Guía ejercicios resueltos Sumatoria y Binomio de Newton

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía ejercicios resueltos Sumatoria y Binomio de Newton"

Transcripción

1 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d)

2 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile e) f) g) h) Ls demás se resuelve de l mism form.

3 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Solució: ) b) Como es u sumtori telescópic se slv el primero y el último. c) L sumtori geométric deberí comezr desde cero, pues coocemos l siguiete formul.

4 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Pr empezr desde cero bst restrle uo los límites de l sumtori y l vez sumr uo e l vrible detro de l sumtori. Solució: De est secció solo relizre el primero, dd l simplicidd de los ejercicios. Ddo los vlores del eucido pr. Solució: )

5 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile b) c) d)

6 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile e) L sumtori geométric deberí comezr desde cero, pues coocemos l siguiete formul. Pr empezr desde cero bst restrle uo los límites de l sumtori y l vez sumr uo e l vrible detro de l sumtori. f) g) L sumtori geométric deberí comezr desde cero, pues coocemos l siguiete formul. Pr empezr desde cero bst restrle uo los límites de l sumtori y l vez sumr uo e l vrible detro de l sumtori.

7 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile h) i) L sumtori geométric deberí comezr desde cero, pues coocemos l siguiete formul. Pr empezr desde cero bst restrle uo los límites de l sumtori y l vez sumr uo e l vrible detro de l sumtori. j) ) J Pr l sumtori que est más l derech el elevdo l i, es idepediete de j.

8 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Solució: Solució: ) Ls progresioes ritmétics so de l siguiete form: ( s ) ( s ) ( s ) K ( s ) s s s ( s s) ( *) ( s ) ( s ) ( s ) K ( s ) ( s i) i ( ) ( s i) i ( )

9 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile ) Ls progresioes ritmétics so de l siguiete form: ( s ) ( s ) ( s ) K ( s ) s s i ( s i) Clculemos l sumtori: i ( s i) s s s ( s ) ( ) Ahor, sumemos ls dos ecucioes del eucido. s s s 8 Reemplzdo, ( 8 ) 8) Ls progresioes ritmétics so de l siguiete form: ( s ) ( s ) ( s ) K ( s ) i i ( s i) ( s i) Clculemos l sumtori: i ( s i) s s ( )

10 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile ( s i) ( s i) ( s i) i i i i ( s i) ( ) s s Tomdo ls dos ecucioes; s () s () *() -() ( *) s, ) Ls progresioes ritmétics so de l siguiete form: ( s ) ( s ) ( s ) K ( s ) i i ( s i) ( s i) Clculemos l sumtori: i ( s i) s s 8 ( ) ( s i) ( s i) ( s i) i i i ( ) s s Tomdo ls dos ecucioes; s 8 () s ()

11 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile *() *() ( 8* *) * * s ) Ls progresioes geométrics so de l siguiete form: i r ( r) ( r ) K ( r ) r r r Resolviedo: r ( r ) r r r i r i i i i r Solució: Cosidere que, Pr r<.

12 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Ahor, debemos clculr: Solució: ) Ls progresioes geométrics so de l siguiete form: i r ( r) ( r ) K ( r ) r r r Resolviedo: r ( r ) r r 8 r r i r El décimo termio es igul r *

13 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile i r i i i ( ) Solució: Usdo que, Simplificr y clculr. Resolveremos los más difíciles, pues e los demás se puede utilizr l clculdor fcilmete. Pero sbemos que, Ahor, restemos l ultim ecució los termios que o est e l primer sumtori.

14 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Resover (ultimo), Si cosidermos, y b L uic difereci co uestr primer ecució, es que u prte desde y l otr desde cero. Cosideremos l ultim ecució y sepremos el primer termio. Solució: )

15 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile b) c) d) Solució: ) b)

16 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile c) Solució: Usdo que,

17 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile ) b) c) d)

18 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Solució: ) Como os pide ecotrr el coeficiete que compñ l, bst igulr el epoete del. Etoces, pr ecotrremos el coeficiete que compñ.

19 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile b) Como os pide ecotrr el coeficiete que compñ l, bst igulr el epoete de. Etoces, pr ecotrremos el coeficiete que compñ. * c) Es álogo los dos teriores. d) r r r r r r r Como os pide ecotrr el coeficiete que compñ l r, bst igulr el epoete de r.

20 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile r r Etoces, pr r ecotrremos el coeficiete que compñ r. r r r r r r r. Ecuetre los térmios cetrles e el desrrollo de ) Como os pide ecotrr el termio cetrl del desrrollo del biomio, bst tomr el, pues l sumtori v desde siedo el termio cetrl el. Etoces, el térmio cetrl es igul : * ( 8) ( 8) b)

21 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Como os pide ecotrr el termio cetrl del desrrollo del biomio, bst tomr el y el, pues l sumtori v desde eistiedo dos térmios cetrles, debido que so térmios los del desrrollo. Etoces, el térmio cetrl es igul : c) b, co b < < b b b b Como os pide ecotrr el termio cetrl del desrrollo del biomio b, bst tomr el, pues l sumtori v desde siedo el termio cetrl el. Etoces, el térmio cetrl es igul : * * mi o Ter

22 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile mi b b o Ter. Ecotrr el térmio idepediete de e el desrrollo. ) 8 8 Como os pide ecotrr el termio idepediete de del biomio, bst igulr cero el epoete de 8, pues el termio idepediete de est elevdo l cero. 8 Etoces, el térmio idepediete es: * 8 Termio(idepe)

23 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile ) Como os pide ecotrr el termio idepediete de del biomio, bst igulr cero el epoete de, pues el termio idepediete de est elevdo l cero. Etoces, el térmio idepediete es: Termio(idepe). Clculr el vlor umérico del térmio idepediete de. Solució:

24 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Como os pide ecotrr el termio idepediete de del biomio, bst igulr cero el epoete de y el de, pues por cd sumtori podrí eistir u termio idepediete de. Pr l primer sumtori: Como el o es u úmero etero positivo, implic que ese térmio o eiste. Pr l segud sumtori: Etoces, el térmio idepediete es: Termio(idepe) Es decir, l primer sumtori o port d.. Clculr el coeficiete de e el desrrollo de :

25 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Como os pide ecotrr el coeficiete de del biomio 8, bst igulr - el epoete de 8, lo que permitirá coocer el ecesrio pr ecotrr el coeficiete 8 Etoces, el coeficiete de mi * 8 o Ter. Determir el vlor de pr los coeficietes de y e el desrrollo de: se igules. Solució: Teemos cutro sumtori que os portr coeficietes pr y. - Como os pide ecotrr el coeficiete de del biomio, bst igulr el epoete de,, y, lo que permitirá coocer el ecesrio pr ecotrr el coeficiete de cd sumri: Primer sumtori:

26 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Segud sumri Tercer sumri Curt sumri No port d, debido que el myor vlor que puede tomr es. 8 - Como os pide ecotrr el coeficiete de del biomio, bst igulr el epoete de,, y, lo que permitirá coocer el ecesrio pr ecotrr el coeficiete de cd sumri: Primer sumtori:

27 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Segud sumri Tercer sumri No port d, debido que el myor vlor que tom es. Curt sumri No port d, debido que el myor vlor que tom es. Ahor, iguldo el. 8 ( 8 ) Es decir, pr los coeficietes de 8 y so igules.

28 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile. Hllr el coeficiete de e el desrrollo de: ( ) Desrrollo: ( ( ) ) ( ) ( ( ) ) ( ) ( ( ) ) i ( ( ) ) i i i i i Pr l sumtori que depede de i, los térmios que depede de so costtes. ( ( ) ) i i i Como os pide ecotrr el coeficiete de igulr el epoete de puede tomr e i. i Co ls siguietes restriccioes, Ahor, i i i Debido que i i Debido que i i Debido que i i Este cso cumple co i i Debido que i Luego, l úic solució es co i del poliomio ( ), bst, de es mer cooceremos los posibles vlores que

29 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile coef coef. i) Desrrollo: ii) Desrrollo: iii) Desrrollo:

30 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile! (! ) ( ) ( ) (! ) ( ) (! ) ( )!!!! (! ) ( ( ) ) (! ) ( ( ) )!! (! ) ( ( ) )! ( ) K iv) 8 ( )( ) Desrrollo: 8 Multiplicremos por, pr reorder l combitori.

31 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile !!!! 8!!! 8!!! 8! 8! 8 8 K Ahor, sumemos cero detro del prétesis. K 8 K [ ]

32 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile. Determie: i) e Desrrollo: Prtmos co lgo coocido, Sumemos tod l ecució. Por eucido,

33 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile ii) t e y t y t y t t y y iii) t e t t t t

34 Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile iv) t e ( y) ( y) ( y) t t t ( y) ( y) y t

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Guí ejerccos resueltos Sumtor y Bomo de Newto Solucó: ) Como o depede de j, es costte l sumtor. b) c) d) Aulr: Igco Domgo Trujllo Slv Uversdd de Chle e) f)

Más detalles

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2.

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2. Biomio de Newto Teorem del biomio de Newto Teorem: Se, b dos úmeros reles o ulos, y se N u úmero turl. Etoces: b b b b b b L expresió l derech se deomi el desrrollo biomil de b. Observmos que este desrrollo

Más detalles

PAIEP. Sumas de Riemann

PAIEP. Sumas de Riemann Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1 E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de

Más detalles

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES. PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

Matemáticas 1 EJERCICIOS RESUELTOS:

Matemáticas 1 EJERCICIOS RESUELTOS: Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA Olimpid Costrricese de Mtemátics II Elimitori 011 Curso preprtorio Nivel B Elbordo por: Christopher Trejos Cstillo ÁLGEBRA Iicimos demostrdo dos resultdos que puede ser importtes pr resolver problems olímpicos.

Más detalles

( ) (término. a n. 1,..., es una: Sesión 1. Unidad I Progresiones y series. A. Sucesiones y series. B. Progresión Aritmética.

( ) (término. a n. 1,..., es una: Sesión 1. Unidad I Progresiones y series. A. Sucesiones y series. B. Progresión Aritmética. esió Uidd I Progresioes y series. A. ucesioes y series..- Los primeros 4 térmios de l sucesió = y = + (térmio recurrete) so: A),,, B),,, C),,, D),,, E),,,.- Escribe los cutro primeros térmios de l sucesió

Más detalles

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n . SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos

Más detalles

Tema 3: Progresiones.

Tema 3: Progresiones. Tem : Progresioes. Ejercicio. Los dos primeros térmios de u progresió geométric so 50 y 00. Clculr r, 6 y. Solució: 00 r 00 50 r r, 50 50, 00, 60, 4 4, 58, 5 4 ; 6, 08 6 TÉRMINO GENERAL: 50, - Ahor lo

Más detalles

Aproximación al área bajo una curva.

Aproximación al área bajo una curva. Aproimció l áre jo u curv. Por: Miguel Solís Esquic Profesor de tiempo completo Uiversidd Autóom de Cips Clculr cd u de ls áres de los rectágulos que lle l regió cotd pr lczr el vlor del áre ecesrimete

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis se escrie

Más detalles

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis

Más detalles

Ecuaciones de recurrencia

Ecuaciones de recurrencia Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,

Más detalles

el blog de mate de aida CSI: sistemas de ecuaciones. pág

el blog de mate de aida CSI: sistemas de ecuaciones. pág el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

1. Discutir según los valores del parámetro k el sistema

1. Discutir según los valores del parámetro k el sistema . Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

Unidad 7: Sucesiones. Solución a los ejercicios

Unidad 7: Sucesiones. Solución a los ejercicios Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio

Más detalles

PROBLEMAS Y EJERCICIOS RESUELTOS

PROBLEMAS Y EJERCICIOS RESUELTOS PROGRESIONES 3º ESO PÁGINA EJERCICIOS RESUELTOS DE PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS UN POCO DE HISTORIA: UN NIÑO LLAMADO GAUSS Hce poco más de dos siglos, u mestro lemá que querí pz y trquilidd e

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

1.1 Secuencia de las operaciones

1.1 Secuencia de las operaciones 1 Uiversidd Ctólic Lo Ágeles 1. FUNDAMENTOS MATEMATICOS BASICOS 1.1 Secueci de ls opercioes Ls opercioes mtemátics tiee u orde de ejecució, de mer que es ecesrio teer presete l secueci lógic de ls opercioes,

Más detalles

SUCESIONES DE NÚMEROS REALES

SUCESIONES DE NÚMEROS REALES SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N

Más detalles

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014)

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014) NOMBRE DEL ESTUDIANTE:: RAÍCES Y SUS PROPIEDADES Guí pr el predizje (Presetr el dí mrtes 9 de ril 0) CURSO: RADICALES Se llm ríz -ésim de u úmero, se escrie, u úmero que elevdo de. 9, porque 9 7, porque.0,

Más detalles

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,

Más detalles

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l

Más detalles

Radicación en R - Potencia de exponente racional Matemática

Radicación en R - Potencia de exponente racional Matemática Rdiccio e R Poteci de eoete rciol Mtemátic º Año Cód. 0- P r o f. V e r ó i c F i l o t t i P r o f. M r í d e l L u j á M r t í e z C o r r e c c i ó : P r o f. S i l v i A m i c o z z i Dto. de M t emátic

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

APUNTE: Introducción a las Sucesiones y Series Numéricas

APUNTE: Introducción a las Sucesiones y Series Numéricas APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do

Más detalles

Polinomios de Taylor

Polinomios de Taylor Poliomios de Tylor Itroducció Los poliomios so de ls ucioes más bues que hemos usdo lo lrgo de uestros cursos de álisis. Este cliictivo reside e el hecho de que so ucioes cotius co iiits derivds cotius;

Más detalles

1. Determinar razonadamente si el número λ 3 2 n

1. Determinar razonadamente si el número λ 3 2 n SOLUCIONES DE LA 8ª OME Determir rzodmete si el úmero λ es irrciol r todo etero o egtivo SOLUCIÓN Suogmos que es r Etoces es múltilo de y es múltilo de ero o de co lo que o uede ser u cudrdo erfecto Suogmos

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

Potenciación en R 2º Año. Matemática

Potenciación en R 2º Año. Matemática Potecició e R º Año Mtemátic Cód. 0-7 P r o f. M r í d e l L u j á M r t í e z P r o f. V e r ó i c F i l o t t i P r o f. J u C r l o s B u e Dpto. de Mtemátic Poteci de epoete etero. POTENCIACIÓN EN

Más detalles

TEMA 2: EXPRESIONES ALGEBRAICAS

TEMA 2: EXPRESIONES ALGEBRAICAS Aloso Ferádez Gliá Tem : Epresioes lgerics - - TEMA : EXRESIONES ALGEBRAIAS U poliomio es u sum idicd de moomios de distito grdo. Los poliomios se omr medite u letr múscul seguid de l vrile escrit etre

Más detalles

GUÍA RAICES 2º MEDIO. Solo se pueden sumar y restar raíces del mismo índice y mismo radicando:

GUÍA RAICES 2º MEDIO. Solo se pueden sumar y restar raíces del mismo índice y mismo radicando: Liceo Polivlete Arturo Alessdri plm Deprtmeto de Mtemátic Profesor Jet Espios Nivel º medio GUÍA RAICES º MEDIO Objetivo: Utilizr propieddes de ríces pr l multiplicció, sum y rest. Recoocer y plicr rciolizció.

Más detalles

Qué valores de x satisfacen las siguientes ecuaciones?

Qué valores de x satisfacen las siguientes ecuaciones? Rdiccio e R Poteci de eoete rciol Mtemátic º Año Cód. 0- P r o f. V e r ó i c F i l o t t i P r o f. M r í d e l L u j á M r t í e z C o r r e c c i ó : P r o f. S i l v i A m i c o z z i Dto. de Mtemátic

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

Aprendizajes esperados:

Aprendizajes esperados: Deprtmeto de Mtemátics Profesor: Guillermo Corbcho C. cüâxut wx äxä wx `tàxåöà vtá Octvos Básicos NOMBRES: PUNTAJE / 30 NOTA: Apredizjes esperdos: Aplicr regl de los sigos e l multiplicció y divisió de

Más detalles

2. CONJUNTOS NUMÉRICOS

2. CONJUNTOS NUMÉRICOS 1. TEORÍA DE CONJUNTOS CONCEPTO DE PERTENENCIA: " " Se el cojuto A {, b} A b A c A CONCEPTO DE SUBCONJUNTO: " " A B [ x A x B, x ] A, A A A, A CONJUNTOS ESPECIALES Cojuto Vcío: { } { } {0} Cojuto Uiverso:

Más detalles

SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA

SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA AuldeMte.com SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA Breve reseñ históric: Los pitgóricos llmb trigulres los úmeros 3, 6, 0,,... e cosoci co l costrucció que prece e l figur. Se trt de u primer

Más detalles

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x) FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Ls tutorís correspode los espcios cdémicos e los que el estudite del Politécico Los Alpes puede profudizr y reforzr sus coocimietos e diferetes tems de cr l eme de dmisió de l

Más detalles

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x)

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x) Pági del Colegio de Mtemátics de l ENP-UNAM Opercioes co frccioes lgebrics rdicles Autor: Dr. José Muel Becerr Espios OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI VI. TEOREMAS DEL RESIDUO

Más detalles

Progresiones. Antes de empezar. Para empezar, te propongo un juego sencillo, se trata de averiguar la ficha de dominó que falta en cada caso.

Progresiones. Antes de empezar. Para empezar, te propongo un juego sencillo, se trata de averiguar la ficha de dominó que falta en cada caso. Progresioes Ates de empezr? Pr empezr, te propogo u juego secillo, se trt de verigur l fich de domió que flt e cd cso. MATEMÁTICAS 3º ESO 73 Progresioes. Sucesioes Defiició. U sucesió es u cojuto ordedo

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

Cálculo del ph de disoluciones de ácidos

Cálculo del ph de disoluciones de ácidos álculo del ph de disolucioes de ácidos Si se disuelve e gu u ácido H, de cocetrció y costte : H H H O H OH Pr clculr ls cocetrcioes de ls especies e el equilibrio, pltemos:.m. [.. [ [OH L expresió de l

Más detalles

Introducción a las SUCESIONES y a las SERIES NUMERICAS

Introducción a las SUCESIONES y a las SERIES NUMERICAS Itroducció ls SUCESIONES y ls SERIES NUMERICAS UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Ecoomí Profesor: Prof. Mbel Chresti Semestre: ero Año: 0 Sucesioes Numérics Defiició U

Más detalles

3) El espacio fuera de la esfera de radio b. Al potencial en toda esa región lo denotaremos como V 3 (r; ) y lo escribiremos

3) El espacio fuera de la esfera de radio b. Al potencial en toda esa región lo denotaremos como V 3 (r; ) y lo escribiremos . U esfer coductor de rdio se mtiee potecil V. Está roded por u cscró esférico cocétrico, de rdio, que tiee u desidd super cil de crg () = cos, dode es u costte co ls uiddes propids es l coorded polr..

Más detalles

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8 º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA.- NÚMEROS- PROFESOR: RAFAEL NÚÑEZ NOGALES.- FRACCIONES Y DECIMALES Opercioes comids co frccioes Pr relizr vris opercioes se reliz primero los prétesis y se

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes

Más detalles

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes _ Defiició: Epoetes Pr u úero rel u etero positivo, veces se le deoi l se l poteci o epoete Ejeplos:..... Not: oserv que del segudo es. o so igules, el resultdo del priero es Lees de epoetes: Pr cd u de

Más detalles

3 Sucesiones. y progresiones. 1. Sucesiones. Sigue las series siguientes: a) b) Solución: a) b)

3 Sucesiones. y progresiones. 1. Sucesiones. Sigue las series siguientes: a) b) Solución: a) b) Sucesioes y progresioes. Sucesioes Sigue ls series siguietes: ) b) 6 9 P I E N S A Y C A L C U L A ) b) Hll los diez primeros térmios de ls siguietes sucesioes: ), 8,, 8 b) 8,, 0, c),,, d) /, /, /6, /8

Más detalles

Base teórica sobre serie de potencias

Base teórica sobre serie de potencias Código del Curso- Ecucioes Difereciles Act 1: Lecció Evlutiv Uidd Bse teóric sobre serie de potecis Recordemos que u sucesió S coverge u úmero p o que es covergete co el limite p, si pr cd úmero positivo

Más detalles

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4.

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4. Amplició potecis y rdicles º ESO Curso 06_07. ESTIMACIÓN DE RADICALES Llmremos estimr u ríz dr u proimció de ell. or ejemplo, 78. Ríz de 78 proimdmete es.. RADICALES EN FORMA DE OTENCIA El vlor de u ríz

Más detalles

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES VALORES ABSOLUTOS Defiició: si 0 =, si < 0 = Por lo tto 0 R Teorem 2 = 2 Demostrció: si 0 2 = 2, si < 0 2 = ( ) 2 = 2 PROPIEDADES. =. = + + (desiguldd trigulr) = Teorem x x Demostrció: x x 2 2 x 2 2 x

Más detalles

MATEMÁTICA FINANCIERA. Préstamos Comerciales

MATEMÁTICA FINANCIERA. Préstamos Comerciales Préstmos MATEMÁTICA FINANCIERA PRÉSTAMOS Luis Alclá UNSL Segudo Cutrimeste 2016 Defiició Se llm préstmo l operció ficier cosistete e l etreg de u ctidd dd de diero (C 0 ), el pricipl (o deud), por prte

Más detalles

Elaboración: M. A. E. Roberto Mercado Dorantes e Ing. Juan M. Gómez Tagle Fdez. de Córdova.

Elaboración: M. A. E. Roberto Mercado Dorantes e Ing. Juan M. Gómez Tagle Fdez. de Córdova. PLANTEL IGNACIO RAMÌREZ CALZADA Progrm Istituciol de Tutorí Acdémic Escuel Preprtori de l Uiversidd Autóom del Estdo de Méico ACTIVIDAD. GUÌA DE ÀLGEBRA PRIMERA FASE Elorció: M. A. E. Roerto Mercdo Dortes

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se llama valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la variable

Más detalles

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició es u operció

Más detalles

EL ÁLGEBRA LINEAL Y EL PROBLEMA DE MÁXIMOS Y MÍNIMOS. Santiago Relos Paco Universidad Privada Boliviana

EL ÁLGEBRA LINEAL Y EL PROBLEMA DE MÁXIMOS Y MÍNIMOS. Santiago Relos Paco Universidad Privada Boliviana INVESTIGCIÓN & DESRROLLO No. Vol. : 7 79 ISSN -6 RESUMEN EL ÁLGEBR LINEL Y EL PROBLEM DE MÁXIMOS Y MÍNIMOS Stigo Relos Pco Uiversidd Privd Bolivi srelos@upb.edu Recibido el 5 juio ceptdo pr publicció el

Más detalles

3.- Solución de sistemas de ecuaciones lineales

3.- Solución de sistemas de ecuaciones lineales .- Solució de sistes de ecucioes lieles U siste de ecucioes lieles e icógits tiee l for geerl: + + + +... + +... + +... + (.) L solució de estos sistes de ecucioes lieles ls podeos ctlogr segú l tl. Siste

Más detalles

Raíces Reales y Complejas

Raíces Reales y Complejas Ríces Reles y Complejs Rmó Espioz Armet AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Durte el siglo XVIII, Euler, d Alembert y Lgrge probro, idepedietemete, que todo poliomio de grdo 1 teí u ríz sobre el cmpo

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES

TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES SUCESIÓN NUMÉRICA: es u fució cuyo domiio es el cojuto de los úmeros turles (o u subcojuto de él) y l imge está icluid e el cojuto de los Reles ( ) SUCESIÓN ARITMÉTICA:

Más detalles

Capítulo 7. Series Numéricas y Series de Potencias.

Capítulo 7. Series Numéricas y Series de Potencias. Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El

Más detalles

SOLUCIONES BLOQUE I:NÚMEROS Ejercicio nº1 Reduce a común denominador y ordena de forma creciente las siguientes fracciones:

SOLUCIONES BLOQUE I:NÚMEROS Ejercicio nº1 Reduce a común denominador y ordena de forma creciente las siguientes fracciones: SOLUCIONES BLOQUE INÚMEROS Ejercicio º Reduce comú deomidor y orde de form creciete ls siguietes frccioes ), y, y 0 0 9 0 9 0 ), y,, b ), 0 y 0,, 0 0 0 0 0 0 0 0 Ejercicio º Iterpret ls siguietes epresioes

Más detalles

P O L I T E C N I C O Potencia de exponente entero Potencia de exponente natural. CAPÍTULO 4: POTENCIACIÓN EN R

P O L I T E C N I C O Potencia de exponente entero Potencia de exponente natural. CAPÍTULO 4: POTENCIACIÓN EN R Potecició e R Fctoreo Mtemátic º Año Cód. 0- P r o f. M r í d e l L u j á M r t í e z P r o f. V e r ó i c F i l o t t i P r o f. J u C r l o s B u e Dpto. de Mtemátic CAPÍTULO : POTENCIACIÓN EN R. Poteci

Más detalles

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS. Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos. Tem 1: Números Reles 1.0 Símbolos Mtemáticos Distito Aproximdo Meor o igul Myor o igul Uió Itersecció Cojuto vcío Existe No existe Perteece No perteece Subcojuto Implic Equivlete 1.1 Cojuto de los úmeros

Más detalles

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Teorí ejercicios de teátics II. Álger Sistes de ecucioes lieles - -. SISTES DE ECUCIONES INEES. DEFINICION U ecució liel es u ecució de l for e l que, so los coeficietes de ls icógits, es el tério idepediete

Más detalles

. De manera sucesiva, si x se multiplica por si misma n veces, se

. De manera sucesiva, si x se multiplica por si misma n veces, se Fcultd de Cotdurí Adiistrció UNAM Lees de eoetes ritos Autor: Dr José Muel Becerr Esios MATEMÁTICAS BÁSICAS LEYES DE EXPONENTES Y LOGARITMOS LEYES DE EXPONENTES Se u úero rel Si se ultilic or sí iso se

Más detalles

CAPITULO 1. Teorema del Binomio

CAPITULO 1. Teorema del Binomio CAPITULO 1 Teorema del Biomio Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes que ivolucre u úmero fiito

Más detalles

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander Rudimetos 5: Teorema del Biomio Profesor Ricardo Satader Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes

Más detalles

EJERCICIOS DE RAÍCES. a b = RECORDAR: Definición de raíz n-ésima: Equivalencia con una potencia de exponente fraccionario:

EJERCICIOS DE RAÍCES. a b = RECORDAR: Definición de raíz n-ésima: Equivalencia con una potencia de exponente fraccionario: EJERCICIOS DE RAÍCES RECORDAR: Defiició de ríz ésim: x x Equivleci co u poteci de expoete frcciorio: m x Simplificció de rdicles/ídice comú: Propieddes de ls ríces: x m/ b b b p m p b m m ( ) m Itroducir/extrer

Más detalles

CLASIFICACIÓN DE MÉTODOS. Teorema 1: Dada A, matriz cuadrada de orden n, los enunciados siguientes son equivalentes:

CLASIFICACIÓN DE MÉTODOS. Teorema 1: Dada A, matriz cuadrada de orden n, los enunciados siguientes son equivalentes: SOLUCION DE SISTEMAS DE ECUACIONES LINEALES Los sistems de ecucioes represet probems físicos que ivoucr itercció de vris propieddes Ls vribes e e sistem represet s propieddes que se estudi y s ecucioes

Más detalles

TEMA 2: SISTEMAS DE ECUACIONES LINEALES

TEMA 2: SISTEMAS DE ECUACIONES LINEALES Profesor: Rf Gozález Jiméez Istituto St Eulli TEM 2: SISTEMS DE ECUCIONES LINELES ÍNDICE 2..- Sistems de Ecucioes Lieles. Geerliddes. 2.2.- Sistems equivletes. 2.3.- Resolució de S.E.L. por mtriz ivers.

Más detalles

Tema IV. Sucesiones y Series

Tema IV. Sucesiones y Series 00 Tem IV. Sucesioes y Series Σ Gil Sdro Gómez Stos UASD 03/04/00 Tem IV. Sucesioes y Series Ídice Sucesió... 4 Límite de u sucesió... 4 Teorem 4.. Límite de u sucesió... 5 Teorem 4.. Leyes de límites

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

COL LEGI INTERNACIONAL SEK-CATALUNYA ÁMBITO CIENTIFICO TÉCNICO MATEMÁTICAS 3ESO 2015/2016 S E K - C A T A LUNYA SISTEMA EDUCATIU SEK.

COL LEGI INTERNACIONAL SEK-CATALUNYA ÁMBITO CIENTIFICO TÉCNICO MATEMÁTICAS 3ESO 2015/2016 S E K - C A T A LUNYA SISTEMA EDUCATIU SEK. MATEMÁTICAS ESO 0/06 S E K - C A T A LUNYA C OL LEGI INTERNACIONAL SISTEMA EDUCATIU SEK Aul INTEL LIGENT AUTOEVALUACIÓN DE SUCESIONES I Ámbito Cietífico Técico Curso: ESO Mteri: Mtemátics PAI Alumo MATEMÁTICAS

Más detalles

( 2) RECORDAR: = + = b. También es importante saber que: algo. 1. Calcular las siguientes potencias de exponente natural (sin usar calculadora):

( 2) RECORDAR: = + = b. También es importante saber que: algo. 1. Calcular las siguientes potencias de exponente natural (sin usar calculadora): POTENCIAS EJERCICIOS RECORDAR m m m ) b b) m m b m b b b Tmbié es importte sber que lgo bse egtiv ) pr ) bse egtiv ) impr ) pr impr Añde ests fórmuls l formulrio que relizrás lo lrgo del curso). Clculr

Más detalles

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración. Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El sistem de los úmeros reles es u cojuto o vcío deotdo por co dos opercioes

Más detalles

GUÍA DE TRABAJO Nº3 RAÍCES 2017 Nombre:. Fecha:..

GUÍA DE TRABAJO Nº3 RAÍCES 2017 Nombre:. Fecha:.. GUÍA DE TRABAJO Nº RAÍCES 017 Nomre:. Fech:.. Coteidos Ríz eésim e el cojuto de los úmeros reles. DEFINICIÓN: E geerl, si es u úmero turl myor que 1 y es u úmero rel, decimos que x x, etoces x es l ríz

Más detalles

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día viernes 24 de junio en hojas de carpeta)

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día viernes 24 de junio en hojas de carpeta) RAÍCES Y SUS PROPIEDADES Guí r el redizje (Presetr el dí vieres de juio e hojs de cret) NOMBRE DEL ESTUDIANTE: CURSO: RADICALES Se llm ríz -ésim de u úmero, y se escribe, u úmero b que elevdo de. 9 =,

Más detalles

1 Áreas de regiones planas.

1 Áreas de regiones planas. Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El sistem de los úmeros reles es u cojuto o vcío deotdo por R co dos opercioes

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El sistem de los úmeros reles es u cojuto o vcío deotdo por R co dos opercioes

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tem : Números reles. REALES se utiliz pr Medir mgitudes se obtiee Ctiddes todos so Números Errores viee fectds de errores Aproximcioes clses se represet Rect rel Aproximcioes decimles Redodeos Trucmieto

Más detalles

Repaso general de matemáticas básicas

Repaso general de matemáticas básicas Repso geerl de mtemátics básics Expoetes y rdicles Regl de l multiplicció: Cudo dos ctiddes co l mism bse se multiplic, su producto se obtiee sumdo lgebricmete los expoetes. m m Expoete egtivo U térmio

Más detalles

Prof. Dr. Paul Bustamante

Prof. Dr. Paul Bustamante Práctics de C++ Prctic Nº 4 Iformátic II Fudmetos de Progrmció Prof. Dr. Pul Bustmte Prctic Nº4 Progrmció e C++ Pág. ÍNDICE ÍNDICE.... Itroducció.... Ejercicio : Números cpicús....2 Ejercicio 2: Producto

Más detalles

Partícula en una caja de potencial unidimensional

Partícula en una caja de potencial unidimensional Prtícul e u cj de potecil uidimesiol V() V() V() V()0 0 E este cso se tiee u electró o u prtícul de ms m que se ecuetr e el eje pero restrigid moverse e el itervlo (0 ). Detro de ese itervlo l eergí potecil

Más detalles

Capítulo 3. Potencias de números enteros

Capítulo 3. Potencias de números enteros Cpítulo. Potecis de úmeros eteros U poteci es u epresió de l form, dode es l bse de l poteci y el epoete. Se lee: elevdo. U poteci es el producto de l bse por sí mism tts veces como idic el epoete. se

Más detalles