Variables estadísticas bidimensionales: problemas resueltos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Variables estadísticas bidimensionales: problemas resueltos"

Transcripción

1 Variables estadísticas bidimensionales: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ DOMINGO HERNÁNDEZ ABREU MATEO M. JIMÉNEZ PAIZ M. ISABEL MARRERO RODRÍGUEZ ALEJANDRO SANABRIA GARCÍA Departamento de Análisis Matemático Universidad de La Laguna Índice 6. Problemas resueltos 1

2

3 VARIABLES ESTADÍSTICAS BIDIMENSIONALES: PROBLEMAS RESUELTOS 1/13 6. Problemas resueltos Ejercicio 6.1. Se han tomado cinco muestras de glucógeno, de una cantidad fija cada una. Se les ha aplicado una cantidad X de glucogenasa (en milimoles por litro) anotando en cada caso la velocidad de reacción Y medida en micromoles por minuto, obteniéndose así la siguiente tabla: X Y Se pide: a) Se deduce de estos datos que la velocidad de reacción aumenta con la concentración de glucogenasa? b) Si a una de las muestras le hubiésemos aplicado una concentración de glucogenasa de milimoles por litro, cuál hubiera sido la velocidad de reacción? Con qué grado de predicción? c) Dibujar la nube de puntos y las rectas de regresión. RESOLUCIÓN. Las variables X := concentración de glucogenasa (mmol/l) e Y := velocidad de reacción (µmol/min) son ambas cuantitativas. Aunque en los cálculos que siguen es suficiente la tabla de frecuencias para las variables marginales X e Y dada en el enunciado del ejercicio (véase la Observación 2. del desarrollo teórico), construiremos la tabla de frecuencias de la variable bidimensional (X,Y ) (Cuadro 6.1). X Y n xi f xi n y j f y j Cuadro 6.1. Tabla de frecuencias para la variable bidimensional del Ejercicio 6.1.

4 2/13 B. GONZÁLEZ, D. HERNÁNDEZ, M. JIMÉNEZ, I. MARRERO, A. SANABRIA Figura 6.1. Diagrama de dispersión para la variable bidimensional del Ejercicio 6.1. En primer lugar, trazamos un diagrama de dispersión para conjeturar una posible relación entre las variables (Figura 6.1). El diagrama de la Figura 6.1 parece indicarnos que existe una relación lineal directa entre las variables, esto es, la velocidad de reacción Y aumenta a medida que aumenta la cantidad de glucogenasa y esta dependencia responde a un modelo lineal. Veamos si esta intuición que sugiere el diagrama puede ser confirmada. a) Al objeto de analizar cuál es el grado de correlación entre las variables X e Y estudiamos el coeficiente de correlación lineal (o coeficiente de correlación de Pearson) ρ = σ xy σ x σ y, donde σ xy,σ x y σ y denotan la covarianza y las desviaciones típicas marginales de las variables X e Y, respectivamente. Para hallar los estadísticos anteriores, necesarios en la determinación del coeficiente de correlación lineal, calculamos en primer lugar la media de X: x = = OCW-ULL 2013 MATEMÁTICA APLICADA Y ESTADÍSTICA

5 VARIABLES ESTADÍSTICAS BIDIMENSIONALES: PROBLEMAS RESUELTOS 3/13 En segundo lugar, la varianza de X viene dada por: σ 2 x = 1 N k i=1 de manera que su desviación típica es x 2 i n xi x 2 = ( ) σ x = = = , Similarmente, la media de Y viene dada por: y = = , mientras que su varianza es σ 2 y = = = y su desviación típica, σ y = Finalmente, calculamos la covarianza entre las variables X e Y : σ xy = 1 N = m r i=1 j=1 x i y j n i j x y (0.2 8) + (0. ) + (1 18) + (2 3) + (3 60) = = ( ) En consecuencia, el coeficiente de correlación lineal toma el valor ρ = Al estar el coeficiente de Pearson muy cercano a 1 podemos garantizar que existe una muy buena correlación lineal entre las variables. Esta relación es, además, directa, como indica el hecho de que el coeficiente de correlación de Pearson tiene signo positivo, al igual que la covarianza. Luego, cabe afirmar que la velocidad de reacción aumenta con la concentración de glucogenasa y que este aumento es de tipo lineal.

6 4/13 B. GONZÁLEZ, D. HERNÁNDEZ, M. JIMÉNEZ, I. MARRERO, A. SANABRIA Figura 6.2. Diagrama de dispersión y rectas de regresión para la variable bidimensional del Ejercicio 6.1. b) Calculamos primeramente la recta de regresión de Y sobre X: r yx : y y = β yx (x x), donde β yx = σ xy σ 2 x = Por tanto, la recta de regresión de Y sobre X viene dada por: r yx : y = (x 1.340) = x Si a una de las muestras le hubiésemos aplicado una concentración de glucogenasa de mmol/l, la velocidad de reacción hubiese sido de y = ( ) µmol/min, siendo esta predicción muy buena pues, como hemos mencionado anteriormente, el coeficiente de correlación de Pearson es prácticamente 1 (ρ = 0.99). OCW-ULL 2013 MATEMÁTICA APLICADA Y ESTADÍSTICA

7 VARIABLES ESTADÍSTICAS BIDIMENSIONALES: PROBLEMAS RESUELTOS /13 c) La recta de regresión de X sobre Y tiene por ecuación r xy : x x = β xy (y y), donde β xy = σ xy σ 2 y = Es decir, r xy : x = (y ) = 0.03y Si representamos las rectas de regresión anteriores en el diagrama de dispersión de la Figura 6.1, obtenemos la Figura 6.2. Ejercicio 6.2. Se ha medido, en miligramos por litro, el contenido de oxígeno Y del lago Worther, en Austria, a una profundidad de X metros, obteniéndose los siguientes datos: X Y Se pide: a) Ajustar una recta a los datos obtenidos. b) Estudiar la correlación entre ambas variables. c) Para una profundidad comprendida entre y 80 metros, qué contenido en oxígeno se podría predecir? d) Dibujar la nube de puntos y las rectas de regresión. RESOLUCIÓN. Las variables X := profundidad (m) e Y := cantidad de oxígeno (mg/l) son ambas cuantitativas. De manera similar al problema anterior, la tabla de frecuencias para la variable bidimensional (X,Y ) queda recogida en el Cuadro 6.2. El diagrama de dispersión para la variable bidimensional (X,Y ) de la Figura 6.3 nos indica de manera intuitiva que si existiese alguna relación entre las variables X e Y, ésta debiera ser inversa, esto es, el aumento de una de las variables implicaría la disminución de la otra y viceversa.

8 6/13 B. GONZÁLEZ, D. HERNÁNDEZ, M. JIMÉNEZ, I. MARRERO, A. SANABRIA X Y n xi f xi n y j f y j Cuadro 6.2. Tabla de frecuencias para la variable bidimensional del Ejercicio 6.2. Veamos si podemos garantizar lo afirmado en el párrafo anterior. a) La recta de regresión de Y sobre X viene dada por: r yx : y y = β yx (x x), donde β yx = σ xy σx 2. Calculemos en primer lugar la media y la varianza de la variable marginal X, y a continuación la media de Y y la covarianza entre ambas variables en estudio. La media de X es: x = La varianza de X viene dada por: σx 2 = OCW-ULL 2013 MATEMÁTICA APLICADA Y ESTADÍSTICA

9 VARIABLES ESTADÍSTICAS BIDIMENSIONALES: PROBLEMAS RESUELTOS /13 Figura 6.3. Diagrama de dispersión para la variable bidimensional del Ejercicio 6.2. Por tanto, su desviación típica es: σ x = La media de Y viene dada por: y = Hallamos ahora la covarianza entre las variables X e Y : (1 6.) + (20.6) + (30.4) + (40 6.0) + (0 4.6) + (60 1.4) + (0 0.1) σ xy = = ( ) Estamos ya en disposición de calcular β yx = σ xy σ 2 x = Así pues, la recta de regresión de Y sobre X será r yx : y = (x 40.14) = 0.8x

10 8/13 B. GONZÁLEZ, D. HERNÁNDEZ, M. JIMÉNEZ, I. MARRERO, A. SANABRIA b) Nótese que la covarianza σ xy es negativa: esto nos indica que existe una relación inversa entre las variables. Para decidir si tal relación es de tipo lineal, estudiamos el coeficiente de Pearson ρ = σ xy σ x σ y. La varianza de Y es σy 2 = y su desviación típica, σ y = Por tanto, el coeficiente de correlación lineal toma el valor ρ = , y podemos concluir que las variables presentan una muy buena correlación lineal inversa (o correlación lineal negativa). c) La recta de regresión de Y sobre X, de ecuación r yx : y = 0.8x , es un buen modelo de predicción, tal y como hemos visto en el apartado anterior. Para una profundidad de x = m el modelo predice una cantidad de oxígeno de y = = mg/l, mientras que para una profundidad de x = 80 m, predecimos y = = mg/l. Podemos concluir entonces que para una profundidad comprendida entre y 80 metros los niveles de oxígeno varían entre 0 y 0. mg/l. OCW-ULL 2013 MATEMÁTICA APLICADA Y ESTADÍSTICA

11 VARIABLES ESTADÍSTICAS BIDIMENSIONALES: PROBLEMAS RESUELTOS 9/13 Figura 6.4. Diagrama de dispersión y rectas de regresión para la variable bidimensional del Ejercicio 6.2. d) La recta de regresión de X sobre Y tiene por ecuación r xy : x x = β xy (y y), donde β xy = σ xy σ 2 y = Luego, r xy : x = (y 4.228) =.411y El diagrama de dispersión junto con las rectas de regresión aparece representado en el gráfico de la Figura 6.4. Ejercicio 6.3. En un hospital se ha aplicado un medicamento A a 0 enfermos, y en otro hospital se ha aplicado un segundo medicamento B a otros 0 enfermos. El número diario de curados durante los primeros días es el siguiente: medicamento A medicamento B

12 /13 B. GONZÁLEZ, D. HERNÁNDEZ, M. JIMÉNEZ, I. MARRERO, A. SANABRIA Se pide: a) Rectas de regresión de Y sobre X y de X sobre Y. b) Dibujar la nube de puntos y las rectas de regresión. c) Hallar el coeficiente de correlación e interpretarlo. RESOLUCIÓN. Estamos interesados en determinar la relación que pueda existir entre el número de enfermos curados en un mismo día, en dos hospitales diferentes y mediante dos medicamentos distintos, para, por ejemplo, determinar la eficacia de ambos medicamentos. El estudio se hace durante días (por lo que la población en este caso consta de N = observaciones). Para ello denotamos por X := número de pacientes curados por el medicamento A en un determinado día y por Y := número de pacientes curados por el medicamento B en el mismo día. Obsérvese que ambas variables marginales son cuantitativas discretas. La tabla de frecuencias para la variable bidimensional (X,Y ) viene dada en el Cuadro 6.3. X Y n xi f xi n y j f y j Cuadro 6.3. Tabla de frecuencias para la variable bidimensional del Ejercicio 6.3. Al igual que hemos hecho en los ejercicios anteriores, trazamos un diagrama de dispersión para la variable bidimensional (Figura 6.) que nos permita conjeturar una posible relación entre las variables marginales. Nótese que, aunque podemos intuir algún tipo de relación directa entre las variables (esto es, el aumento en la eficiencia de uno de los medicamentos en un determinado día implica también la del del otro), no está del todo OCW-ULL 2013 MATEMÁTICA APLICADA Y ESTADÍSTICA

13 VARIABLES ESTADÍSTICAS BIDIMENSIONALES: PROBLEMAS RESUELTOS 11/13 Figura 6.. Diagrama de dispersión para la variable bidimensional del Ejercicio 6.3. claro que esta relación sea de tipo lineal. Pasamos a discutir ahora los modelos de regresión. a) Para determinar las rectas de regresión, calculamos en primer lugar los estadísticos necesarios. Estadísticos de la variable marginal X. Media de X: x = (2 1) + (1 2) + (2 3) + (1 4) + (1 ) + (1 6) + (1 ) + (1 8) = Varianza de X: σx 2 = (2 12 ) + (1 2 2 ) + (2 3 2 ) + (1 4 2 ) + (1 2 ) + (1 6 2 ) + (1 2 ) + (1 8 2 ) = = Desviación típica de X: σ x = Estadísticos de la variable marginal Y.

14 12/13 B. GONZÁLEZ, D. HERNÁNDEZ, M. JIMÉNEZ, I. MARRERO, A. SANABRIA Media de Y : y = (1 1) + (4 2) + (2 4) + (1 ) + (1 6) + (1 ) = Varianza de Y : σy 2 = (1 12 ) + (4 2 2 ) + (2 4 2 ) + (1 2 ) + (1 6 2 ) + (1 2 ) = = Desviación típica de Y : σ y = Estadísticos de la variable bidimensional (X,Y ). Covarianza entre las variables X e Y : (1 2 2) + (2 2) + 3 (1 + ) + (4 2) + ( ) + (6 6) + ( 4) + (8 4) σ xy = = = (4 3.00) Atendiendo a los datos calculados: Recta de regresión de Y sobre X: r yx : y y = β yx (x x), donde β yx = σ xy σ 2 x = Por tanto, r yx : y = (x 4.000) = 0.463x Recta de regresión de X sobre Y : r xy : x x = β xy (y y), donde β xy = σ xy σ 2 y = OCW-ULL 2013 MATEMÁTICA APLICADA Y ESTADÍSTICA

15 VARIABLES ESTADÍSTICAS BIDIMENSIONALES: PROBLEMAS RESUELTOS 13/13 Figura 6.6. Diagrama de dispersión y rectas de regresión para la variable bidimensional del Ejercicio 6.3. Por tanto, r xy : x = (y 3.00) = 0.68y b) Las rectas de regresión están representadas en el gráfico de la Figura 6.6, junto con el diagrama de dispersión. c) Finalmente, el coeficiente de correlación lineal ρ (o coeficiente de correlación de Pearson) toma el valor ρ = σ xy 2.00 = σ x σ y Como el coeficiente de correlación de Pearson está comprendido entre 0. y 0.8, podemos afirmar que la relación entre las variables descritas en los modelos lineales anteriores es buena.

Variables estadísticas bidimensionales: problemas propuestos

Variables estadísticas bidimensionales: problemas propuestos Variables estadísticas bidimensionales: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO

Más detalles

Variables estadísticas bidimensionales

Variables estadísticas bidimensionales Variables estadísticas bidimensionales BEITO J GOZÁLEZ RODRÍGUEZ (bjglez@ulles) DOMIGO HERÁDEZ ABREU (dhabreu@ulles) MATEO M JIMÉEZ PAIZ (mjimenez@ulles) M ISABEL MARRERO RODRÍGUEZ (imarrero@ulles) ALEJADRO

Más detalles

Estadística descriptiva: problemas propuestos

Estadística descriptiva: problemas propuestos Estadística descriptiva: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda.

Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Ejemplos Si se deja caer una piedra, existe una fórmula que nos permite

Más detalles

ESTADÍSTICA. DISTRIBUCIÓN BIDIMENSIONAL

ESTADÍSTICA. DISTRIBUCIÓN BIDIMENSIONAL ESTADÍSTICA. DISTRIBUCIÓN BIDIMENSIONAL CONCEPTOS PREVIOS RELACIÓN ESTADÍSTICA Dos variables x e y están relacionadas estadísticamente cuando conocida la primera se puede estimar aproximadamente el valor

Más detalles

Cálculo integral de funciones de una variable: problemas propuestos

Cálculo integral de funciones de una variable: problemas propuestos Cálculo integral de funciones de una variable: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL

Más detalles

Teoría de errores: problemas propuestos

Teoría de errores: problemas propuestos Teoría de errores: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

PROBLEMAS SOBRE V. ESTAD. BIDIMENSIONALES. PROFESOR: ANTONIO PIZARRO.

PROBLEMAS SOBRE V. ESTAD. BIDIMENSIONALES. PROFESOR: ANTONIO PIZARRO. 1º) (Andalucía, Junio, 98) Se considera la siguiente tabla estadística, donde a es una incógnita: X 2 4 a 3 5 Y 1 2 1 1 3 a) Calcular el valor de a sabiendo que la media de X es 3. b) Mediante la correspondiente

Más detalles

Distribuciones Bidimensionales.

Distribuciones Bidimensionales. Distribuciones Bidimensionales. 1.- Variables Estadísticas Bidimensionales. Las variables estadísticas bidimensionales se representan por el par (X, Y) donde, X es una variable unidimensional, e Y es otra

Más detalles

TEMA 2: DISTRIBUCIONES BIDIMENSIONALES

TEMA 2: DISTRIBUCIONES BIDIMENSIONALES TEMA : DISTRIBUCIONES BIDIMENSIONALES 1.- DISTRIBUCIONES BIDIMENSIONALES Cuando estudiamos un solo carácter estadístico, los datos que obtenemos forman una variable estadística unidimensional. También

Más detalles

Funciones de varias variables: problemas resueltos

Funciones de varias variables: problemas resueltos Funciones de varias variables: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ

Más detalles

TEMA 4 CUESTIONARIO DE AUTOEVALUACIÓN

TEMA 4 CUESTIONARIO DE AUTOEVALUACIÓN 4.5.- En cuál de los siguientes casos se podría utilizar la varianza residual en lugar del coeficiente de determinación para medir la calidad del ajuste? Con el mismo conjunto de datos y dos ajustes distintos.

Más detalles

Estadística descriptiva: problemas resueltos

Estadística descriptiva: problemas resueltos Estadística descriptiva: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables):

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): 0 81 098 www.ceformativos.com EJERCICIOS RESUELTOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Cinco niñas de 2,3,,7 y 8 años de edad pesan respectivamente 14, 20, 30, 42 y 44 kilos. a) Hallar la ecuación de la recta

Más detalles

Relación funcional Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se

Relación funcional Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se Distr ibuciones bidim ensionales Relación funcional Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Ejemplos Si se

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Tema 9: Estadística en dos variables (bidimensional)

Tema 9: Estadística en dos variables (bidimensional) Tema 9: Estadística en dos variables (bidimensional) 1. Distribución de frecuencias bidimensional En el tema anterior se han estudiado las distribuciones unidimensionales obtenidas al observar sólo un

Más detalles

2. ESTADÍSTICAS BIDIMENSIONALES

2. ESTADÍSTICAS BIDIMENSIONALES TEMA. ESTADÍSTICAS BIDIMENSIONALES.... Definición. Objetivos.... Coeficiente de Correlación. Lineal... 4 3. Rectas de regresión.... 7 . Definición. Objetivos En el tema anterior hemos estudiado las distribuciones

Más detalles

Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos

Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M.

Más detalles

Boletín 1. Estadística Descriptiva

Boletín 1. Estadística Descriptiva Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Boletín 1. Estadística Descriptiva 1. Se desea estimar el porcentaje de albúmina en el suero proteico de personas

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

Tema 3. Relación entre dos variables cuantitativas

Tema 3. Relación entre dos variables cuantitativas Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas

Más detalles

Relación entre la altura y la distancia del suelo al ombligo

Relación entre la altura y la distancia del suelo al ombligo Relación entre la altura y la distancia del suelo al ombligo JULIA VIDAL PIÑEIRO Los 79 datos usados para realizar el estudio estadístico de la relación altura- distancia al ombligo, se tomaron a personas

Más detalles

Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable.

Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable. 1 DEFINICIONES PREVIAS Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable. Correlación: es la cuantificación del grado de relación existente

Más detalles

X Y

X Y Capítulo 2 Distribuciones bivariantes Hasta ahora hemos estudiado herramientas que nos permiten describir las características de un único carácter Sin embargo, en muchos casos prácticos, es necesario estudiar

Más detalles

Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL

Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL OBJETIVO Analizar las Diferentes formas de Describir la Relación entre dos variables numéricas Trazar un diagrama de dispersión

Más detalles

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento. UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre

Más detalles

Estadística de dos variables

Estadística de dos variables Versión: Estadística de dos variables 19 de septiembre de 013 1 Introducción En el Tema 1 se consideran las variables estadísticas unidimensionales, es decir, cada individuo de la muestra se describe de

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Ecuaciones diferenciales ordinarias de primer orden: problemas propuestos

Ecuaciones diferenciales ordinarias de primer orden: problemas propuestos Ecuaciones diferenciales ordinarias de primer orden: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M.

Más detalles

ESTADÍSTICA BIDIMENSIONAL

ESTADÍSTICA BIDIMENSIONAL ESTADÍSTICA BIDIMENSIONAL 0. REPASO DE ESTADÍSTICA La estadística es la parte de las Matemática que estudia los fenómenos que se prestan a cuantificación, que generan conjunto de datos. La misión del estadístico

Más detalles

Cálculo diferencial de funciones de una variable: problemas propuestos

Cálculo diferencial de funciones de una variable: problemas propuestos Cálculo diferencial de funciones de una variable: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

1 JESTADIS\REGRES.DOC

1 JESTADIS\REGRES.DOC CONTENIDOS 1. Introducción 2. Diagrama de dispersión 3. El coeficiente de correlación de Pearson 4. Regresión 1. Introducción Una de las metas frecuentes en la investigación consiste en determinar si existe

Más detalles

Matemáticas aplicadas a las Ciencias sociales 1. Examen de pendientes de cursos anteriores. 2º parcial.

Matemáticas aplicadas a las Ciencias sociales 1. Examen de pendientes de cursos anteriores. 2º parcial. Matemáticas aplicadas a las Ciencias sociales 1 Examen de pendientes de cursos anteriores. º parcial. 1. Dibuja la gráfica de la siguiente función indicando claramente los puntos de corte con los ejes

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Universidad de Salamanca - Escuela de Educación y Turismo

Universidad de Salamanca - Escuela de Educación y Turismo Universidad de Salamanca - Escuela de Educación y Turismo ! " # $ % $ & ' ( ) * ( +(, + ' -. '. ' - % $ / %.! '. " # $ % & & $ % # # $( #. 0 # (/ $. # % 0 1 # % ( # 0 # 0 1 # 0. (, (! " # # #. $ ($ ' 0

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

f i i=1 y j fij y j f j = ȳ j=1 indep.

f i i=1 y j fij y j f j = ȳ j=1 indep. APELLIDOS: NOMBRE: GRUPO: 2 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA 1 o. INGENIERÍA INFORMÁTICA Estadística Descriptiva. Curso 2007/2008 Examen Segunda Prueba Ev. Continua. Fecha: 2-6-2008

Más detalles

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra.

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra. ESTADÍSTICA La estadística tiene por objeto el desarrollo de técnicas para el conocimiento numérico de un conjunto de datos empíricos (recogidos mediante experimentos o encuestas). Según el colectivo a

Más detalles

ESTADÍSTICA Hoja 2

ESTADÍSTICA Hoja 2 Estadística 1 ESTADÍSTICA 05-06. Hoja 2 1. Dada la variable bidimensional (X, Y ), Es cierto que: a) La suma de todas las frecuencias absolutas conjuntas es igual al número de datos.? b) La suma de todas

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS Los contenidos de este bloque se desarrollan de forma simultánea al resto

Más detalles

Funciones de varias variables: problemas propuestos

Funciones de varias variables: problemas propuestos Funciones de varias variables: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ

Más detalles

Lección 3. Análisis conjunto de dos variables

Lección 3. Análisis conjunto de dos variables Lección 3. Análisis conjunto de dos variables Estadística Descriptiva Parcialmente financiado a través del PIE13-04 (UMA) GARCÍA TEMA 3. ANÁLII CONJUNTO DE DO VARIABLE 3.1 COVARIANZA COEFICIENTE DE CORRELACIÓN

Más detalles

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados

Más detalles

Estadística aplicada a la comunicación

Estadística aplicada a la comunicación Estadística aplicada a la comunicación Tema 5: Análisis de datos cuantitativos I: estadística descriptiva b. Análisis bivariante OpenCourseWare UPV/EHU Unai Martín Roncero Departamento de Sociología 2

Más detalles

EJERCICIOS RESUELTOS TEMA 4. Tarea realizada 68 (84,8) --- (---) 96 (112,8) --- (---)

EJERCICIOS RESUELTOS TEMA 4. Tarea realizada 68 (84,8) --- (---) 96 (112,8) --- (---) Nivel de ansiedad Ansiedad INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 4. 4.1. Con los datos de la Tabla 1, el valor de es igual a: A) 7,17; B) 11,80 C) 16,8. Tabla 1. En un estudio se investigó

Más detalles

Matemáticas. Selectividad ESTADISTICA COU

Matemáticas. Selectividad ESTADISTICA COU Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries

Más detalles

Prácticas con wxmaxima: cálculo diferencial de funciones de varias variables

Prácticas con wxmaxima: cálculo diferencial de funciones de varias variables Prácticas con wxmaxima: cálculo diferencial de funciones de varias variables BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es)

Más detalles

Práctica 5. Modelos empíricos a partir de datos experimentales

Práctica 5. Modelos empíricos a partir de datos experimentales Grado en Ciencia y Tecnología de los Alimentos Fundamentos de Ingeniería de los Alimentos Práctica 5 Modelos empíricos a partir de datos experimentales 1 1.- Regresión lineal La regresión consiste en deducir,

Más detalles

ESTADÍSTICA BIDIMENSIONAL: RECTA DE REGRESIÓN LINEAL Y RECTA TUKEY. Abel MARTÍN. Profesor de Matemáticas del IES Valliniello (Asturias)

ESTADÍSTICA BIDIMENSIONAL: RECTA DE REGRESIÓN LINEAL Y RECTA TUKEY. Abel MARTÍN. Profesor de Matemáticas del IES Valliniello (Asturias) Página nº 8 ESTADÍSTICA BIDIMENSIONAL: RECTA DE REGRESIÓN LINEAL Y RECTA TUKEY. Abel MARTÍN. Profesor de Matemáticas del IES Valliniello (Asturias) El presente artículo toma como referencia el libro Enseñar

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez Libro de ejercicios de refuerzo de matemáticas María de la Rosa Sánchez Estadística bidimensional Tema 0 2 Índice general 1. Estadística unidimensional 5 2. Estadística bidimensional 11 3 Tema 1 Estadística

Más detalles

3. CORRELACIÓN Y REGRE-

3. CORRELACIÓN Y REGRE- 3. CORRELACIÓN Y REGRE- SIÓN Objetivo Medir y ajustar una relación lineal entre dos variables cuantitativas. Bibliografia recomendada Peña y Romo (1997), Capítulos 8 y 9. Índice 1. Covarianza y sus propiedades

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

ESTADÍSTICA DESCRIPTIVA PARA EL TURISMO

ESTADÍSTICA DESCRIPTIVA PARA EL TURISMO ESTADÍSTICA DESCRIPTIVA PARA EL TURISMO RELACIÓN DE PROBLEMAS PROPUESTOS DE DOS VARIABLES Curso académico 2004-2005 DPTO. ECONOMÍA APLICADA I 1.- Las calificaciones obtenidas por un grupo de alumnos en

Más detalles

MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN. Tema 9

MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN. Tema 9 Métodos de Investigación en Educación 1º Psicopedagogía Grupo Mañana Curso 2009-2010 2010 MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN Tema 9 La regresión lineal Tema 9: La regresión lineal Objetivos Conocer

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

CORRELACION Y REGRESIÓN LINEAL

CORRELACION Y REGRESIÓN LINEAL LECCION Nº 5 CORRELACION Y REGRESIÓN LINEAL OBJETIVOS ESPECIFICOS Diferenciar los conceptos de correlación lineal, y regresión lineal. Determinar el índice o coeficiente de correlación en una distribución

Más detalles

ESTADÍSTICA. 1.- En una población de 25 familias se ha observado el número de vehículos que tienen obteniéndose los siguientes datos:

ESTADÍSTICA. 1.- En una población de 25 familias se ha observado el número de vehículos que tienen obteniéndose los siguientes datos: ESTADÍSTICA 1.- En una población de 25 familias se ha observado el número de vehículos que tienen obteniéndose los siguientes datos: 0, 1, 2, 3, 1, 0, 1, 1, 1, 4, 3, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3,

Más detalles

Un modelo para representar una relación aproximadamente

Un modelo para representar una relación aproximadamente Regresión Se han visto algunos ejemplos donde parece que haya una relación aproximadamente lineal entre dos variables. Supongamos que queremos estimar la relación entre las dos variables. Cómo ajustamos

Más detalles

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido:

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: . Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: Peso [.5,.75) [.75,3) [3,3.5) [3.5,3.5) [3.5,3.75) [3.75,4) [4,4.5) [4.5,4.5] N o de niños 7 36

Más detalles

Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES

Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES Práctica 2 Estudios Descriptivos Bidimensionales Página 1 Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES En esta segunda práctica

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

GUÍA DE EJERCICIOS. Áreas Matemáticas Análisis Estadístico

GUÍA DE EJERCICIOS. Áreas Matemáticas Análisis Estadístico GUÍA DE EJERCICIOS Áreas Matemáticas Análisis Estadístico Resultados de aprendizaje Determinar e interpretar medidas de correlación en datos a granel. Contenidos 1. Estadística descriptiva bidimensional.

Más detalles

Técnicas de Investigación Social

Técnicas de Investigación Social Licenciatura en Sociología Curso 2006/07 Técnicas de Investigación Social Medir la realidad social (4) La regresión (relación entre variables) El término REGRESIÓN fue introducido por GALTON en su libro

Más detalles

MATEMÁTICAS 1º BI-NM Serie Estadística Unidimensional y Bidimensional

MATEMÁTICAS 1º BI-NM Serie Estadística Unidimensional y Bidimensional MATEMÁTICAS 1º BI-NM Serie Estadística Unidimensional y Bidimensional 1 Entra en la página web del Instituto Nacional de Estadística y elige una variable numérica de tu interés que disponga de frecuencias

Más detalles

Matemáticas. Bioestadística. Correlación y Regresión Lineales

Matemáticas. Bioestadística. Correlación y Regresión Lineales Matemáticas Bioestadística Correlación y Regresión Lineales En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. Por ejemplo, si se analiza la

Más detalles

Regresión Lineal. Dra. Noemí L. Ruiz Limardo 2008 Derechos Reservados, Rev 2010

Regresión Lineal. Dra. Noemí L. Ruiz Limardo 2008 Derechos Reservados, Rev 2010 Regresión Lineal Dra. Noemí L. Ruiz Limardo 008 Derechos Reservados, Rev 010 Objetivos de la Lección Conocer el significado de la regresión lineal Determinar la línea de regresión cuando ha correlación

Más detalles

ESTADÍSTICA Y ANÁLISIS DE DATOS

ESTADÍSTICA Y ANÁLISIS DE DATOS ESTADÍSTICA Y ANÁLISIS DE DATOS Práctica del Tema 2. Variables estadísticas bidimensionales Problemas 1. En la siguiente tabla aparecen, según la OIT (Organización Internacional del Trabajo), los parados

Más detalles

Cálculo diferencial de funciones de una variable

Cálculo diferencial de funciones de una variable Cálculo diferencial de funciones de una variable BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ

Más detalles

3 Número de goles marcados por tu equipo favorito en la última temporada.

3 Número de goles marcados por tu equipo favorito en la última temporada. 1. Indica que variables son cualitativas y cuales cuantitativas: 1 Comida Favorita. 2 Profesión que te gusta. 3 Número de goles marcados por tu equipo favorito en la última temporada. 4 Número de alumnos

Más detalles

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada Estadística Descriptiva Bivariada En el aspecto conceptual, este estudio puede ser generalizado fácilmente para el caso de la información conjunta de L variables aunque las notaciones pueden resultar complicadas

Más detalles

Definición de Correlación

Definición de Correlación Definición de Correlación En ocasiones nos puede interesar estudiar si existe o no algún tipo de relación entre dos variables aleatorias: Estudiar cómo influye la estatura del padre sobre la estatura del

Más detalles

Tema 2: Análisis de datos bidimensionales

Tema 2: Análisis de datos bidimensionales Tema : Análisis de datos bidimensionales Variables estadísticas bidimensionales Distribuciones de frecuencias asociadas Regresión y correlación En una población puede resultar interesante considerar simultáneamente

Más detalles

3. RELACION ENTRE DOS CONJUNTOS DE DATOS.

3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. 1 Introducción En la búsqueda de mejoras o en la solución de problemas es necesario, frecuentemente, investigar la relación entre variables. Para lo cual existen

Más detalles

Unidad IV Introducción a la Regresión y Correlación

Unidad IV Introducción a la Regresión y Correlación Unidad IV Introducción a la Regresión y Correlación Última revisión: 25-0ctubre-2009 Elaboró: Ing. Víctor H. Alcalá-Octaviano Página 48 IV.1 Conceptos fundamentales Antología de Probabilidad y Estadística

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Muestreo y estimación: problemas resueltos

Muestreo y estimación: problemas resueltos Muestreo y estimación: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

ANÁLISIS DE DATOS EXPERIMENTALES POR MÍNIMOS CUADRADOS

ANÁLISIS DE DATOS EXPERIMENTALES POR MÍNIMOS CUADRADOS ANÁLISIS DE DATOS EXPERIMENTALES POR MÍNIMOS CUADRADOS CONTENIDO 1 Ajuste de Curvas 2 Análisis de Regresión 2.1 Métodos de Mínimos Cuadrados 2.2 Regresión Lineal AJUSTE DE CURVAS Uno de los objetivos en

Más detalles

Introducción IMADIL /17/2014. Tema 3. Características estadísticas fundamentales (Tercera parte)

Introducción IMADIL /17/2014. Tema 3. Características estadísticas fundamentales (Tercera parte) IMADIL 0 /7/0 Tema. Características estadísticas fundamentales (Tercera parte) Ignacio Martín y José Luis Padilla IMADIL 0. Introducción. Representación Gráfica. Correlación. Índice Introducción Uno de

Más detalles

Cuaderno de actividades 1º

Cuaderno de actividades 1º Cuaderno de actividades 1º 1 ITRODUCCIÓ: Variables estadísticas bidimensionales En numerosas ocasiones interesa estudiar simultáneamente dos (o más) caracteres de una población En el caso de dos (o más)

Más detalles

Técnicas de Inferencia Estadística II. Tema 6. Contrastes de independencia

Técnicas de Inferencia Estadística II. Tema 6. Contrastes de independencia Técnicas de Inferencia Estadística II Tema 6. Contrastes de independencia M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2015/16 Contenidos 1. Introducción 2.

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

Estadís6ca y Métodos Numéricos Tema 6. Modelos de Regresión

Estadís6ca y Métodos Numéricos Tema 6. Modelos de Regresión Estadís6ca y Métodos Numéricos Tema 6. Modelos de Regresión Ángel Barón Caldera Ángel Cobo Ortega María Dolores Frías Domínguez Jesús Fernández Fernández Francisco Javier González Or@z Carmen María Sordo

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Análisis de datos en los estudios epidemiológicos III Correlación y regresión

Análisis de datos en los estudios epidemiológicos III Correlación y regresión Análisis de datos en los estudios epidemiológicos III Correlación y regresión Salinero. Departamento de Investigación Fuden Introducción En el capitulo anterior estudiamos lo que se denomina estadística

Más detalles

13 EJERCICIOS de ESTADÍSTICA BIDIMENSIONAL

13 EJERCICIOS de ESTADÍSTICA BIDIMENSIONAL 13 EJERCICIOS de ESTADÍSTICA BIDIMENSIONAL Frecuencias, tablas y gráficos: 1. Dos fotógrafos hacen una exposición de fotos grandes, medianas y pequeñas, cuyo número es: Grandes Medianas Pequeñas Fotógrafo

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes Tema 2: Análisis de datos bivariantes Los contenidos a desarrollar en este tema son los siguientes: 1. Tablas de doble entrada. 2. Diagramas de dispersión. 3. Covarianza y Correlación. 4. Regresión lineal.

Más detalles

Tema 2: Estadística Bivariante Unidad 1: Correlación y Regresión

Tema 2: Estadística Bivariante Unidad 1: Correlación y Regresión Estadística Tema 2: Estadística Bivariante Unidad 1: Correlación y Regresión Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Octubre 2010 Contenidos...............................................................

Más detalles

TEMA 14 ESTADÍSTICA. Cuantitativa: si puede medirse y expresarse con números (es una variable), por ejemplo la talla de calzado.

TEMA 14 ESTADÍSTICA. Cuantitativa: si puede medirse y expresarse con números (es una variable), por ejemplo la talla de calzado. Objetivos / Criterios de evaluación TEMA 14 ESTADÍSTICA O.15.1 Conocer el significado y saber calcular los parámetros de centralización y dispersión O.15.2 Interpretar y utilizar los parámetros de dispersión.

Más detalles

1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES

1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1.- INTRODUCCIÓN AL NÚMERO REAL Realización de operaciones con números reales. Ordenación de los

Más detalles

MATEMATICAS Primer curso de Ciencias Ambientales / Curso Soluciónes HOJA 4

MATEMATICAS Primer curso de Ciencias Ambientales / Curso Soluciónes HOJA 4 MATEMATICAS Primer curso de Ciencias Ambientales / Curso 006-00 Soluciónes HOJA 4 Problema 3: Los siguientes datos corresponden a la evolución del peso celular (en mgr./ml.) cantidad de nitrato en un cultivo

Más detalles

Estadística Descriptiva

Estadística Descriptiva Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística Descriptiva Estadística I curso 2008 2009 1. Definiciones fundamentales La Estadística Descriptiva se ocupa

Más detalles

Módulo 1: Nivel I FUNDAMENTOS DE LA INVERSIÓN. Programa de Asesor Financiero. PAF Nivel I_1314. Capítulo 3. Descuento

Módulo 1: Nivel I FUNDAMENTOS DE LA INVERSIÓN. Programa de Asesor Financiero. PAF Nivel I_1314. Capítulo 3. Descuento Programa de Asesor Financiero Nivel I Módulo 1: FUNDAMENTOS DE LA INVERSIÓN Capítulo 1. Conceptos básicos de la inversión Capítulo. Capitalización Capítulo 3. Descuento Capítulo 4. Tipos de interés y rentabilidad

Más detalles

Teoría de errores. Departamento de Análisis Matemático Universidad de La Laguna

Teoría de errores. Departamento de Análisis Matemático Universidad de La Laguna Teoría de errores BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles