempo de alza y de esabilización. Medición del reardo. Medición

Más detalles

Comentarios de la Nota Técnica sobre la Determinación del Incremento de la Reserva de Previsión

Comentarios de la Nota Técnica sobre la Determinación del Incremento de la Reserva de Previsión Comenarios de la Noa Técnica sobre la Deerminación del Incremeno de la Reserva de Previsión Fernando Solís Soberón y Rosa María Alaorre Junio 1992 Serie Documenos de Trabajo Documeno de rabajo No. 3 Índice

Más detalles

4.- Dualidad. Método Dual del Símplex.

4.- Dualidad. Método Dual del Símplex. Programación Maemáica para Economisas 132 4.- Dualidad. Méodo Dual del Símplex. Como ya vimos en el capíulo primero, dado un problema de programación no lineal, donde su lagrangiana oma la forma: se denomina

Más detalles

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO DNC TP3 Cáedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO Trabajo Prácico Nº 3: Esfuerzos inernos Diagramas

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

Práctica 4: Hoja de problemas sobre Tipos de cambio

Práctica 4: Hoja de problemas sobre Tipos de cambio Prácica 4: Hoja de problemas sobre Tipos de cambio Fecha de enrega y corrección: Viernes 8 de abril de 2011 Esa prácica se corregirá en horario de uorías en el aula Prácica individual 1. A parir de los

Más detalles

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0 Semesre Primavera Jueves, 4 de Noviembre PAUTA SOLEMNE N ECUACIONES DIFERENCIALES Encuenre la solución general de la ecuación y + y an(x) + 3x Solución: Primero resolvamos la ecuación diferencial homogénea:

Más detalles

PRÁCTICA 1 CALIBRACIÓN DE INSTRUMENTOS DE MEDICIÓN DE FLUJO

PRÁCTICA 1 CALIBRACIÓN DE INSTRUMENTOS DE MEDICIÓN DE FLUJO . Objeivos UNIVERSIDD SIMÓN BOLÍVR UNIDD DE LBORTORIOS LBORTORIO PRÁTI LIBRIÓN DE INSTRUMENTOS DE MEDIIÓN DE FLUJO Observar el principio de funcionamieno y las diferencias exisenes enre los principales

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: trabajo y potencia mecánica

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: trabajo y potencia mecánica SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: rabajo y poencia mecánica SGUICES020CB32-A16V1 Solucionario guía Energía I: rabajo y poencia mecánica Íem Alernaiva Habilidad 1 D Comprensión 2 C Aplicación

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

Tema 3: Juegos secuenciales o dinámicos con información completa

Tema 3: Juegos secuenciales o dinámicos con información completa Tema 3: Juegos secuenciales o dinámicos con información complea 1. Inroducción (Pérez e al. (2004), cap. 4) 1.1. Qué es un juego dinámico? 1.1.1. Juego con eapas o decisiones sucesivas 1.1.2. Tienen información

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

Modulo I: Oscilaciones (9 hs)

Modulo I: Oscilaciones (9 hs) Modulo I: Oscilaciones (9 hs. Movimieno rmónico Simple (MS. Oscilaciones amoriguadas 3. Oscilaciones forzadas y resonancia 4. Superposición de MS. Cinemáica y dinámica del MS. Sisema muelle-masa.3 Péndulos.4

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

Autómata Finito de 4 Estados y una Variables de Entrada.

Autómata Finito de 4 Estados y una Variables de Entrada. Auómaa Finio de 4 Esados y una Variables de Enrada. Vamos a diseñar un Auómaas Finio (AF) mediane el Procedimieno General de ínesis y a implemenarlo usando bieables D y cuanas pueras lógicas sean necesarias..

Más detalles

Tema 10 La economía de las ideas. El modelo de aumento en el número de inputs de Romer (1990)

Tema 10 La economía de las ideas. El modelo de aumento en el número de inputs de Romer (1990) Tema 0 La economía de las ideas. El modelo de aumeno en el número de inpus de Romer (990) 0. Endogeneización de la ecnología: un doble enfoque. 0.2 El secor producor de bienes finales. 0.3 Las empresas

Más detalles

TEMA 7 La curva de Phillips

TEMA 7 La curva de Phillips TEMA 7 La curva de Phillips Manual: Macroeconomía, Olivier Blanchard Presenaciones: Fernando e Yvonn Quijano La asa naural de desempleo y la curva de Phillips Figura 1 La inflación y el desempleo en Esados

Más detalles