5. CINÉTICA DEL CUERPO RÍGIDO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "5. CINÉTICA DEL CUERPO RÍGIDO"

Transcripción

1 Trlción pur 5. CINÉTIC DEL CUERP RÍID 1. El utomóvil repreentdo en l fiur vij hci l izquierd 7 km/h cundo comienz frenr, uniformemente, ht detenere por completo en un lonitud de 40 m. Sbiendo que l m del utomóvil e de 900 k, determine l mnitud de l componente normle de l rección del pvimento obre cd un de l llnt del utomóvil. v v Reolución Invetimo, pr comenzr, l celerción del centro de m del utomóvil, que e iul l de culquier prtícul u. dv v d Como fren uniformemente, l celerción e contnte. d vdv v C Eliiendo como orien l poición en que comienz frenr. Si 0, v 7 km 0 m h 0 0 C ; C 00

2 150 Cinétic del cuerpo ríido r r N N v v v 400 Pr 40 v ; 5 m (40) El ino netivo indic que u entido e hci l derech. hor pmo l prte cinétic del problem. Dibujmo un dirm de cuerpo libre que repreente culquier intnte del movimiento en etudio eleimo un item de referenci. L normle on N N pueto que trá de l llnt dibujd h otr do que no e ven. No uilimo de un dirm que repreente l item reultnte de l fuerz que ctún obre el utomóvil. Eleimo como centro de momento: M md El primer miembro correponde l dirm de cuerpo libre; el eundo, l dirm uilir. N (1.8) 900(0.8) N N m N 89 k 0 (89) 900 N N N k

3 Cinétic del cuerpo ríido 151. Sobre el crro-pltform de un tren, e trnport un ropero de l dimenione indicd en l fiur. Se dee invetir cuál e el tiempo mínimo que requiere el tren pr lcnzr un rpidez de 60 mi/h, prtiendo del repoo, in que el ropero e delice ni e vuelque. Lo coeficiente de fricción etátic cinétic entre el ropero el crro on , repectivmente. Reolución Pr determinr el tiempo mínimo, obtendremo l máim celerción que puede oportr el ropero. Supondremo, en primer lur, que dicho ropero etá punto de delizre. El dirm de cuerpo libre e muetr en l fiur; l fuerz de fricción e l etátic máim. bjo e preent un dirm uilir que muetr l fuerz reultnte. 0 N P 0 N P m 0.6N 0.6P P 0.6 P 0.6(3.) 19.3 hor upondremo que el ropero etá punto de volcre. El dirm de cuerpo libre el uilir e muetrn l ldo. L componente norml de l rección del crro e encuentr en el etremo izquierdo de l be de utentción. L fricción etátic no lcnz necerimente u vlor máimo. Eleimo el punto de interección de l norml l fricción, que on deconocid, como centro de momento.

4 15 Cinétic del cuerpo ríido M md P P (4) (3.3) 4 Pueto que con un celerción uperior 16.1 ft el ropero e volcrí, e ét l máim dmiible. El tiempo mínimo erá por tnto: 16.1 v 16.1t Pr lcnzr t 60 mi 88 h ft t 5.47

5 Cinétic del cuerpo ríido L brr CD tienen 0.4 m de lro. L brr CD etá conectd en D con un motor que l mueve con un velocidd nulr contnte de 300 rpm en entido ntihorrio. L brr homoéne C tiene 50 k de m. Determine cuál e, en el intnte motrdo en l fiur, l fuerz tipo de efuerzo que etá ujet l brr, biendo que u m e deprecible. Reolución C L brr C e mueve con trlción pur curvilíne. L celerción de culquier de u prtícul ólo tiene componente norml. n r l velocidd nulr, en rd /, e t n t n Un vez dibujdo el dirm de cuerpo libre un uilir que muetre el item reultnte, eleimo un item de referenci intríneco. Suponmo que e tenión. Eleiremo C, punto de concurrenci de do incónit, como centro de momento. b b m C M C md 3 b 50b (9.81) b N tenión Se trt de un tenión pue, l tener ino poitivo, tifce l hipótei.

6 154 Cinétic del cuerpo ríido 4. L brr de l fiur e homoéne pe 3. lb. Clcule l tenión que oportrá cd un de l cuerd inclind 45º, en el intnte en que e corte l cuerd horizontl. Clcule tmbién l celerción linel de culquier prtícul de l brr en ee mimo intnte. Reolución T T L brr e moverá con trlción pur curvilíne. Dibujmo el dirm de cuerpo libre en el intnte en que empiez el movimiento. Tmbién un dibujo uilir que muetre l fuerz reultnte. Eleimo un item de referenci intríneco. M 0 T 0 b T b T (1) T n m n b b 45 m n t Como l velocidd e nul, 0 T T T T T T lb n t m t en donde t ft 45

7 Cinétic del cuerpo ríido Rotción pur bricéntric 5. Un tmbor de 40 lb de peo ft de rdio etá colocdo obre do plno lio inclindo 45º, como e muetr en l fiur. Por medio de un cuerd idel enrolld en él, e le plic un fuerz contnte de 0 lb. El tmbor tiene un rdio de iro centroidl de 1.5 ft. Clcule l celerción nulr del tmbor l reccione de lo plno obre él. Reolución 0 40 Como el tmbor ir lrededor de un eje que p por u centro de m, el item reultnte de l fuerz que ctún obre él e un pr. Dibujmo el dirm de cuerpo libre del tmbor otro uilir que muetre el pr reultnte Eleimo un item de referenci cuo eje tienen l direccione de l reccione. R αi R R R R 4.4 lb 45 R R

8 156 Cinétic del cuerpo ríido R lb 45 M () k I m rd

9 Cinétic del cuerpo ríido El volnte de l fiur pe 00 k. El conjunto ir por l cción del cuerpo de 10 k que deciende verticlmente. Determine l ten-ión de l cuerd, l celerción linel del cuerpo l celerción nulr del volnte. Reolución T Como e trt de un problem de cuerpo conectdo, comenzremo etbleciendo l relción cinemátic entre l celerción linel de l nulr del volnte. r En ete co, r e el rdio de l pole 0. (1) Dibujmo el dirm de cuerpo libre de eleimo un eje de referenci en dirección de l celerción del cuerpo. m T 10 T 10 () T R hor continumo con el dirm de cuerpo libre del volnte. L rección R del poo tiene que er verticl, pue obre el volnte no ctú ninun fuerz horizontl. Dibujmo tmbién un dirm que muetre el item reultnte. Como l m del volnte etá concentrd 0.8 m del eje de rotción, u momento de inerci e clcul multiplicndo el cudrdo de e ditnci por l m.

10 158 Cinétic del cuerpo ríido αi I M I 18 0.T 640 T (3) Iulmo () (3), utituendo (1) en () (10) rd En (3) T 9.97 k en () m

11 Cinétic del cuerpo ríido L do pole de l fiur etán ríidmente unid, formndo un cuerpo de 64.4 lb de peo. El rdio de iro de u m e de 0.8 ft, repecto l eje de rotción. Lo cuerpo pen 16.1 lb cd uno etán unido l pole medinte cuerd de peo deprecible. Clcule l celerción nulr de l pole doble l tenión en cd un de l cuerd. Reolución Cuerpo T 16.1 Comenzremo etbleciendo l relcione cinemátic entre lo movimiento de lo tre cuerpo. Pr un punto culquier de l pole. t r por tnto 1. (1) 0.5 () Cuerpo T Como el cuerpo deciende, eleimo un item de referenci diriido hci bjo: m T 3. T (3) Del cuerpo m 16.1 T T (4) L pole doble ir con rotción pur bricéntric, por tnto, el item reultnte de l fuerz que ctún obre ell e un pr. T R T

12 160 Cinétic del cuerpo ríido αi M I T 0.5T T 0.5T 1.8 (5) Sutituendo (3) (4) en (5) Sutituendo (1) () en et ecución (0.5 ) rd En (1) () En (3) (4) T T lb lb

13 Cinétic del cuerpo ríido Lo cuerpo de l fiur etán inicilmente en repoo. Tnto como C pen 0 k. L pole e un cilindro mcizo de 0.15 m de rdio que pe 40 k. Determine l tenión en cd uno de lo trmo de l cuerd el tiempo que e requiere pr que C lcncen un rpidez de 5 m/. L uperficie horizontl e li. Reolución T 1 Cuerpo N Cuerpo L relcione cinemátic entre lo cuerpo on: C r en donde e l celerción nulr de l pole r u rdio. e C 0.15 Como e mueve hci l izquierd, eleimo un eje de referenci en e dirección T 1 m 0 (1) 9.81 Del cuerpo T 0 m 0 T T () 9.81 L pole ir con rotción pur lrededor de u centro de m. Tiene un momento de inerci de 1 I mr 1 40 I k. m 9.81

14 16 Cinétic del cuerpo ríido Dibujremo un dirm de cuerpo libre un dirm uilir en que prezc el item reultnte de l fuerz, que e un pr T 1 R 0.15 M I 0.15T 0.15T T T T1 1 1 T (3) T R Sutituimo (1) () en (3) αi De l relcione cinemátic rd De donde 3. 7 T k que e l tenión en el trmo de cuerd que une con l pole. En el otro trmo l tenión e (de (3)) T T k

15 Cinétic del cuerpo ríido Rotción pur no bricéntric 9. El dico homoéneo de 0.4 m de rdio ir lrededor de un eje horizontl, perpendiculr l plno que lo contiene, que p por. En el intnte motrdo en l fiur, u velocidd nulr e de rd/, en entido ntihorrio. Sbiendo que el dico tiene un m de 50 k, di cuál e u celerción nulr, í como l mnitud dirección de l rección de l rticulción. Reolución t n Dibujremo el dirm de cuerpo libre del dico un dirm uilir que muetre el item equivlente de l fuerz. Eleimo un item de referenci intríneco, en relción M I 50en 30º 0.4 I o Por el teorem de lo eje prlelo Rot Ron I I I mr 1 mr mr 3 mr m( ) n αi 0 Entonce: m( ) t rd

16 164 Cinétic del cuerpo ríido n m r Ron 50 Ron 50 t m r Rot (8.18)(0.4) 1 Rot Como lo ino indicn que u entido on contrrio l de lo eje, l componente de Ro on: Ro tn ; Ro 36.1 k 73. 3

17 Cinétic del cuerpo ríido L brr homoéne etá rticuld en oportd por un cuerd en. Tiene un m m un lonitud l. Determine tnto l celerción nulr de l brr como l mnitud dirección de l rección de l rticulción en el intnte que e corte l cuerd. Reolución m L brr e moverá con rotción pur lrededor de un eje que p por. Su dirm de cuerpo libre e muetr en l fiur. En el otro dirm e muetr el item de fuerz equivlente de l fuerz que ctún obre l brr en el intnte en que e cort l cuerd. 1 / R o n Empleremo un item de referenci intríneco pr el centro de m, cu celerción norml e nul, que no tiene velocidd linel. M I l 1 m ml 3 l 3 αi 0 t t 3 l m r 3 m Ro m l Ro m 3 4 l m t 1 Ro 4 m

18 166 Cinétic del cuerpo ríido 11. El rillo de l fiur tiene un rdio r e encuentr en repoo en l poición motrd. Di cuál erá l rpidez nulr máim que lcnzrá, i e uelt dede dich poición. Reolución θ m Ron Dibujremo un dirm de cuerpo libre que repreente un intnte culquier de l rotción del rillo. Tmbién un dirm que muetre un item equivlente de l fuerz. Eleimo un item de referenci intríneco. m Rot Clculmo el momento de inerci de l m repecto l eje de rotción, medinte el teorem de lo eje prlelo. n I I I I mr mr mr mr α I t mω r mαr L ecución que emplemo e M I mr co mr co r d Como d d co d r

19 Cinétic del cuerpo ríido 167 Seprndo vrible d co d r Interndo d r r co d en C L condicione inicile on 0 0 ; por tnto, l contnte de interción e nul. en r Como l velocidd nulr máim ocurre cundo 90 en 1 má r

20 168 Cinétic del cuerpo ríido 5.4 Movimiento plno enerl 1. Un efer homoéne de 80 k de m 0.4 m de rdio, e uelt del repoo obre un plno inclindo 15º. L efer deciende rodndo in delizre obre el plno. Clcule, pr culquier intnte del movimiento, l celerción nulr de l efer; l celerción linel de u centro de m; l fuerz de fricción que el plno ejerce obre ell, l mnitud de l componente norml de l rección del plno. Reolución Dibujremo el dirm de cuerpo libre de l efer, repreentndo culquier intnte de u movimiento. Suponemo rbitrrimente el entido de l fuerz de fricción. Eleimo un item de referenci cuo eje equi tiene l dirección de l celerción del centro de m. r N En un dirm uilir dibujremo un fuerz plicd en un pr de mnitud I que formn un item equivlente l que ctú obre l efer. M I 0.4r mr 5 0.4r (80)(0.4) (1) r αi 03 m r 80(9.81)en15 80 r 80 m Del vlor obtenido en (1) Como l efer rued in delizr:

21 Cinétic del cuerpo ríido 169 r Por tnto (0.4 ) rd r N m 15 r 58 N 15 αi El entido verddero de l fuerz de fricción e el que e upuo. 0 N 80(9.81) co15 0 N 758 N 75 m tro método Sbiendo que el punto de contcto de l efer con el plno inclindo e el centro intntáneo de rotción: M CIR I CIR El momento de inerci de l m de l efer repecto ee punto e: I CIR I mr (teorem de lo eje prlelo) I I CIR CIR mr 5 7 mr 5 mr

22 170 Cinétic del cuerpo ríido Por tnto 7 80(9.81)0.4en en en rd r 4.53(0.4) m 15 m 80(9.81)en15 r 80(1.814) en r r 58 N 75 0 N 80(9.81) co15 0 N

23 Cinétic del cuerpo ríido L brr deld de l fiur e homoéne, pe 16.1 lb mide 3 ft de lro. Pende del punto C por medio de do cuerd td u etremo, como e muetr. En el intnte en que e corte l cuerd C, cuál erá l tenión en l cuerd C? Cuál, l celerción nulr de l brr? Qué mnitud dirección tendrá l celerción linel de u centro de m? Reolución 1.5 Etblecemo l relción entre l celerción nulr de l brr l celerción inicil de u centro de m, tomndo como punto be biendo que tod l velocidde on nul. α 30 r 1.5j 0.5 i k ( 1.5i) 0.5 i j j Eclrmente: (1) () De (1) En ().5 (3) 3 1 Dibujmo el dirm de cuerpo libre de l brr u dirm uilir que muetre un item de fuerz equivlente conforme l item crteino que eleimo.

24 17 Cinétic del cuerpo ríido T 1.5 M I 1 en T T 0.5 (4) 16.1 T m co (5) m( ) m T en T αi m( ) De (4) (6) Sutituendo (5) (6) en (3) rd De (4) T 4.6 lb

25 Cinétic del cuerpo ríido Lo tre cuerpo de l fiur etán conectdo medinte un cuerd fleible, inetenible de peo deprecible. pe 0 k. L pole e un cilindro mcizo de 0. m de rdio que pe 30 k. Y C e un crrete de 50 k cuo rdio eterior e de 0.4 m cuo núcleo e de 0.1 m. Sbiendo que el crrete rued in delizr que el rdio de iro de u m repecto l eje de fiur e de 0.5 m, determine l tenión en cd uno de lo trmo de l cuerd (1 ) l celerción nulr del crrete. Reolución α α 0. Comenzremo etbleciendo l relcione cinemáen cuent que e mueve con trlción pur;, con rotción pur bricéntric, C con movimiento plno enerl. L celerción de l cuerd e iul l de. r 0. r 0. 3 (1) C C CIR Cuerpo T 1 Por tnto C 1. 5 () C Dibujmo lo dirm de cuerpo libre de cd cuerpo un dirm uilir que muetre el item reultnte. 0 m Cuerpo 0 T m T1 0 De (1) 0 T C

26 174 Cinétic del cuerpo ríido 6 T1 0 C (3) T R Pole 30 α 0. Pole M I T1 0.T 0. 3 T1 T R T 1 De () T T C (4) α I Crrete C Como el punto de contcto entre el crrete l uperficie e el centro intntáneo de rotción Cuerpo C 50 T M 0.3T CIR I C CIR ( I mr ) T C T C T C (5) N α I C m

27 Cinétic del cuerpo ríido 175 Sutituendo (3) (5) en (4) C C C C C 0 0(9.81) C 4.14 En (3) (5) T T rd k k

28 176 Cinétic del cuerpo ríido 15. Un rued de ft de rdio 3. lb de peo, cuo m tiene un rdio de iro centroidl de 1.5 ft, e uelt obre un plno inclindo con un ánulo de 30º con l horizontl, como e muetr en l fiur. Lo coeficiente de fricción etátic cinétic entre l rued el plno on , repectivmente. Di i l rued e deliz o no obre el plno clcule l fuerz de fricción que éte ejerce obre ell, l celerción nulr de l rued l celerción linel de u centro de m. Reolución Supondremo, primero, que l rued no e deliz obre el plno. En ete co, el punto de contcto entre ello e el centro intntáneo de rotción. r CIR N M CIR I 3. I mr CIR αi Por tnto r m m 1 3. r r 0 N 3. N L fuerz de fricción etátic máim e:

29 Cinétic del cuerpo ríido 177 ' M k N Como lb e menor que 5. 80lb, l rued e deliz obre el plno. Pueto que l rued deliz, l fricción e cinétic k M N k CIR k 3.35 lb αi 7.9 El dirm de cuerpo libre e el que e muetr: 3.35 M I rd 1 m m ft 30

30 178 Cinétic del cuerpo ríido

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

SEGUNDO PARCIAL - Física 1 30 de junio de 2010

SEGUNDO PARCIAL - Física 1 30 de junio de 2010 Intituto de Fíica Facultad de Ingeniería Univeridad de la República SEGUNDO PARCIAL - Fíica 1 30 de junio de 010 g= 9,8 m/ Cada pregunta tiene ólo una repueta correcta. Cada repueta correcta uma 6 punto.

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA UNIVERSIDD NCIONL DE SN CRISTÓL DE HUMNG 13 ESCUEL DE FORMCIÓN PROFESIONL DE INGENIERÍ CIVIL TEM: CINEMTIC DE PRTICULS Y CUERPOS RIGIDOS RESOLUCIÓN DE EJERCICIOS DE MECÁNIC PR INGENIEROS DINÁMIC T.C. HUNG

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

PROBLEMAS DE ESTÁTICA

PROBLEMAS DE ESTÁTICA UCM PEMS DE ESÁIC undmentos ísicos de l Ingenierí. Deprtmento ísic plicd UCM Equipo docente: ntonio J rbero lfonso Cler Mrino Hernández. ES grónomos lbcete Pblo Muñiz Grcí José. de oro Sáncez EU. I.. grícol

Más detalles

El clásico problema del bloque y la cuña, pero esta vez no tan clásico... Santiago Silva y Guillermo Paredes.

El clásico problema del bloque y la cuña, pero esta vez no tan clásico... Santiago Silva y Guillermo Paredes. El cláico proble del bloque y l cuñ, pero et vez no tn cláico... INTRODUCCION: Sntigo Silv y Guillero rede. lnteo del proble: ROBLEMA 3 L figur uetr un cuñ de ángulo 30º, 60º, y 90º y ltur h que e encuentr

Más detalles

M Si se ha desplazado x la masa que cuelga m ( x) L Por la IILN. 2 x

M Si se ha desplazado x la masa que cuelga m ( x) L Por la IILN. 2 x UNIVERSIDAD NACIONA DE INGENIRIA FACUTAD DE INGENIERIA INDUSTRIA Y DE SISTEAS Curso: FISICA I CB 3U 1I Profesor: ic. JOAQUIN SACEDO jslcedo@uni.edu.pe Tem: Cdens Un cuerd de lonitud y ms, se desliz sin

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA UNIVERSIDAD NACINAL DE INGENIERIA CENTR NACINAL DE ESTUDIS GENERALES MDALIDAD SABATINA UNIDAD II CINEMATICA: MVIMIENT DE CAÍDA LIBRE. MVIMIENT BIDIMENSINAL CAIDA LIBRE GUIA DE TRABAJ CLASE PRÁCTICA 4.

Más detalles

Series de Ejercicios Resueltos de Dinámica

Series de Ejercicios Resueltos de Dinámica ou UNM Serie de Ejercicio Reuelto de Dináic Ing. Jun Ocáriz Ctelzo Fcultd de Ingenierí Diiión de Cienci áic Deprtento de Cineátic Dináic Prefcio L erie de ejercicio que heo elbordo pr que etén dipoición

Más detalles

EJERCICIOS DE CINEMÁTICA PARA REPASAR

EJERCICIOS DE CINEMÁTICA PARA REPASAR EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción

Más detalles

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes.

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes. ROBLMA D GNRADOR NCRÓNCO. Aigntur : Converión lectromecánic de l nergí. ech : Agoto200. Autor : Ricrdo Lel Reye. 1. Un generdor incrónico de 6 polo conectdo en etrell, de 480 (), 60 (Hz), 1 (Ω/fe), 60

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA ZAO AÑO 014 Ing.

Más detalles

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A. Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)

Más detalles

TALLER DE TRABAJO Y ENERGÍA

TALLER DE TRABAJO Y ENERGÍA TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un bloque de 9kg e empujado mediante una fuerza de 150N paralela a la uperficie, durante un trayecto de 26m. Si el coeficiente de fricción entre la

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

FÍSICA I CAPÍTULO 6: CINEMÁTICA III

FÍSICA I CAPÍTULO 6: CINEMÁTICA III FÍSICA I CAPÍTULO 6: CINEMÁTICA III ROTACIÓN DE CUERPOS RÍGIDOS Retomndo el moimiento cicul de un punto: L Figu epeent l dieccione de lo ectoe elocidd y celeción en io punto p un ptícul que e muee en un

Más detalles

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r Guía de Fíica I. Vectore. 1. Conidere lo vectore A ByC r r r,. Su valore y aboluto, en unidade arbitraria, on de 3, 2 y 1 repectivamente. Entonce el vector reultante r r r r D = A + B + C erá de valor

Más detalles

Movimiento Circular Uniforme

Movimiento Circular Uniforme Slide 1 / 113 Movimiento irculr Uniforme 2009 por Goodmn y Zvorotniy Tems del Movimiento irculr Uniforme (MU) Slide 2 / 113 Hg clic en el tem pr ir l sección inemátic del MU Período, Frecuenci, y Velocidd

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

Fundamentos Físicos de la Ingeniería Primer Cuatrimestre / 10 febrero 2012

Fundamentos Físicos de la Ingeniería Primer Cuatrimestre / 10 febrero 2012 . Sistems de referenci inercil y no inercil. Explicr en que consisten y l diferencis que existen entre ellos. . Un disco de rdio r está girndo lrededor de su eje de simetr con velocidd ngulr ω y celerción

Más detalles

Introducción a la geometría diferencial

Introducción a la geometría diferencial Cpítulo 6 Introducción l geometrí diferencil 6.1. Concepto de curv. Expreione nlític L curv en el epcio repreentn intuitivmente l tryectori de un punto en movimiento. Vmo definir, dede un punto de vit

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA.

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA. Págin 1 de 5 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FISICA I/11 PRACTICA Nro. 8 MASA INERCIAL

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

Un vector es simplemente un segmento orientado. sentido. módulo a

Un vector es simplemente un segmento orientado. sentido. módulo a 1 1-MAGNITUDES ESCALARES Y ECTORIALES. CÁLCULO ECTORIAL BÁSICO -CINEMÁTICA. MAGNITUDES FUNDAMENTALES PARA EL ESTUDIO DEL MOIMIENTO. 3-CLASIFICACIÓN DE MOIMIENTOS. 4-COMPOSICIÓN DE MOIMIENTOS. PROYECTILES.

Más detalles

1. CINEMÁTICA DE LA PARTÍCULA

1. CINEMÁTICA DE LA PARTÍCULA . CINEMÁTICA DE LA PARTÍCULA. Moimieno recilíneo.. Poición en función del iempo. L poición de un prícul que decribe un líne rec qued definid medine l epreión = / 9 +, donde i eá en, reul en m. Deermine:

Más detalles

INTERACCIÓN MAGNÉTICA

INTERACCIÓN MAGNÉTICA NTERACCÓN MAGNÉTCA ROBLEMAS ROUESTOS : () Determine l dirección de l fuerz que se ejerce sobre un protón que se desplz en un cmpo mgnético pr cd situción representd en l Fig. ( b) Repetir el problem si

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

TEST. Cinemática Una partícula tiene un M.C.U. Cuál sería la posible gráfica θ en función del tiempo?

TEST. Cinemática Una partícula tiene un M.C.U. Cuál sería la posible gráfica θ en función del tiempo? Cinemática 5 TEST.- Una partícula tiene un M.C.U. Cuál ería la poible gráfica θ en función del tiempo? a) d) 5.- ué ditancia recorre P i la polea mayor gira (/4) rad/ en? a) R/4 b) R/ c) R/ d) R/ e) R/5

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

FUNCIONAMIENTO FÍSICO DE UN AEROGENERADOR

FUNCIONAMIENTO FÍSICO DE UN AEROGENERADOR FUCIOIEO FÍSICO DE U EOGEEDO 1.- Introducción El funcionmiento físico de un erogenerdor de imnes permnentes responde, como muchos sistems físicos, un ecución diferencil, cuy solución prticulr es l solución

Más detalles

GUÍA VI: MÁQUINAS SINCRÓNICAS

GUÍA VI: MÁQUINAS SINCRÓNICAS Sitem Electromecánico, Guí : Máquin Sincrónic GUÍA : MÁQUNAS SNCRÓNCAS 1. Un generdor incrónico de 440 [ LL ], 50 [ka], triáico, do polo, gir velocidd nominl. Se neceit un corriente de cmpo de 7 [A] pr

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA RICCIÓ Capítulo VI 6.1 ITRODUCCIÓ La ricción e un enómeno que e preenta entre la upericie rugoa de do cuerpo ólido en contacto, o entre la upericie rugoa de un cuerpo ólido un luido en contacto, cuando

Más detalles

GALICIA / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO Elegir y desrrollr un de ls dos opciones propuests. Puntución máxim: Problems 6 puntos (1,5 cd prtdo). Cuestiones 4 puntos (1 cd cuestión teóric o práctic). No se lorrá l notción de un ítem como solución

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009 E.T.S. DE INGENIERÍ (ICI). TEORÍ DE ESTRUCTURS Y CONSTRUCCIONES INDUSTRIES Exmen Septiembre 009 EE TENTENTE El exmen const de vrios ejercicios, que se reprtirán sucesivmente, con un tiempo máximo pr l

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre:

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre: Nomre: FÍSICA APLICADA. EXAMEN A. ABRIL 03. MODELO A TEORÍA (.5 p) A) Teorem de Guss. Enuncido y explicción reve. B) Un crg de C se encuentr en el centro de un cuo de m de ldo. Cmirá el flujo eléctrico

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE ATERIALES CONCEPTO DE PIEZA PRISÁTICA Centro de grvedd Directriz o eje G C Sección trnsversl ADERTENCIA: Eisten otrs rms de l ecánic de edios Continuos en ls

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado? CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO 3 Aplicciones 3.5 Trbjo de un fuerz 1 Se dice que un fuerz reliz un trbjo cundo cmbi el estdo de reposo o estdo de movimiento de un cuerpo. En este sentido, el trbjo que reliz un fuerz pr llevr

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA UNIVERSIDD NIONL DE SN RISTÓL DE HUMNG FULTD DE INGENIERÍ DE MINS, GEOLOGÍ Y IVIL ESUEL DE FORMIÓN PROFESIONL DE INGENIERÍ IVIL DINÁMI (I-44) PRIMER PRÁTI INEMÁTI DE PRTÍUL Y INEMÁTI DE UERPO RÍGIDO GRUPO

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I C U R S O: FÍSICA COMÚN MATERIAL: FC-2 CINEMÁTICA I La Cinemática etudia el movimiento de lo cuerpo, in preocupare de la caua que lo generan. Por ejemplo, al analizar el deplazamiento de un automóvil,

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006 Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente

Más detalles

ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema

ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema ANÁLISIS DE SISTEAS LINEALES 1. odeldo de item SISTEA Reliz FUNCIÓN Poee ESTRUCTURA Preent COPORTAIENTO Figur 1.1: Definición de Sitem Sitem: Un item reliz un función, poee un etructur y preent un comportmiento.

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid

Más detalles

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó?

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó? Fuerz: soluciones 1.- Un óvil cuy s es de 600 kg celer rzón de 1,2 /s 2. Qué uerz lo ipulsó? = 600 kg = 1,2 /s 2 F = >>>>> F = 600 kg 1,2 /s 2 = 720 2.- Qué s debe tener un cuerpo pr que un uerz de 588

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

CINEMÁTICA DE UNA PARTÍCULA

CINEMÁTICA DE UNA PARTÍCULA Cpíulo IX CINEMÁTICA DE UNA PARTÍCULA 9.1 INTRODUCCIÓN L Cinemáic e ocup del movimieno de lo cuepo in conide l cu que oiginn dicho movimieno. E deci, eudiemo el movimieno de lo cuepo o pícul in conide

Más detalles

una cuarta carga para que la fuerza eléctrica sobre esta q 4 sea nula? Cual debería ser su valor? q 1 q 3 q 2 Fig. 1 (b) (c) Fig.

una cuarta carga para que la fuerza eléctrica sobre esta q 4 sea nula? Cual debería ser su valor? q 1 q 3 q 2 Fig. 1 (b) (c) Fig. Físic III Práctic N 0 : Crg eléctric Problem. Clcule el cociente q/m entre l crg l ms e os prtículs iéntics cu fuerz e repulsión electrostátic tiene l mism mgnitu que l fuerz e trcción grvittori. Compre

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

Titulación de ácido fuerte-base fuerte

Titulación de ácido fuerte-base fuerte Químic Anlític (9123) urv de titulcción y cp. buffer SUBTEMA 3 1 Titulción de ácido fuertebe fuerte En olución cuo, lo ácido y l be fuerte e encuentrn totlmente diocido. Por lo tnto, el ph lo lrgo de l

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor:

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor: CAPÍULO - 8 Problem El estdo de tensiones de un punto de un sólido viene definido por el siguiente tensor: 7 6 ( ) 6 8 N / m XYZ 76 Hllr: ) ensiones direcciones principles sí como l mtri de pso entre el

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

DINÁMICA FCA 04 ANDALUCÍA

DINÁMICA FCA 04 ANDALUCÍA 1. Se deja caer un cuerpo de 0,5 kg dede lo alto de una rapa de, inclinada 30º con la horizontal, iendo el valor de la fuerza de rozaiento entre el cuerpo y la rapa de 0,8 N. Deterine: a) El trabajo realizado

Más detalles

3. TRABAJO Y ENERGÍA E IMPULSO Y CANTIDAD DE MOVIMIENTO PARA LA PARTÍCULA

3. TRABAJO Y ENERGÍA E IMPULSO Y CANTIDAD DE MOVIMIENTO PARA LA PARTÍCULA 83 3. RJO Y EERGÍ E IMPLSO Y CIDD DE MOVIMIEO PR L PRÍCL 3. rabajo energía cinética. Con una fuerza E de 0 kg, inclinada 30º, e epuja un cuerpo de 0 kg obre una uperficie horizontal, en línea recta, a

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

Senx a) 0 b) 1 c) 2 d) 2

Senx a) 0 b) 1 c) 2 d) 2 EJERIIOS. lculr en : Sen( - 0º) = os( + 0º) ) b) c) 4 d) 6 e). Si : Tg (8 º) Tg ( + º) = Hllr: K = Sen tg 6 7 7 ) b) c) - d) - e) ) 0, b) c), d) e) 8. Si : Tg =, Sen lculr : K Tg ) c) e) ( ) b) d) ( ).

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado.

PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado. PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA Cpítulo SISTEMA DE COORDENADAS Demostrr que los puntos A ( 0,) B (,5) ; C ( 7,) D (, ) son los vértices de un cudrdo. Solución AB 9 6 5 5 BC 6 9 5 5 AD 9 6 5 5 CD

Más detalles

PROBLEMAS DE MOTORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía Fecha : Agosto-2003 Autor : Ricardo Leal Reyes

PROBLEMAS DE MOTORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía Fecha : Agosto-2003 Autor : Ricardo Leal Reyes ROMA D MOTOR NRÓNO Aigntur : onverión lectromecánic de l nergí ech : Agoto-200 Autor : Ricrdo el Reye 1. Un motor incrónico trifáico de polo cilíndrico, conectdo en etrell 172 volt entre líne, r 0, 10

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

EL CUERPO DE LAS FRACCIONES DE UN DOMINIO DE INTEGRIDAD

EL CUERPO DE LAS FRACCIONES DE UN DOMINIO DE INTEGRIDAD EL CUERPO DE L FRCCIONE DE UN DOMINIO DE INTEGRIDD CRLO CHINE EL CUERPO DE L FRCCIONE DE UN DOMINIO DE INTEGRIDD Ddo un nillo intero ; L L donde e un conunto L e l ley ditiv y e L l ley ultiplictiv no

Más detalles

C A P I T U L O I V E C T O R E S Y F U E R Z A S

C A P I T U L O I V E C T O R E S Y F U E R Z A S C P I T U L I V E C T R E S U E R S I.1. Mgnitudes esclres vectoriles. Esclres: Pr su interpretción precisn del vlor numérico de l unidd de medid. Ej.: m 3, 0 V, 50 km, 5 ºC. Vectoriles: Si decimos que

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN

CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN CI31A - Mecánic de Fluidos FUERZAS DE PRESIÓN Prof. Aldo Tmurrino Tvntzis HIDROSTÁTICA Si ls prt ículs de fluido no están en movimiento no hy fuerzs tngenciles ctundo sore ells. Consideremos un volumen

Más detalles