Probabilidad y Estadística, EIC 311

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Probabilidad y Estadística, EIC 311"

Transcripción

1 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre / 105

2 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105

3 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. Definición 1.1 Sea x 1, x 2,, x n las observaciones en una muestra de tamaño n. La media de la muestra es: x = n i=1 x i n = x 1 + x x n n 3 / 105

4 , mediana y moda para datos no Otra medida importante es la mediana de la muestra que resulta ser el valor tal que el 50 % de la muestra es menor o igual a este valor. 4 / 105

5 , mediana y moda para datos no Otra medida importante es la mediana de la muestra que resulta ser el valor tal que el 50 % de la muestra es menor o igual a este valor. Definición 1.2 Dado que las observaciones en una muestra son x 1, x 2,, x n ordenados en orden creciente, la mediana de la muestra es: m e = x n 2 + x n si n es par m e = x n+1 2 si n es impar 5 / 105

6 , mediana y moda para datos no Otra medida importante es la mediana de la muestra que resulta ser el valor tal que el 50 % de la muestra es menor o igual a este valor. Definición 1.2 Dado que las observaciones en una muestra son x 1, x 2,, x n ordenados en orden creciente, la mediana de la muestra es: m e = x n 2 + x n si n es par m e = x n+1 2 si n es impar A diferencia de la media, la mediana no se ve afectada por valores extremos. 6 / 105

7 , mediana y moda para datos no Definición 1.3 La moda de una muestra es el valor que aparece más veces en la muestra. Esta medida no se ve afectada por valores extremos, Puede haber más de una moda (multimodal; bimodal) o no haber moda. 7 / 105

8 Ej:, mediana y moda para datos no Ejemplo 1.1 Caso Impar: Sean las siguientes estaturas de 5 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; = Muestra ordenada: 1.62 ; 1.68 ; 1.72; 1.72 ; / 105

9 Ej:, mediana y moda para datos no Ejemplo 1.1 Caso Impar: Sean las siguientes estaturas de 5 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; = Muestra ordenada: 1.62 ; 1.68 ; 1.72; 1.72 ; 1.80 x = 1,71 9 / 105

10 Ej:, mediana y moda para datos no Ejemplo 1.1 Caso Impar: Sean las siguientes estaturas de 5 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; = Muestra ordenada: 1.62 ; 1.68 ; 1,72 ; 1.72 ; 1.80 x = 1,71 m e = 1,72 10 / 105

11 Ej:, mediana y moda para datos no Ejemplo 1.1 Caso Impar: Sean las siguientes estaturas de 5 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; = Muestra ordenada: 1.62 ; 1.68 ; 1,72 ; 1.72 ; 1.80 x = 1,71 m e = 1,72 m o = 1,72 11 / 105

12 Ej:, mediana y moda para datos no Ejemplo 1.1 Caso Impar: Sean las siguientes estaturas de 7 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; 1.60 ; 1.90 = Muestra ordenada: 1.60 ; 1.62 ; 1.68 ; 1,72 ; 1.72 ; 1.80 ; 1.90 x = 1,71 m e = 1,72 m o = 1,72 Agreguemos 2 estaturas. 12 / 105

13 Ej:, mediana y moda para datos no Ejemplo 1.1 Caso Impar: Sean las siguientes estaturas de 7 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; 1.60 ; 1.90 = Muestra ordenada: 1.60 ; 1.62 ; 1.68 ; 1,72 ; 1.72 ; 1.80 ; 1.90 x = 1,71 = x = 1,72 m e = 1,72 = m e = 1,72 m o = 1,72 = m e = 1,72 Agreguemos 2 estaturas. 13 / 105

14 Ej:, mediana y moda para datos no Ejemplo 1.2 Caso par: Sean las siguientes estaturas de 4 alumnos medidas en cm: 1,72 ; 1,68 ; 1,75 ; 1,80 = Muestra ordenada: 1,68 ; 1,72 ; 1,75; 1,80 14 / 105

15 Ej:, mediana y moda para datos no Ejemplo 1.2 Caso par: Sean las siguientes estaturas de 4 alumnos medidas en cm: 1,72 ; 1,68 ; 1,75 ; 1,80 = Muestra ordenada: 1,68 ; 1,72 ; 1,75; 1,80 x = 1,74 15 / 105

16 Ej:, mediana y moda para datos no Ejemplo 1.2 Caso par: Sean las siguientes estaturas de 4 alumnos medidas en cm: 1,72 ; 1,68 ; 1,75 ; 1,80 = Muestra ordenada: 1,68 ; 1, 72; 1, 75 ; 1,80 x = 1,74 m e = 1,72+1,75 2 = 1, / 105

17 Ej:, mediana y moda para datos no Ejemplo 1.2 Caso par: Sean las siguientes estaturas de 4 alumnos medidas en cm: 1,72 ; 1,68 ; 1,75 ; 1,80 = Muestra ordenada: 1,68 ; 1, 72; 1, 75 ; 1,80 x = 1,74 m e = 1,72+1,75 2 = 1,735 m o = NO HAY MODA 17 / 105

18 Ej:, mediana y moda para datos no, sensibilidad a datos extremos Ejemplo 1.3 Caso Impar: Sean las siguientes estaturas de 5 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; = Muestra ordenada: 1.62 ; 1.68 ; 1.72; 1.72 ; / 105

19 Ej:, mediana y moda para datos no, sensibilidad a datos extremos Ejemplo 1.3 Caso Impar: Sean las siguientes estaturas de 5 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; = Muestra ordenada: 1.62 ; 1.68 ; 1.72; 1.72 ; 1.80 x = 1,71 m e = 1,72 m o = 1,72 19 / 105

20 Ej:, mediana y moda para datos no, sensibilidad a datos extremos Ejemplo 1.3 Caso Impar: Sean las siguientes estaturas de 6 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; 2.00 = Muestra ordenada: 1.62 ; 1.68 ; 1.72; 1.72 ; 1.80 ; 2.00 x = 1,71 m e = 1,72 m o = 1,72 Agreguemos 1 estatura. 20 / 105

21 Ej:, mediana y moda para datos no, sensibilidad a datos extremos Ejemplo 1.3 Caso Impar: Sean las siguientes estaturas de 6 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; 2.00 = Muestra ordenada: 1.62 ; 1.68 ; 1.72; 1.72 ; 1.80 ; 2.00 x = 1,71 = x = 1,76 m e = 1,72 m o = 1,72 Agreguemos 1 estatura. 21 / 105

22 Ej:, mediana y moda para datos no, sensibilidad a datos extremos Ejemplo 1.3 Caso Impar: Sean las siguientes estaturas de 6 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; 2.00 = Muestra ordenada: 1.62 ; 1.68 ; 1.72; 1.72 ; 1.80 ; 2.00 x = 1,71 = x = 1,76 m e = 1,72 = m e = 1,72 m o = 1,72 Agreguemos 1 estatura. 22 / 105

23 Ej:, mediana y moda para datos no, sensibilidad a datos extremos Ejemplo 1.3 Caso Impar: Sean las siguientes estaturas de 6 alumnos medidas en cm: 1.62 ; 1.72 ; 1.68 ; 1.72 ; 1.80; 2.00 = Muestra ordenada: 1.62 ; 1.68 ; 1.72; 1.72 ; 1.80 ; 2.00 x = 1,71 = x = 1,76 m e = 1,72 = m e = 1,72 m o = 1,72 = m e = 1,72 Agreguemos 1 estatura. 23 / 105

24 , mediana y moda para datos Definición 1.4 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. Se denotan c 1,..., c k las k marcas de clases. La media de la muestra para estos datos es: x = K k=1 c k n k n donde k = 1,, K 24 / 105

25 , mediana y moda para datos na Definición 1.5 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. La mediana de la muestra para estos datos es: ( ) n/2 Nk 1 m e = L inf + a k donde n k 25 / 105

26 , mediana y moda para datos na Definición 1.5 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. La mediana de la muestra para estos datos es: ( ) n/2 Nk 1 m e = L inf + a k donde L inf : valor inferior del intervalo (clase) donde se encuentra la mediana n k 26 / 105

27 , mediana y moda para datos na Definición 1.5 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. La mediana de la muestra para estos datos es: ( ) n/2 Nk 1 m e = L inf + a k donde L inf : valor inferior del intervalo (clase) donde se encuentra la mediana a k : ancho del intervalo (clase) donde se encuentra la mediana n k 27 / 105

28 , mediana y moda para datos na Definición 1.5 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. La mediana de la muestra para estos datos es: ( ) n/2 Nk 1 m e = L inf + a k donde L inf : valor inferior del intervalo (clase) donde se encuentra la mediana a k : ancho del intervalo (clase) donde se encuentra la mediana N k 1 : frec. abs. acum. del intervalo anterior n k 28 / 105

29 , mediana y moda para datos na Definición 1.5 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. La mediana de la muestra para estos datos es: ( ) n/2 Nk 1 m e = L inf + a k donde L inf : valor inferior del intervalo (clase) donde se encuentra la mediana a k : ancho del intervalo (clase) donde se encuentra la mediana N k 1 : frec. abs. acum. del intervalo anterior n: número total de obs. n k 29 / 105

30 , mediana y moda para datos na Definición 1.5 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. La mediana de la muestra para estos datos es: ( ) n/2 Nk 1 m e = L inf + a k donde L inf : valor inferior del intervalo (clase) donde se encuentra la mediana a k : ancho del intervalo (clase) donde se encuentra la mediana N k 1 : frec. abs. acum. del intervalo anterior n: número total de obs. n k : frec. abs. del intervalo asociado al la mediana. n k 30 / 105

31 , mediana y moda para datos na Definición 1.6 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. La clase modal es la clase asociada a la mayor frecuencia absoluta. 31 / 105

32 , mediana y moda para datos Ejemplo: Temperatura clase c k n k f k N k F k [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) TOTAL 20 1 En este ejemplo tenemos 5 intervalos, k = / 105

33 , mediana y moda para datos Ejemplo: Temperatura clase c k n k f k N k F k [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) TOTAL 20 1 En este ejemplo tenemos 5 intervalos, k = 5. x = = 33 m e = Clase modal = 33 / 105

34 , mediana y moda para datos Ejemplo: Temperatura clase c k n k f k N k F k [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) TOTAL 20 1 En este ejemplo tenemos 5 intervalos, k = 5. x = = 33 m e = Clase modal = 34 / 105

35 , mediana y moda para datos Ejemplo: Temperatura clase c k n k f k N k F k [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) TOTAL 20 1 En este ejemplo tenemos 5 intervalos, k = 5. x = ( ) 20/2 9 m e = = 32 5 = 33 Clase modal = 35 / 105

36 , mediana y moda para datos Ejemplo: Temperatura clase c k n k f k N k F k [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) TOTAL 20 1 En este ejemplo tenemos 5 intervalos, k = 5. x = ( ) 20/2 9 m e = = 32 5 = 33 Clase modal = [20, 30[ 36 / 105

37 : cuartiles Estas medidas dividen los datos ordenados en una cierta cantidad de segmentos que concentran la misma cantidad de observaciones. 37 / 105

38 : cuartiles Estas medidas dividen los datos ordenados en una cierta cantidad de segmentos que concentran la misma cantidad de observaciones. Definición 1.7 Los cuartiles dividen la muestra ordenada en 4 segmentos con la misma cantidad de observaciones. Se tienen entonces tres cuartiles: Q 1, Q 2 y Q / 105

39 : cuartiles Estas medidas dividen los datos ordenados en una cierta cantidad de segmentos que concentran la misma cantidad de observaciones. Definición 1.7 Los cuartiles dividen la muestra ordenada en 4 segmentos con la misma cantidad de observaciones. Se tienen entonces tres cuartiles: Q 1, Q 2 y Q 3. El primer cuartil, Q 1, esta definido tal que 25 % (1/4) de los datos son a Q 1. El 2do cuartil, Q 2 es equivalente a la mediana = Q 2 = m e!!! 39 / 105

40 : cuartiles Estas medidas dividen los datos ordenados en una cierta cantidad de segmentos que concentran la misma cantidad de observaciones. Definición 1.7 Los cuartiles dividen la muestra ordenada en 4 segmentos con la misma cantidad de observaciones. Se tienen entonces tres cuartiles: Q 1, Q 2 y Q 3. El primer cuartil, Q 1, esta definido tal que 25 % (1/4) de los datos son a Q 1. El 2do cuartil, Q 2 es equivalente a la mediana = Q 2 = m e!!! El 3er cuartil, Q 3, esta definido tal que 75 % (3/4) de los datos son a Q / 105

41 para datos no : cuartiles El primer cuartil, Q 1, ocupa la n si los datos son pares o 4 n+1 si son impares = 25 % de los datos son a Q 4 1. El 2do cuartil, Q 2 es equivalente a la mediana = Q 2 = m e!!! 41 / 105

42 para datos no : cuartiles El primer cuartil, Q 1, ocupa la n si los datos son pares o 4 n+1 si son impares = 25 % de los datos son a Q 4 1. El 2do cuartil, Q 2 es equivalente a la mediana = Q 2 = m e!!! El 3er cuartil, Q 3, ocupa la 3 (n) 4 si los datos son pares o 3 (n+1) 4 si son impares = 75 % de los datos son a Q / 105

43 para datos : cuartiles Se calculan de la siguiente manera para j=1,2,3: ( ) j n N 4 k 1 Q j = L inf + a k n k L inf : valor inferior del intervalo asociado al cuartil j 43 / 105

44 para datos : cuartiles Se calculan de la siguiente manera para j=1,2,3: ( ) j n N 4 k 1 Q j = L inf + a k n k L inf : valor inferior del intervalo asociado al cuartil j a k : ancho del intervalo asociado al cuartil j. 44 / 105

45 para datos : cuartiles Se calculan de la siguiente manera para j=1,2,3: ( ) j n N 4 k 1 Q j = L inf + a k n k L inf : valor inferior del intervalo asociado al cuartil j a k : ancho del intervalo asociado al cuartil j. N k 1 : frec. abs. acum. del intervalo anterior 45 / 105

46 para datos : cuartiles Se calculan de la siguiente manera para j=1,2,3: ( ) j n N 4 k 1 Q j = L inf + a k n k L inf : valor inferior del intervalo asociado al cuartil j a k : ancho del intervalo asociado al cuartil j. N k 1 : frec. abs. acum. del intervalo anterior n k : frec. abs. del intervalo asociado al cuartil j. 46 / 105

47 para datos : cuartiles Se calculan de la siguiente manera para j=1,2,3: ( ) j n N 4 k 1 Q j = L inf + a k n k L inf : valor inferior del intervalo asociado al cuartil j a k : ancho del intervalo asociado al cuartil j. N k 1 : frec. abs. acum. del intervalo anterior n k : frec. abs. del intervalo asociado al cuartil j. n: número total de observaciones (tamaño de la muestra). 47 / 105

48 para datos : percentiles Definición 1.8 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. Los percentiles para estos datos se calculan de la siguiente forma: ( j n 100 p j = L inf + a k N ) k 1 donde j = 1,, 100 y n k 48 / 105

49 para datos : percentiles Definición 1.8 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. Los percentiles para estos datos se calculan de la siguiente forma: ( j n 100 p j = L inf + a k N ) k 1 donde j = 1,, 100 y n k L inf : valor inferior del intervalo asociado al percentil j 49 / 105

50 para datos : percentiles Definición 1.8 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. Los percentiles para estos datos se calculan de la siguiente forma: ( j n 100 p j = L inf + a k N ) k 1 donde j = 1,, 100 y n k L inf : valor inferior del intervalo asociado al percentil j a k : ancho del intervalo asociado al percentil j. 50 / 105

51 para datos : percentiles Definición 1.8 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. Los percentiles para estos datos se calculan de la siguiente forma: ( j n 100 p j = L inf + a k N ) k 1 donde j = 1,, 100 y n k L inf : valor inferior del intervalo asociado al percentil j a k : ancho del intervalo asociado al percentil j. N k 1 : frec. abs. acum. del intervalo anterior 51 / 105

52 para datos : percentiles Definición 1.8 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. Los percentiles para estos datos se calculan de la siguiente forma: ( j n 100 p j = L inf + a k N ) k 1 donde j = 1,, 100 y n k L inf : valor inferior del intervalo asociado al percentil j a k : ancho del intervalo asociado al percentil j. N k 1 : frec. abs. acum. del intervalo anterior n k : frec. abs. del intervalo asociado al percentil j. 52 / 105

53 para datos : percentiles Definición 1.8 Sea una muestra x 1,..., x n de tamaño n que se agrupan en una tabla con K clases. Los percentiles para estos datos se calculan de la siguiente forma: ( j n 100 p j = L inf + a k N ) k 1 donde j = 1,, 100 y n k L inf : valor inferior del intervalo asociado al percentil j a k : ancho del intervalo asociado al percentil j. N k 1 : frec. abs. acum. del intervalo anterior n k : frec. abs. del intervalo asociado al percentil j. n: número total de observaciones (tamaño de la muestra). 53 / 105

54 para datos : percentiles Ejemplo: Temperatura Calculemos el percentil 20, p 20, para este conjunto de datos clase c k n k f k N k F k [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) TOTAL 20 1 En este ejemplo tenemos 5 intervalos, k = / 105

55 para datos : percentiles Ejemplo: Temperatura Calculemos el percentil 20, p 20, para este conjunto de datos clase c k n k f k N k F k [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) TOTAL 20 1 En este ejemplo tenemos 5 intervalos, k = 5. p 20 = 55 / 105

56 para datos : percentiles Ejemplo: Temperatura Calculemos el percentil 20, p 20, para este conjunto de datos clase c k n k f k N k F k [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) TOTAL 20 1 En este ejemplo tenemos 5 intervalos, k = 5. ( ) 0, p 20 = = 21, / 105

57 La medida de más común es la media, que corresponde al punto de equilibrio de la distribución. La media es afectada por valores extremos (atípicos). 57 / 105

58 La medida de más común es la media, que corresponde al punto de equilibrio de la distribución. La media es afectada por valores extremos (atípicos). Propiedades: La suma de las desviaciones con respecto a la media es igual a cero: n (x i x) = 0 i=1 La media de una constante es una constante. 58 / 105

59 Propiedades: La media del producto de una constante por las observaciones es igual a la constante por la media: Cx = n i=1 Cx i n = C x La media de la suma de una constante y las observaciones es igual a la media más la constante: n i=1 x i + C n = x + C 59 / 105

60 Introducción Las medidas de y de no permiten reflejar la o dispersión presente en los datos. 60 / 105

61 Introducción Las medidas de y de no permiten reflejar la o dispersión presente en los datos. La de una muestra tiene que ser estudiada en un análisis de datos estadístico, en particular la con respecto a la media. 61 / 105

62 Rango para datos no Definición 1.9 La medida más simple de en una muestra x 1,, x n es el rango y se calcula como: R = max[(x i ) i=1,,n ] min[(x i ) i=1,,n ] 62 / 105

63 Rango para datos no Definición 1.9 La medida más simple de en una muestra x 1,, x n es el rango y se calcula como: R = max[(x i ) i=1,,n ] min[(x i ) i=1,,n ] 63 / 105

64 Rango intercuartil El Rango Intercuartil es la diferencia entre el 3er cuartil (Q 3 ) y el 1er cuartil (Q 1 ). También se le conoce como Disperción de los Cuartos. 64 / 105

65 Rango intercuartil El Rango Intercuartil es la diferencia entre el 3er cuartil (Q 3 ) y el 1er cuartil (Q 1 ). También se le conoce como Disperción de los Cuartos. Notación: RIC o f s. RIC = f s = Q 3 Q / 105

66 Varianza para datos no Definición 1.10 La de una muestra, o muestral, S 2, para datos no se define como: ( n S 2 i=1 = (x i x) 2 n ) = 1 x 2 i n x 2 n 1 n 1 i=1 66 / 105

67 Varianza para datos no Definición 1.10 La de una muestra, o muestral, S 2, para datos no se define como: ( n S 2 i=1 = (x i x) 2 n ) = 1 x 2 i n x 2 n 1 n 1 i=1 Nota: Es importante notar que naturalmente uno tiende a dividir por n pero por propiedades teóricas, se divide la suma de cuadrados de las diferencias por n / 105

68 Varianza para datos no Definición 1.10 La de una muestra, o muestral, S 2, para datos no se define como: ( n S 2 i=1 = (x i x) 2 n ) = 1 x 2 i n x 2 n 1 n 1 i=1 Nota: Es importante notar que naturalmente uno tiende a dividir por n pero por propiedades teóricas, se divide la suma de cuadrados de las diferencias por n 1. En la práctica, los softwares estadísticos (Excel, SAS, SPSS, R, ) usan esta definición (dividiendo por n 1). 68 / 105

69 Varianza para datos no Definición 1.10 La de una muestra, o muestral, S 2, para datos no se define como: ( n S 2 i=1 = (x i x) 2 n ) = 1 x 2 i n x 2 n 1 n 1 i=1 Nota: Es importante notar que naturalmente uno tiende a dividir por n pero por propiedades teóricas, se divide la suma de cuadrados de las diferencias por n 1. En la práctica, los softwares estadísticos (Excel, SAS, SPSS, R, ) usan esta definición (dividiendo por n 1). Si n es grande, dividir por n o n 1 es equivalente (asintóticamente equivalente). 69 / 105

70 Desviación estándar para datos no Definición 1.11 La desviación estándar, S, para datos no se define como la raíz cuadrada de la : S = n S 2 i=1 = (x i x) 2 n 1 70 / 105

71 Desviación estándar para datos no Definición 1.11 La desviación estándar, S, para datos no se define como la raíz cuadrada de la : S = n S 2 i=1 = (x i x) 2 n 1 Una expresión alternativa para el numerador de S 2 es: S xx = n (x i x) 2 = i=1 n i=1 x 2 i ( n i=1 x i) 2 n 71 / 105

72 Desviación estándar para datos no Definición 1.11 La desviación estándar, S, para datos no se define como la raíz cuadrada de la : S = n S 2 i=1 = (x i x) 2 n 1 Una expresión alternativa para el numerador de S 2 es: S xx = n (x i x) 2 = i=1 n i=1 x 2 i ( n i=1 x i) 2 n Nota: La unidad de S es la misma que los datos y la de S 2 es la unidad de los datos al cuadrado. 72 / 105

73 Ejemplos: Varianza Ejemplo 1.4 Sea la siguiente muestra 5, 17, 6, 4. Entonces x = 8 S 2 = (5 8)2 +(17 8) 2 +(6 8) 2 +(4 8) 2 3 = / 105

74 Ejemplos: Varianza Ejemplo 1.5 Un profesor enseña dos secciones de introducción al marketing y selecciona aleatoriamente una muestra de calificaciones de los exámenes realizados por los 2 grupos. Calcular S y S 2 para ambos grupos: G G / 105

75 Ejemplos: Varianza Ejemplo 1.5 Un profesor enseña dos secciones de introducción al marketing y selecciona aleatoriamente una muestra de calificaciones de los exámenes realizados por los 2 grupos. Calcular S y S 2 para ambos grupos: G G Sol. : x 1 = x 2 = 70 S 1 = S 2 1 = 250 = 15,8 S 2 = S2 2 = 10 = 3,16 75 / 105

76 Coeficiente de variación para datos no Definición 1.12 El coeficiente de variación (C.V.) para datos no expresa la desviación típica en porcentaje de la media. Es una medida relativa: C.V. = S x / 105

77 Coeficiente de variación para datos no Definición 1.12 El coeficiente de variación (C.V.) para datos no expresa la desviación típica en porcentaje de la media. Es una medida relativa: C.V. = S x 100 Ej. 1.5 C.V. 1 = 15,8 70 C.V. 2 = 3, = 22,57 % 100 = 4,51 % 77 / 105

78 Ej.: C.V. para datos no Ejemplo 1.6 Si comparamos las desviaciones estándares de las ventas de los grandes y los pequeños almacenes que venden bienes similares, la S de los grandes almacenes será mayor. La comparación puede ser engañosa. El C.V. resuelve el problema teniendo en cuenta la escala en que se miden las unidades poblaciones 78 / 105

79 Ejemplos: Varianza Ejemplo 1.7 Se tienen las cantitades de ventas de productos en pequeños almacenes y grandes almacenes P A GA / 105

80 Ejemplos: Varianza Ejemplo 1.7 Se tienen las cantitades de ventas de productos en pequeños almacenes y grandes almacenes P A GA Sol. : x 1 = 70, x 2 = 577 S 1 = S 2 1 = 250 = 15,8 S 2 = S2 2 = 1000 = 31, / 105

81 Ejemplos: Varianza Ejemplo 1.7 Se tienen las cantitades de ventas de productos en pequeños almacenes y grandes almacenes P A GA Sol. : x 1 = 70, x 2 = 577 S 1 = S 2 1 = 250 = 15,8 S 2 = S2 2 = 1000 = 31, CV 1 = 22,57 %, CV 2 = 5,48 % 81 / 105

82 Varianza y C.V. para datos Definición 1.13 Si una muestra x 1,, x n se agrupa en K clases o intervalos con c 1,..., c k las k marcas de clase, la para estos datos es: ( K S 2 k=1 = (c k x) 2 n k = 1 K ) c 2 k n 1 n 1 n k n x 2 k=1 82 / 105

83 Varianza y C.V. para datos Definición 1.13 Si una muestra x 1,, x n se agrupa en K clases o intervalos con c 1,..., c k las k marcas de clase, la para estos datos es: ( K S 2 k=1 = (c k x) 2 n k = 1 K ) c 2 k n 1 n 1 n k n x 2 k=1 Definición 1.14 Si una muestra x 1,, x n se agrupa en K clases o intervalos, el C.V. para estos datos es: C.V. = S x / 105

84 S 2 y S son siempre positivos, siendo 0 su mínimo. La de la suma de una constante y las observaciones es igual a la de la muestra original. y i = x i + C = S 2 y = S 2 x La del producto de una constante por las observaciones es igual a la de la muestra original pondereda por la constante al cuadrado: y i = Cx i = S 2 y = C 2 S 2 x 84 / 105

85 Las medidas descritas anteriormente son las medidas más usadas para resumir datos. Sin embargo, existen otras medidas, en particular medidas relacionadas con la forma de la distribución de los datos. 85 / 105

86 Las medidas descritas anteriormente son las medidas más usadas para resumir datos. Sin embargo, existen otras medidas, en particular medidas relacionadas con la forma de la distribución de los datos. Definición 1.15 La curtosis es una medida que compara la forma de la distribución muestral con la distribución en forma de campana (distribución Normal). Esta medida refleja cuan puntiaguda es la forma de la distribución de la muestra. 86 / 105

87 Curtosis Coef. Curtosis = n(n + 1) (n 1)(n 2)(n 3) n xi x ( S i=1 )4 3 (n 1) 2 (n 2)(n 3) 87 / 105

88 Asimetría Definición 1.16 Diremos que los datos siguen una distribución simétrica si se tiene que x = m e = m o 88 / 105

89 Asimetría Definición 1.16 Diremos que los datos siguen una distribución simétrica si se tiene que x = m e = m o Diremos que los datos son asimétricos si x m e. 89 / 105

90 Asimetría Definición 1.16 Diremos que los datos siguen una distribución simétrica si se tiene que x = m e = m o Diremos que los datos son asimétricos si x m e. Diremos que existe un sesgo a la derecha o a la izquierda. 90 / 105

91 Asimetría con sesgo positivo a la derecha 91 / 105

92 Asimetría con sesgo negativo a la izquierda 92 / 105

93 Asimetría Una medida simple de la asimetría es: Coef. de asimetría = Coef. de asimetría = n (n 1)(n 2) 1 K K k=1 (x k x) 3 n k S 3 n i=1 (x i x) 3 S 3 Datos agrup. Un valor positivo de esta medida indica que los datos están sesgados hacia a la derecha. 93 / 105

94 Asimetría Una medida simple de la asimetría es: Coef. de asimetría = Coef. de asimetría = n (n 1)(n 2) 1 K K k=1 (x k x) 3 n k S 3 n i=1 (x i x) 3 S 3 Datos agrup. Un valor positivo de esta medida indica que los datos están sesgados hacia a la derecha. Un valor negativo de esta medida indica que los datos están sesgados hacia a la izquierda. 94 / 105

95 Asimetría Una medida simple de la asimetría es: Coef. de asimetría = Coef. de asimetría = n (n 1)(n 2) 1 K K k=1 (x k x) 3 n k S 3 n i=1 (x i x) 3 S 3 Datos agrup. Un valor positivo de esta medida indica que los datos están sesgados hacia a la derecha. Un valor negativo de esta medida indica que los datos están sesgados hacia a la izquierda. Es cero si los datos son simétricos. 95 / 105

96 Este gráfico contiene y resume varias medidas: 96 / 105

97 Este gráfico contiene y resume varias medidas: 97 / 105

98 : Datos atípicos Es común que en una base de datos se observen datos atípicos: datos que están muy debajo o muy por encima de los datos preponderantes. 98 / 105

99 : Datos atípicos Es común que en una base de datos se observen datos atípicos: datos que están muy debajo o muy por encima de los datos preponderantes. Razones: anomalía en el proceso; error de digitación; fenómenos extremos; etc / 105

100 : Datos atípicos El criterio de Tukey permite indentificar datos atípicos: 100 / 105

101 : Datos atípicos El criterio de Tukey permite indentificar datos atípicos: BIE : Q 1 3RIC : Barrera Inferior Exterior BII : Q 1 1,5RIC : Barrera Inferior Interior BSI : Q 3 + 1,5RIC : Barrera Superior Interior BSE : Q 3 + 3RIC : Barrera Superior Exterior. 101 / 105

102 : Datos atípicos El criterio de Tukey permite indentificar datos atípicos: BIE : Q 1 3RIC : Barrera Inferior Exterior BII : Q 1 1,5RIC : Barrera Inferior Interior BSI : Q 3 + 1,5RIC : Barrera Superior Interior BSE : Q 3 + 3RIC : Barrera Superior Exterior. Valor entre barreras interiores: dato normal. Valor fuera de las barreras interiores pero dentro de las barreras exteriores: dato atípico. Valor fuera de las barreras exteriores: dato atípico extremo. 102 / 105

103 : Ejemplo (Prof. José Tapia) 103 / 105

104 : Ejemplo 104 / 105

105 E F a) Represente en un gráfico adecuado el número de postulantes qué concluye? b) Represente en un gráfico adecuado el porcentaje de aceptados qué concluye? c) Compare el porcentaje total de hombres aceptados con el porcentaje total de Ejemplo mujeres aceptadas en esa Escuela de Graduados qué concluye? Problema 22 Gale Marrs, gerente de personal de la compañía Baxter Richfield sospecha que los trabajadores de más edad pierden más días de trabajo al año por enfermedad que los trabajadores jóvenes. Gale elige al azar los registros de 10 empleados de 40 años o más y de 10 empleados de menos de 40 años. Los datos obtenidos se procesaron en Excel y en SPSS y corresponden al número de días laborales en los que el respectivo trabajador estuvo ausente el último año. A continuación se entregan las salidas de interés: Días ausentes menos de o más menos de o más ,3 23, Error típico 3, , na 16, Moda #N/A #N/A 9 4 Desviación estándar 11, , Varianza de la muestra 125, , Curtosis 2, , Coeficiente de asimetría 0, , Rango Mínimo 0 0 Máximo Suma Cuenta a) Analice las salidas entregadas y, fundamentado en estas salidas, presente un informe que considere los aspectos más importantes observados respecto al número de días de ausencias por motivo de enfermedad en estos dos grupos de trabajadores. (Su informe no debe contener más de 25 líneas.) Respuesta Se esperaría que un trabajador menor de 40 años se ausente aproximadamente 17,3 días. La mitad de este grupo se ausenta 16,5 días o menos aproximadamente. Se esperaría que un trabajador de 40 años o más se ausente aproximadamente 23,2 días laborales. La mitad de estos se ausentan a los más 20 días laborales. La distribución de los trabajadores menores de 40 años es asimétrica con valores entre 0 y 24 días aproximadamente, salvo por la presencia de un dato atípico (42) que produce un coeficiente de asimetría positivo y hace crecer la dispersión de este grupo. Sin este dato atípico la distribución seria asimétrica negativa y la dispersión menor. La distribución de los trabajadores de 40 años o más es asimétrica con valores entre 0 y 63 días, se observa claramente sesgo hacia la derecha (este resultado se confirma con el coeficiente de asimetría obtenido). La dispersión es diferente en ambos grupos, siendo mayor en el grupo de trabajadores a) Analice de 40 años las o salidas más. En entregadas este sentido y, fundamentado la ocurrencia en de estas observaciones salidas, presente mayores un a 24 informe días que ausentes considere es probable los aspectos en el grupo más importantes de trabajadores observados de 40 años respecto o más al e número improbable de días en el de ausencias grupo de menos por motivo de 40 de años. enfermedad en estos dos grupos de trabajadores. (Su informe no debe contener más de 25 líneas.) b) Respuesta Gale ha pedido calcular la mediana de cada grupo, después de eliminar valores Se atípicos esperaría detectados que un por trabajador medio de menor los diagramas de 40 años de caja. se ausente Obtenga aproximadamente estos nuevos valores 17,3 días. de medianas La mitad y de decida este grupo si estos se ausenta valores 16,5 producen días o menos cambios aproximadamente. de importancia en lo ya observado. Se esperaría que un trabajador de 40 años o más se ausente aproximadamente 23,2 Respuesta

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 CÓMO CARACTERIZAR UNA SERIE DE DATOS? POSICIÓN- dividen un conjunto ordenado de datos en grupos con la misma cantidad de individuos CENTRALIZACIÓN-

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 2: Estadística descriptiva Tema 2: Estadísticos 1 Medidas La finalidad de las medidas de posición o tendencia central (centralización) es encontrar unos valores que sinteticen

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012 Matilde Ungerovich- mungerovich@fisica.edu.uy DEFINICIÓN PREVIA: Distribución: función que nos dice cuál es la probabilidad de que cada suceso

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales

Curso de Estadística Aplicada a las Ciencias Sociales Curso de Estadística Aplicada a las Ciencias Sociales Tema 6. Descripción numérica (2) Capítulo 5 del manual Tema 6 Descripción numérica (2) Introducción 1. La mediana 2. Los cuartiles 3. El rango y el

Más detalles

Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Dispone de 1 hora para resolver las siguientes cuestiones planteadas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1 Qué veremos 1. OBJECTIVOS DEL CURSO. DEFINICIONES IMPORTANTES 2. TIPOS DE VARIABLES 3 5 1. Estadísticos de tendencia central 2. Estadísticos de posición 3. Estadísticos de variabilidad/dispersión

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION 1. Percentiles, cuartiles y deciies. 2. Estadígrafos de Posición. 3. Sesgo y curtosis o de pastel. Pictogramas. OBJETIVOS DE UNIDAD GENERALES. Que el futuro

Más detalles

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas Datos no agrupados: x 1, x 2,...,x n x= x 1 +x 2 +... x n n n i=1 = n Ejemplo: dados los valores: X = 1, 4, 16, 11, 3, 6, su media es

Más detalles

Tema 1: Análisis de datos univariantes

Tema 1: Análisis de datos univariantes Tema 1: Análisis de datos univariantes 1 En este tema: Conceptos fundamentales: muestra y población, variables estadísticas. Variables cualitativas o cuantitativas discretas: Distribución de frecuencias

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

Tema 3: Estadística Descriptiva

Tema 3: Estadística Descriptiva Tema 3: Estadística Descriptiva Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Estadística Descriptiva Curso 2008-2009 1 / 27 Índice

Más detalles

Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud.

Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud. 1. TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística Es la ciencia que estudia conjunto de datos obtenidos de la realidad. Estos datos son interpretados mediante tablas, gráficas y otros parámetros tales como

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Y accedemos al cuadro de diálogo Descriptivos

Y accedemos al cuadro de diálogo Descriptivos SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas

Más detalles

Medidas de Tendencia Central.

Medidas de Tendencia Central. Medidas de Tendencia Central www.jmontenegro.wordpress.com MEDIDAS DE RESUMEN MDR MEDIDAS DE TENDENCIA CENTRAL MEDIA MEDIANA MODA CUARTILES,ETC. MEDIDAS DE DISPERSIÓN RANGO DESVÍO EST. VARIANZA COEFIC.

Más detalles

ESTADÍSTICA SEMANA 3

ESTADÍSTICA SEMANA 3 ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...

Más detalles

MEDIDAS DE RESUMEN. Medidas de Tendencia Central Medidas de Dispersión. Rafael Díaz Sarmiento, M.D., E.S.O., E.C. Las Palmas de Gran Canario, España

MEDIDAS DE RESUMEN. Medidas de Tendencia Central Medidas de Dispersión. Rafael Díaz Sarmiento, M.D., E.S.O., E.C. Las Palmas de Gran Canario, España MEDIDAS DE RESUMEN Medidas de Tendencia Central Medidas de Dispersión Rafael Díaz Sarmiento, M.D., E.S.O., E.C. Las Palmas de Gran Canario, España MEDIDAS DE RESUMEN DEFINICIONES: Medida de tendencia central:

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo Desafío Una población estadística está compuesta de cuatro números enteros consecutivos, siendo n el menor de ellos. La desviación

Más detalles

ÁREAS DE LA ESTADÍSTICA

ÁREAS DE LA ESTADÍSTICA QUÉ ES LA ESTADÍSTICA? Es el arte de realizar inferencias y sacar conclusiones a partir de datos imperfectos. ÁREAS DE LA ESTADÍSTICA Diseño: Planeamiento y desarrollo de investigaciones Descripción: Resumen

Más detalles

Guía de Matemática Cuarto Medio

Guía de Matemática Cuarto Medio Guía de Matemática Cuarto Medio Aprendizaje Esperado: 1. Conocen distintas maneras de organizar y presentar información incluyendo el cálculo de algunos indicadores estadísticos, la elaboración de tablas

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Medidas de variabilidad (dispersión)

Medidas de variabilidad (dispersión) Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Primera clase: Estadística Descriptiva Programa Técnico en Riesgo, 2016 Agenda 1 Tipos de variables y niveles de medición 2 3 Tipos de variables Variables Cuantitativas

Más detalles

Estadística para el análisis de los Mercados S2_A1.1_LECV1

Estadística para el análisis de los Mercados S2_A1.1_LECV1 5. Parámetros estadísticos. 5.1. Parámetros de centralización. Estos parámetros nos indican en torno a que puntos se encuentran los valores de la variable cuantitativa en estudio. Es la forma de representar

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los

Más detalles

Medidas de posición para variables cuantitativas

Medidas de posición para variables cuantitativas Medidas de posición para variables cuantitativas Objetivos Que deberían saber al terminar esta clase: Qué es el valor mínimo y el máximo Qué es la moda o modo y como se interpreta Qué son los percentiles,

Más detalles

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central.

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central. Medidas de dispersión o variabilidad Tema 5 Profesor Tevni Grajales G. A dos grupos diferentes de estudiantes se les preguntó cuánto deseaban pagar como cuotas de graduación. En ambos casos el promedio

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha:

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha: Guía de actividad Independiente No 5. NOMBRE DE LA ASIGNATURA: Estadística Descriptiva TUTOR: Deivis Galván Cabrera Nombre del estudiante: Fecha: 1. Al comenzar el curso se pasó una encuesta a los alumnos

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 36 alumnos de un curso de Estadística de la Universidad de Talca. En esta base de datos

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz Análisis de datos y gestión n veterinaria Tema 1 Estadística descriptiva Prof. Dr. José Manuel Perea Muñoz Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, de Septiembre

Más detalles

Medidas de Tendencia Central, Medidas de Dispersión & Otros Estadísticos (Cap. 2) Math. 298 Prof. Gaspar Torres Rivera

Medidas de Tendencia Central, Medidas de Dispersión & Otros Estadísticos (Cap. 2) Math. 298 Prof. Gaspar Torres Rivera Medidas de Tendencia Central, Medidas de Dispersión & Otros Estadísticos (Cap. ) Math. 98 Prof. Gaspar Torres Rivera Un hombre promedio Roberto tiene 31 años de edad, una estatura de 68.8 pulgadas, pesa

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

Medidas de posición relativa

Medidas de posición relativa Medidas de posición relativa Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 3.1-1 Medidas de posición relativa Son medidas que pueden utilizarse para comparar valores de diferentes

Más detalles

Temas de Estadística Práctica Antonio Roldán Martínez

Temas de Estadística Práctica Antonio Roldán Martínez Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 3: Medidas típicas. Índices Resumen teórico Medidas típicas. Índices Clases de puntuaciones Índices de posición

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

Z i

Z i Medidas de Variabilidad y Posición. Jesús Eduardo Pulido Guatire, marzo 010 Cuando trabajamos el aspecto denominado Medidas de Tendencia Central se observó que tanto la media como la mediana y la moda

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

1.2 Medidas de variación: Rango, desviación estándar y coeficiente de variación

1.2 Medidas de variación: Rango, desviación estándar y coeficiente de variación 1.2 Medidas de variación: Rango, desviación estándar y coeficiente de variación Medidas de Variación Amplitud Coeficiente variación Desviación estándar Rango Valor Z Varianza de Diferencia entre los valores

Más detalles

2. DESCRIPCIÓN ESTADÍSTICA DE UNA VARIABLE. EJEMPLOS Y EJERCICIOS *.

2. DESCRIPCIÓN ESTADÍSTICA DE UNA VARIABLE. EJEMPLOS Y EJERCICIOS *. 2. DESCRIPCIÓN ESTADÍSTICA DE UNA VARIABLE. EJEMPLOS Y EJERCICIOS *. 2.1. Ejemplos. Ejemplo 2.1 Se ha medido el grupo sanguíneo de 40 individuos y se han observado las siguientes frecuencias absolutas

Más detalles

Medidas de tendencia central y dispersión

Medidas de tendencia central y dispersión Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 3, Marzo 2011. Open Access, Creative Commons. Medidas de tendencia central y dispersión Autor: Fernando Quevedo Ricardi (1) Filiación:

Más detalles

Parámetros y estadísticos

Parámetros y estadísticos Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población

Más detalles

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

Medidas de centralización

Medidas de centralización 1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese

Más detalles

Medidas de posición relativa

Medidas de posición relativa Medidas de posición relativa Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 3.1-1 Medidas de posición relativa Las medidas de posición relativa son también llamadas cuantiles o

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL DEFINICIÓN DE VARIABLE Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población. TIPOS DE VARIABLE ESTADÍSTICAS Ø Variable

Más detalles

Estadística descriptiva VARIABLES CUANTITATIVAS

Estadística descriptiva VARIABLES CUANTITATIVAS Estadística descriptiva VARIABLES CUANTITATIVAS DESCRIPTIVA Medidas de tendencia central Media Mediana Moda Medidas de dispersión Rango Varianza Desviación estándar Coeficiente de variación Cuantiles (

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tendencia central Medidas de tendencia central Medidas de Posición: son aquellos valores numéricos que nos permiten o bien dar alguna medida de tendencia central, dividiendo el recorrido de

Más detalles

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener ERRORES DE MEDICION Y SU PROPAGACION En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener la magnitud fisica de algun atributo de objetos ( proceso,

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

4. Medidas de dispersión

4. Medidas de dispersión FUOC XP00/71004/00017 27 Medidas de dispersión 4. Medidas de dispersión Los cuartiles y la desviación estándar En el capítulo 3 hemos aprendido varias maneras de medir el centro de una distribución. Pero,

Más detalles

Gerenciamiento Técnico de Proyectos

Gerenciamiento Técnico de Proyectos Gerenciamiento Técnico de Proyectos Medidas de Tendencia Central y de Dispersión Características de la Media La media aritmética es la medida de tendencia central más utilizada. Se calcula dividiendo la

Más detalles

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos. La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

Estadística Descriptiva

Estadística Descriptiva M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Desde la segunda mitad del siglo anterior, el milagro industrial sucedido en Japón, hizo

Más detalles

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Sesión de Residentes 13 de febrero, 2012 ÍNDICE Diferencia entre población y muestra. Diferencia

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS I. IDENTIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I CÓDIGO DE LA ASIGNATURA 33102106 ÁREA CIENCIAS BASICAS DE INGENIERIA SEMESTRE SEGUNDO PLAN DE ESTUDIOS 1996 AJUSTE 2002 HORAS TOTALES POR SEMESTRE 64 HORAS

Más detalles

MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad

MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad 1 Propiedades deseables de una medida de Tendencia Central. 1) Definida objetivamente a partir de los datos de la serie. 2) Que dependa

Más detalles

1. Dado el siguiente volumen de ventas de una empresa y su gasto en I+D en miles. Prediga las ventas de este empresario para un gasto en I+D de 7.

1. Dado el siguiente volumen de ventas de una empresa y su gasto en I+D en miles. Prediga las ventas de este empresario para un gasto en I+D de 7. MODELO A Examen de Estadística Económica (2407) 20 de junio de 2009 En cada pregunta sólo existe UNA respuesta considerada más correcta. Si hay dos correctas deberá escoger aquella respuesta que tenga

Más detalles

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS UNIVERSIDAD INTERAMERICANA PARA EL DESARROLLO ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS Contenido II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS II. Tablas de frecuencia II. Gráficos: histograma, ojiva, columna,

Más detalles

Unidad 2: Descubriendo patrones

Unidad 2: Descubriendo patrones Unidad 2: Descubriendo patrones Rafael Vázquez Pérez Sábados de 10-13 Agenda 2.1 Evaluación de Patrones 2.1.1 Datos objeto y tipos de atributos 2.1.2 Estadística de los datos 2.1.3 Visualización de datos

Más detalles

Los puntajes de Mario en tres pruebas de la universidad fueron 60, 80 y 50 puntos. El rango de los puntajes de Mario es

Los puntajes de Mario en tres pruebas de la universidad fueron 60, 80 y 50 puntos. El rango de los puntajes de Mario es PROGRAMA EGRESADOS Ejercicios PSU 1. 2. Los puntajes de Mario en tres pruebas de la universidad fueron 60, 80 y 50 puntos. El rango de los puntajes de Mario es A) 5 puntos. B) 10 puntos. C) 15 puntos.

Más detalles

RENTABILIDAD Y RIESGO

RENTABILIDAD Y RIESGO RENTABILIDAD Y RIESGO 1. MEDICIONES 1. SITUACIÓN La rentabilidad que tienen que entregar las inversiones, no solo involucran el beneficio natural que debe otorgar al capital por su utilización, sino la

Más detalles

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer

Más detalles

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas:

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: Ejercicio 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: a) Marca de los coches. b) Peso de los coches. c) Número de coches vendidos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA TEMA 2: ESTADÍSTICA DESCRIPTIVA Objetivos: En esta práctica utilizaremos el paquete SPSS para calcular estadísticos descriptivos de una muestra. Se representarán gráficamente conjuntos de datos utilizando

Más detalles

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología Exemple Examen Part II (c) Problema 1 - Solución. En un estudio sobre la elección de la carrera universitaria entre envió cuestionarios a una muestra aleatoria simple de estudiantes preguntando la carrera

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro

Más detalles

El modelo de la curva normal. Concepto y aplicaciones

El modelo de la curva normal. Concepto y aplicaciones Métodos de Investigación en Educación 1º Psicopedagogía Grupo Mañana Curso 2009-2010 2010 MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN Tema 7 El modelo de la curva normal. Concepto y aplicaciones Objetivos Comprender

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

Universidad de Puerto Rico Recinto de Río Piedras Facultad de Educación Escuela Secundaria. Prontuario del Curso Estadística y Probabilidad

Universidad de Puerto Rico Recinto de Río Piedras Facultad de Educación Escuela Secundaria. Prontuario del Curso Estadística y Probabilidad Universidad de Puerto Rico Recinto de Río Piedras Facultad de Educación Escuela Secundaria Prontuario del Curso Estadística y Probabilidad Preparado por:, Ed.D. I. Curso: Probabilidad y estadística, Codificación:

Más detalles

ESTADÍSTICA SEMANA 2

ESTADÍSTICA SEMANA 2 ESTADÍSTICA SEMANA 2 ÍNDICE CUADROS DE DISTRIBUCIÓN DE FRECUENCIAS Y REPRESENTACIÓN GRÁFICA... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 REPRESENTACIÓN GRÁFICA... 3 MÉTODOS GRÁFICOS:... 3 DIAGRAMAS

Más detalles

Estadísticos Descriptivos

Estadísticos Descriptivos ANÁLISIS EXPLORATORIO DE DATOS El análisis exploratorio tiene como objetivo identificar el modelo teórico más adecuado para representar la población de la cual proceden los datos muéstrales. Dicho análisis

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Medidas de Tendencia Central En cualquier análisis o interpretación, se pueden usar muchas medidas descriptivas que representan las propiedades de tendencia central, variación y forma para resumir las

Más detalles

UNIDAD 6 Medidas de tendencia central

UNIDAD 6 Medidas de tendencia central UNIDAD Medidas de tendencia central UNIDAD MEDIDAS DE TENDENCIA CENTRAL = EJEMPLO. ó Al estudiar la información estadística de los histogramas y los polígonos de frecuencia, se puso en evidencia un significativo

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión

Más detalles

ESTADÍSTICA SEMANA 4

ESTADÍSTICA SEMANA 4 ESTADÍSTICA SEMANA 4 ÍNDICE MEDIDAS DE DISPERSIÓN... 3 APRENDIZAJES ESPERADOS... 3 DEfinición de Medida de dispersión... 3 Rango o Recorrido... 3 Varianza Muestral (S 2 )... 3 CÁLCULO DE LA VARIANZA...

Más detalles

Tema 7. Otras medidas descriptivas usuales Ejercicios resueltos 1

Tema 7. Otras medidas descriptivas usuales Ejercicios resueltos 1 Tema 7. Otras medidas descriptivas usuales Ejercicios resueltos 1 Ejercicio resuelto 7.1 Los siguientes datos se corresponden con los retrasos (en minutos) de una muestra de 30 vuelos de cierta compañía

Más detalles

PRÁCTICA 3: ANÁLISIS POR GRUPOS de SPSS

PRÁCTICA 3: ANÁLISIS POR GRUPOS de SPSS 3ª práctica: Análisis por grupos de SPSS (Capítulos 4 y 5) 1 PRÁCTICA 3: ANÁLISIS POR GRUPOS de SPSS En esta práctica vamos a realizar estudios estadísticos por grupos con diversos procedimientos, observando

Más detalles

1. Determine en cuantas clases se van a resumir los datos. En este caso se van a resumir en 7 clases, como lo indica la actividad.

1. Determine en cuantas clases se van a resumir los datos. En este caso se van a resumir en 7 clases, como lo indica la actividad. EJEMPLO Una tienda departamental desea conocer los mínimos a pagar en, de los clientes que tienen tarjeta de crédito de la tienda. Se toma una muestra elegida al azar de la base de datos del departamento

Más detalles

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez Libro de ejercicios de refuerzo de matemáticas María de la Rosa Sánchez Estadística bidimensional Tema 0 2 Índice general 1. Estadística unidimensional 5 2. Estadística bidimensional 11 3 Tema 1 Estadística

Más detalles

El ejemplo: Una encuesta de opinión

El ejemplo: Una encuesta de opinión El ejemplo: Una encuesta de opinión Objetivos Lo más importante a la hora de planificar una encuesta es fijar los objetivos que queremos lograr. Se tiene un cuestionario ya diseñado y se desean analizar

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN COMPILADOR San Cristóbal, Abril 2011 CODIGO: HOC220 Página 1 1. A un conjunto

Más detalles