Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa."

Transcripción

1 Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato En estas notas se definirán el rango de una matriz y se probarán algunos resultados acerca de matrices invertibles Rango columna y rango fila de una matriz Empezaremos esta sección definiendo los espacios fila y columna de una matriz Definición Sea M una matriz de m filas y n columnas con elementos en un campo K El espacio columna de M es el espacio generado por los n vectores formados por las columnas de M estos vectores pertenecen al espacio vectorial R m El espacio fila de M es el espacio generado por los m vectores formados por las filas de M estos vectores pertenecen al espacio vectorial R n Definición Sea M una matriz de m filas y n columnas con elementos en un campo K El rango columna de M, denotado por ρ C (M), es la dimensión del espacio columna de M Similarmente, el rango fila de M, denotado por ρ F (M), es la dimensión del espacio fila de M Teorema El número de columnas linealmente independiente de una matriz es igual al número de filas linealmente independientes de la misma matriz En otras palabras, el ρ C (M) = ρ F (M) Definición El rango de una matriz, M, denotado por ρ(m), es el valor de su rango fila o de su rango columna, es decir ρ(m) = ρ C (M) = ρ F (M) El siguiente resultado, el mas importante de estas notas, muestra que el rango de una transformación lineal es igual al rango de cualquiera de sus matrices representativas En otras palabras el rango de una transformación lineal es invariante respecto a la selección de las posibles bases que se emplean para representar la transformación lineal Teorema Sea M M m n sobre el campo K Sean V y V tales que dimv = n y dimv = m y sea T una transformación lineal de V a V Si M es la matriz representativa de T respecto a bases arbitrarias B de V y B de V entonces el R T es isomórfico al espacio columna de M, por lo tanto ρ(t) = ρ(m) Teorema El rango fila de una matriz, ρ c (M), y por lo tanto el rango de la matriz, ρ(m), es igual al número de filas diferentes de cero de una, y de todas, las formas escalonadas de la matriz Prueba: Sea M M m n y sean M,M 2,,M m las m filas de la matriz, estas filas pueden suponerse que pertenecen a un espacio vectorial R n Sin pérdida de generalidad, suponga que M tiene su primer componente diferente de cero, y suponga que se realiza el primer paso de escalonamiento, entonces, la

2 Figura : Representación Gráfica del Isomorfismo Entre el Rango de T y el Espacio Columna de M matriz se reduce a M = M M 2 = M 2 λ 2 M M 3 = M 3 λ 3 M M i = M i λ i M M m = M m λ m M = m m 2 m n, donde el símbolo ξ significa un número desconocido que en general es diferente de cero Es importante señalar que las filas de la matriz M son combinaciones lineales de las filas de la matriz original M Nuevamente suponga, sin pérdida de generalidad, que M 2 tiene su segundo componente diferente de cero, y suponga que se realiza el segundo paso de escalonamiento, entonces M 2 = m m 2 m n ξ ξ ξ donde el símbolo ξ significa un número desconocido que en general es diferente de cero Nuevamente, es importante señalar que las filas de la matriz M 2 son combinaciones lineales de las filas de la matriz original M Este proceso de escalonamiento debe terminar después de un número finito de pasos, menor o igual a m Existen dos posibilidades: La fila M j de la matriz se transformó en una fila de ceros, después de k pasos de escalonamiento En este caso, se tiene que, = M kj = M k,j λ k,j M,k 2

3 sin embargo, M,k y M k,j, pueden escribirse como una combinaciones lineales de M j,m k,,m 2 y M, además el coeficiente de M j es diferente de cero Por lo tanto, M j es linealmente dependiente del conjunto {M,M 2,,M k } y por lo tanto no puede formar parte de la base del espacio fila de la matriz 2 La fila M j de la matriz no se transformó en una fila de ceros, después de k pasos de escalonamiento En este caso, se tiene que M j no puede escribirse como una combinación lineal de {M,M 2,,M j } y debe añadirse a este conjunto para formar una base de su espacio fila Por lo tanto, la dimensión del espacio fila es el número de filas diferentes de cero de cualesquiera de sus formas escalonadas 2 Matriz Inversa En esta parte de las notas analizaremos las propiedades de las matrices inversas Teorema Sea M M m m tal que ρ(m) = m Entonces existe una única matriz, denotada M, tal que MM = I m = M M donde I m es la matriz identidad de orden m; es decir con m filas y m columnas Prueba: Por el isomorfismo entre matrices y transformaciones lineales, sabemos que hay una transformación lineal T : V V tal que dimv = dimv = m podemos, por simplicidad, suponer que V = V tal que M es la matriz representativa de T respecto a una base B V del espacio vectorial V Puesto que ρ(m) = m, entonces ρ(t) = m y T es sobreyectiva, además, puesto que ν(t) + ρ(t) = dimv se tiene que ν(t) = m m = Por lo tanto T es biyectiva y existe una transformación inversa T que satisface la propiedad TT = I V = T T () Sea M la matriz representativa de T respecto a la base B V y recordando: La matriz identidad I m es la matriz representativa de I V respecto a cualquier base, y 2 Si M y N son las matrices representativas de S y T respecto a una base, MN es la matriz representativa de ST respecto a la misma base, Aplicando estos dos resultados a la ecuación dada por (), se tiene que MM = I m = M M Para la unicidad suponga, nuevamente, que hay dos matrices inversas M y M 2, entonces Entonces MM = I m = M M y MM 2 = I m = M 2 M MM = I m = MM2 o M ) = M m = M 2 ) (M M)M = M = (M M)M2 I m M = M = I m M2 o M = M2 Puesto que V = V solo es necesario emplear una base 3

4 Definición Sea M M m m Entonces M se dice que es no-singular o invertible si ρ(m) = m Si ρ(m) < m, M se dice singular o no-invertible Corolario Si la matriz M M m m es invertible, existe una única matriz M M m m tal que MM = I m = M M Teorema Sean A y B matrices cuadradas del mismo tamaño Entonces AB es no-singular, si y sólo si A y B son no singulares En este caso (AB) = B A Teorema Si A es no singular, entonces A es no singular y (A ) = A Además, λa es no singular para todo λ y (λa) = λ A Prueba: Si A es no singular, existe A tal que AA = I = A A Entonces (A ) = A y A es no singular Similarmente considere (λa)( λ A ) = λ λ AA = I = I y ( ) λ A (λa) = λ λa A = I = I Por lo tanto, λa es no singular y (λa = = λ A Teorema Si A es no singular, entonces A T es no singular y (A T ) = (A ) T Prueba Si A es no singular, existe A tal que AA = I = A A además Por lo tanto (A ) T A T = (AA ) T = I T = I = (A A) T = A T (A ) T (A T ) = (A ) T 3 Problemas Resueltos Problema Encuentre la matriz inversa de 2 3 M = 2 3 Solución Para este fin, escriba la matriz de bloques dada por 2 3 [M I 3 ] = 2 3 El proceso consiste en realizar operaciones entre las filas de la matriz [M I 3 ] de tal manera que la parte de la matriz de bloques que inicialmente corresponde M se convierta en la matriz I 3 Cuando esto ocurra, la parte de la matriz de bloques que inicialmente corresponde a I 3 se convierte en M El proceso se realiza en etapas

5 En la primera etapa, se sustituye la segunda fila por la suma de la segunda fila con la primera fila y la tercera fila por la resta de la primera fila a la tercera fila La matriz resultante es 2 3 [M I 3 ] I = Además, se multiplica la segunda fila por, de manera que al final de esta primera etapa, la matriz de bloques tiene la forma [M I 3 ] Ia = En un segunda etapa, se tiene que substituir la tercera fila por la resta de veces la segunda fila a la tercera fila, de modo que 2 3 [M I 3 ] II = Además, se divide la tercera fila entre, de modo que 2 3 [M I 3 ] IIa = 3 En una tercera etapa, se sustituye la segunda fila por la suma de la segunda fila con veces la tercera fila y la primera fila por la resta de 3 veces la tercera fila a la primera fila La matriz resultante es [M I 3 ] III = En una etapa final, se sustituye la primera fila por la suma de la primera con 2 veces la segunda fila La matriz resultante es [M I 3 ] IV = Por lo tanto, la matriz inversa, M, está dada por M = Este resultado puede verificarse mediante multiplicación directa entre M y M

6 Problemas Propuestos Problema Determine el rango de las siguientes matrices M = 3 2 M 2 = Problema 2 Considere el inciso, del problema 2, del apunte, Espacio Nulo y Rango de una Transformación Lineal que presenta una transformación lineal dada por T : P 3 (x) R T(a + a x + a 2 x 2 + a 3 x 3 ) = (a a,a 2,a 3,) (2) Encuentre la matriz representativa de la transformación lineal con respecto a las bases B P 3 = {p (x) =,p 2 (x) = x,p 3 (x) = x 2,p (x) = x 3 } y B R = {(,,,),(,,,),(,,,),(,,,)} y muestre que el rango de la matriz representativa es igual al rango de la transformación lineal Problema 3 Encuentre la matriz inversa de 2 2 M = 3 2 6

Algebra Lineal XV: Transformación Lineal Inversa.

Algebra Lineal XV: Transformación Lineal Inversa. Algebra Lineal XV: Transformación Lineal Inversa. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Universidad de Guanajuato email: jrico@ugto.mx Transformación

Más detalles

Algebra Lineal XXII: Determinantes y Singularidad.

Algebra Lineal XXII: Determinantes y Singularidad. Algebra Lineal XXII: Determinantes y Singularidad. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Algebra Lineal XVI: La matriz de una transformación lineal.

Algebra Lineal XVI: La matriz de una transformación lineal. Algebra Lineal XVI: La matriz de una transformación lineal José María Rico Martínez Departamento de Ingeniería Mecánica Divisi on de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email:

Más detalles

Algebra Lineal XIV: Espacio Nulo y Rango de una. transformación lineal.

Algebra Lineal XIV: Espacio Nulo y Rango de una. transformación lineal. Algebra Lineal XIV: Espacio Nulo y Rango de una Transformación Lineal. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de

Más detalles

Algebra Lineal XVI: La matriz de una transformación lineal.

Algebra Lineal XVI: La matriz de una transformación lineal. Algebra Lineal XVI: La matriz de una transformación lineal José María Rico Martínez Departamento de Ingeniería Mecánica Divisi on de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email:

Más detalles

Álgebra Lineal V: Subespacios Vectoriales.

Álgebra Lineal V: Subespacios Vectoriales. Álgebra Lineal V: Subespacios Vectoriales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

ALGEBRA y ALGEBRA LINEAL

ALGEBRA y ALGEBRA LINEAL 520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean

Más detalles

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

Algebra Lineal XX: Determinantes.

Algebra Lineal XX: Determinantes. Algebra Lineal XX: Determinantes. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Álgebra Lineal IV: Espacios Vectoriales.

Álgebra Lineal IV: Espacios Vectoriales. Álgebra Lineal IV: Espacios Vectoriales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso Tema 4: Matrices y Determinantes Algunas Notas sobre Matrices y Determinantes Álgebra Lineal Curso 2004-2005 Prof. Manu Vega Índice 1. Determinantes 3 2. Regla de Sarrus 3 3. Propiedades de los determinantes

Más detalles

Aproximación Polinomial de Funciones.

Aproximación Polinomial de Funciones. Aproximación Polinomial de Funciones José María Rico Martínez Departamento de Ingeniería Mecánica Universidad de Guanajuato, F I M E E 1 Introducción En estas notas se presentan los fundamentos de los

Más detalles

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Álgebra Lineal IV: Espacios Vectoriales.

Álgebra Lineal IV: Espacios Vectoriales. Álgebra Lineal IV: Espacios Vectoriales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Transformaciones lineales

Transformaciones lineales Transformaciones lineales Problemas teóricos En los problemas de esta lista se supone que V y W son espacios vectoriales sobre un campo F. Linealidad de una función 1. Varias maneras de escribir la propiedad

Más detalles

Clase de Álgebra Lineal

Clase de Álgebra Lineal Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y solución. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010.

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010. Algebra Lineal * José de Jesús Ángel Ángel jjaa@mathcommx Working draft: México, DF, a 17 de noviembre de 2010 Un resumen de los principales temas tratados en un curso de Álgebra Lineal Contenido 1 Sistemas

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1 Bases y dimensión Problemas teóricos Bases de un espacio vectorial En todos los problemas se supone que V es un espacio vectorial sobre un campo F. Definición de base. Sean b 1,..., b n V. Se dice que

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn

A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn Máster en Materiales y Sistemas Sensores para Tecnologías Medioambientales Erasmus Mundus NOTAS DE CÁLCULO NUMÉRICO Damián Ginestar Peiró ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA

Más detalles

Lección 8. Matrices y Sistemas de Ecuaciones Lineales

Lección 8. Matrices y Sistemas de Ecuaciones Lineales Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

ESPACIOS Y SUBESPACIOS VECTORIALES

ESPACIOS Y SUBESPACIOS VECTORIALES ESPACIOS Y SUBESPACIOS VECTORIALES. ESPACIO VECTORIAL REAL Un espacio vectorial real V es un conjunto de objetos llamados vectores, junto con dos operaciones, llamadas suma y multiplicación por un escalar

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 37 CONTENIDO

Más detalles

MATRICES BINARIAS MATRIZ INVERSA

MATRICES BINARIAS MATRIZ INVERSA UNIVERSIDAD TECNICA LUIS VARGAS TORRES Esmeraldas - Ecuador MATRICES BINARIAS MATRIZ INVERSA Facultad de Ingenierías y Tecnologías Ing. Paúl Viscaino Valencia DOCENTE Una matriz binaria de m n, es una

Más detalles

Rango de una matriz. Objetivos. Definir el rango de renglones y el rango de columnas de una matriz. Mostrar que estos rangos coinciden.

Rango de una matriz. Objetivos. Definir el rango de renglones y el rango de columnas de una matriz. Mostrar que estos rangos coinciden. Rango de una matriz Objetivos. Definir el rango de renglones y el rango de columnas de una matriz. Mostrar que estos rangos coinciden. Requisitos. Rango de una lista de vectores, operaciones elementales

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Determinantes. Problemas teóricos. i=1. 2. De la fórmula general (1) deduzca la fórmula para el determinante de orden 3.

Determinantes. Problemas teóricos. i=1. 2. De la fórmula general (1) deduzca la fórmula para el determinante de orden 3. Determinantes Problemas teóricos Adradezco por varios problemas e ideas a los profesores de la ESFM Myriam Rosalía Maldonado Ramírez y Eliseo Sarmiento Rosales y al estudiante de servicio social Sadi Manuel

Más detalles

Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada

Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Tema 3: MATRICES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura: Matemáticas

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN BANCO DE PREGUNTAS CURSO: ALGEBRA LINEAL LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Mendoza Otoño

Más detalles

Semana 14 [1/28] Matrices. 22 de julio de Matrices

Semana 14 [1/28] Matrices. 22 de julio de Matrices Semana 14 [1/28] 22 de julio de 2007 Definiciones básicas Semana 14 [2/28] Definiciones básicas Matriz Una matriz A, de m filas y n columnas con coeficientes en el cuerpo à (en este apunte à será Ê ó C)

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar. UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.

Más detalles

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1 Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

TEMA 4. APLICACIONES LINEALES

TEMA 4. APLICACIONES LINEALES TEMA 4. APLICACIONES LINEALES 1.- Definición y propiedades. 2.- Aplicaciones lineales inyectivas y Suprayectivas. 3.- Núcleo, imagen, matriz asociada y rango de una aplicación lineal. 4.- Operaciones con

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma: TEMA Sistemas de ecuaciones SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades de la forma: a a an n b a

Más detalles

c-inversa o inversa generalizada de Rao

c-inversa o inversa generalizada de Rao c-inversa o inversa generalizada de Rao Definición.- Sea A m n. Se dice que una matriz A c de orden n m es una c-inversa o inversa generalizada en el sentido de Rao si y sólo si se verifica AA c A = A.

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

Tema 4: Estructura vectorial de R n.

Tema 4: Estructura vectorial de R n. TEORÍA DE ÁLGEBRA I: Tema 4. DIPLOMATURA DE ESTADÍSTICA 1 Tema 4: Estructura vectorial de R n. 1 Definiciones y propiedades Definición. 1.1 Denotaremos por R n al conjunto de todas las n-tuplas de números

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Ejemplo Solución de sistemas de ecuaciones lineales, usaremos este

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices Álgebra Lineal Tema 6. Transformaciones lineales y matrices Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S.

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

Matrices Inversas. Rango Matrices Elementales

Matrices Inversas. Rango Matrices Elementales Matrices Inversas. Rango Matrices Elementales Araceli Guzmán y Guillermo Garro Facultad de Ciencias UNAM Semestre 2018-1 doyouwantmektalwar.wordpress.com Matrices Matrices identidad La matriz identidad

Más detalles

Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B =

Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B = Definición: A una ordenación o arreglo rectangular de ciertos objetos se define como matriz (en este curso nos interesa que los objetos de la matriz sean numeros reales. Observación: Es usual designar

Más detalles

Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado

Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado c Jana Rodriguez Hertz p. /2 Independencia lineal Si el sistema x A + x 2 A 2 + + x n A n = O

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos: TEMA V 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES. Sea el siguiente sistema de ecuaciones lineales: Realmente quien determina la naturaleza y las soluciones del sistema, no son las incógnitas: x, y,

Más detalles

Ba s e, d i M e n s i ó n y Mat r i z

Ba s e, d i M e n s i ó n y Mat r i z Unidad 4 Ba s e, d i M e n s i ó n y Mat r i z de transición Objetivos: Al inalizar la unidad, el alumno: Conocerá la deinición de base de un espacio vectorial Identiicará bases canónicas para algunos

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación

Más detalles

BLOQUE 2. ÁLGEBRA LINEAL. MATRICES Y SISTEMAS DE ECUACIONES LINEALES (*)

BLOQUE 2. ÁLGEBRA LINEAL. MATRICES Y SISTEMAS DE ECUACIONES LINEALES (*) BLOQUE 2. ÁLGEBRA LINEAL. MATRICES Y SISTEMAS DE ECUACIONES LINEALES (*) Matrices. Determinantes. Rango. Sistemas de ecuaciones lineales. El Álgebra Lineal es una parte de la Matemática de frecuente aplicación

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

Aplicaciones lineales.

Aplicaciones lineales. Tema 4 Aplicaciones lineales. Definición 4. Sea f: V W una aplicación entre los espacios vectoriales reales V y W. Se dice que f es una aplicación lineal si: a f(u + v = f(u + f(v; u, v V, b f(ku = kf(u;

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o DETERMINANTES A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o Una tabla ordenada n ð n de escalares situada entre dos líneas

Más detalles

TEST DE DETERMINANTES

TEST DE DETERMINANTES Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

3. que satisfacen los axiomas anteriores.

3. que satisfacen los axiomas anteriores. UVG-MM2002: Álgebra Lineal 1 Instructor: Héctor Villafuerte Espacios Vectoriales 26 de Enero, 2010 1 Espacios Vectoriales Denición 1 (Espacio Vectorial). Un espacio vectorial V es un conjunto de objetos

Más detalles

GF = I V. G(v ) = v 1

GF = I V. G(v ) = v 1 7- Inversas a Izquierda y Derecha Sea F : V V una transformación lineal. G : V V lineal se denomina inversa a izquierda de F si GF = I V donde I V : V V denota el operador identidad en V. En tal caso F

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

Determinación Numérica de Eigenvalores y Eigenvectores.

Determinación Numérica de Eigenvalores y Eigenvectores. Determinación Numérica de Eigenvalores y Eigenvectores José María Rico Martínez Departamento de Ingeniería Mecánica Universidad de Guanajuato, F I M E E Calle Tampico No 912, Col Bellavista CP 3673, Salamanca,

Más detalles

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Métodos Iterativos Introducción Definición Métodos Iterativos Método de Jacobi Convergencia Método de Gauss

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

Capítulo 1: Diagonalización de matrices

Capítulo 1: Diagonalización de matrices Capítulo : Diagonalización de matrices Matrices y determinantes Definición Una matriz es un arreglo rectangular de números reales a a a m a A a a m a n a n a nm La matriz es de orden n m si consta de n

Más detalles

Tema 1: Matrices. October 13, 2016

Tema 1: Matrices. October 13, 2016 Tema 1: Matrices October 13, 2016 1 Matrices Las matrices se usan en muchos ámbitos de las ciencias: sociología, economía, hojas de cálculo, matemáticas, física,... Se inició su estudio en el siglo XIX

Más detalles

Resumen 2: Espacios vectoriales

Resumen 2: Espacios vectoriales Resumen 2: Espacios vectoriales 1 Definición y ejemplos Un espacio vectorial V sobre K, un cuerpo, está formado por elementos denominados vectores, los cuales pueden sumarse internamente y también multiplicarse

Más detalles

2. Álgebra matricial. Inversa de una matriz O B 1 O B 1. Depto. de Álgebra, curso

2. Álgebra matricial. Inversa de una matriz O B 1 O B 1. Depto. de Álgebra, curso Depto de Álgebra, curso 2017-2018 2 Álgebra matricial Inversa de una matriz Ejercicio 21 Calcule la matriz inversa de cada una de las matrices siguientes: a 2 1 1 3 2 1 h e, b 2 1 1 5 2 3 2 0 1 1 2 1 1

Más detalles

Propiedades de los Determinantes

Propiedades de los Determinantes Propiedades de los Determinantes Departamento de Matemáticas, CCIR/ITESM 26 de mayo de 2010 Índice 19.1. Propiedades............................................... 1 19.2. La adjunta de una matriz cuadrada..................................

Más detalles

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Matrices y Sistemas Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles