Problemas donde intervienen dos o más variables numéricas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas donde intervienen dos o más variables numéricas"

Transcripción

1 Análss de Regresón y Correlacón Lneal

2 Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa de gas depende de su volumen y de su temperatura. En un proceso químco, el rendmento del producto se relacona con la temperatura de operacón del proceso. El peso y la presón arteral se relaconan.

3 Analzaremos dos técncas : la de regresón y correlacón Uno de los objetvos de muchas nvestgacones en Ingenería es hacer predccones, preferentemente usando ecuacones matemátcas. El análss de regresón se utlza prncpalmente con éste propósto El nvestgador suele tener razones teórcas o práctcas para creer que determnada varable es causalmente dependente de una o más varables dstntas. S hay sufcentes observacones empírcas sobre estas varables, el análss de regresón es un método apropado para descrbr la estructura, fuerza y sentdo exacto de esta asocacón.

4 Análss de Regresón El modelo permte predecr los valores de una varable dependente basados en los valores de al menos una varable ndependente La dstncón entre varables dependentes e ndependentes debe fundamentarse con conceptos teórcos, por experenca y estudos anterores. Solo nos ocuparemos del caso de un modelo de regresón smple; usa una sola varable ndependente x para predecr el valor de la varable dependente y.

5 El análss de correlacón Se utlza para medr la ntensdad de la asocacón entre las varables numércas. En otras palabras el análss de En otras palabras el análss de correlacón estma la fuerza de la dependenca de una varable respecto de la otra.

6 Dagrama de dspersón El conjunto de observacones ( x, y ) forman el dagrama de dspersón. Se ubcan en un sstema de coordenadas.

7 A partr del dagrama de dspersón es posble, con frecuenca, vsualzar una curva suave que aproxma a los datos. En algunos casos vemos que exste una relacón lneal y en otros puede exstr una relacón no lneal. Solo nos ocuparemos del caso lneal.

8 Tpos de relacón entre varables (correlacón) Dos varables pueden estar relaconadas por una dependenca funconal, por una dependenca estadístca o pueden ser ndependentes. Raramente se determna una dependenca funconal rgurosa ya que ambas varables o una de ellas, están expuestas a factores aleatoros, surge entonces una dependenca estadístca. La dependenca se llama estadístca cuando la varacón de una de las varables da lugar a la alteracón de la dstrbucón de la otra. La dependenca estadístca se manfesta en que, al varar una de las varables se altera el valor medo de la otra, en este caso se llama dependenca de correlacón

9 Dependenca de correlacón Djmos que se da cuando al varar una de las varables se altera el valor medo de la otra. Ejemplo :supongamos que estamos analzando las alturas de dferentes cudades y las temperaturas. Puede darse el caso de que a guales alturas en dferentes cudades, se obtenen dstntas temperaturas. Es decr, y no es funcón de x. Esto se debe a factores aleatoros como ventos, lluvas, etc. Pero se puede demostrar que la temperatura meda es funcón de la altura. Es decr Y está vnculada con X por una dependenca de correlacón. Para precsar esto necestamos el concepto de meda condconal

10 Ejemplo Meda condconal Supongamos que en tres cudades que están a 200 m de altura sobre el nvel del mar las temperaturas son 5 C; 7 C; y 12 C respectvamente. Para estudar el enlace entre las varables aleatoras X e Y, admtamos que a cada valor de x, le corresponden varos valores de y.

11 Meda condconal x 1 = 2 toma los valores y1 = 5; y2 = 7 ;y3 = entonces y2 = = 8 3 Se llama meda condconal (la varable aleatora Y depende de X correlatvamente) Se llama meda condconal y x a la meda artmétca de los valores de y correspondentes al valor de X = x

12 Dependenca de correlacón Se llama dependenca de correlacón de Y respecto de X, a la dependenca funconal de la meda condconal respecto de x: y x = f ( x) Ecuacón de regresón de Y en X Funcón de regresón de Y en X Análogamente se determna x = g( y) y

13 Determnacón de las rectas de regresón Las gráfcas de f(x) y g(y) son rectas llamadas rectas de regresón Y= ax+b a = pendente de la recta de a = pendente de la recta de regresón, tambén llamado coefcente de regresón muestral de y en x

14 DIAGRAMA DE DISPERSIÓN RECTA DE REGRESIÓN y = a + bx

15 Cálculo de la Recta de Regresón de Y en X Se elgen los parámetros a y b de manera tal que los puntos del plano (los valores observados) se encuentren lo más cerca posble a la recta de regresón. Para el cálculo de la recta de regresón se aplca el método de mínmos cuadrados entre dos varables. uno. Y = ax + b donde a = ρ yx

16 Y y Notacón :desvacón, donde Y es una ordenada calculada por la ecuacón correspondente al valor observado y Como no podemos hacer mínma cada desvacón, haremos mínma su suma: n = 1 ( Y y ) Tan cercana a cero como sea posble. Pero esta suma se puede hacer cero de muchas maneras y los errores compensarse, por lo que elegremos para mnmzar = 1 ( ) 2 F( ρ, b) = Y y n n 2 ( ) ( ) 2 ρyx F( ρ, b) = Y y = x + b y = 1 = 1 n

17 Para mnmzar F( ρ, b) = ( Y ) 2 y n F F 2 = 0 = 2 ( ρyxx + b y ). x = 0 ρ ρ = 1 y n = bn + ρ x F F 2 = 0 2 ( ρyxx b y ) 0 b = + = b x y = b x + ρ x Resolvendo el sstema obtenemos ρ yx = 2 = 1 2 n x ( ) 2 x n x y x y b n = 1 y = ρ n n x Ecuacón muestral de regresón de Y en X y = ρ x + b x yx Ecuacón muestral de regresón de X en Y xy = ρxyy + c

18 Ejemplo Para ajustar una recta a un conjunto de datos apareados, veamos en este caso, X: representa el tempo de recalentamento e Y los espesores de óxdo de certa peza: X (en mn) Y (en Angst rom) ,5 7,4 7,1 15,6 11,1 14,9 23,5 27,1 22,1 32,9 xy = x = 860 y = 165,2 2 x = ρyx = 0,17 b = 1,9 y x = 0,17 x + 1,9

19 Cómo usar y = 0,17x + 1,9? x Por ejemplo, para predecr que el espesor de óxdo de herro de una peza calentada durante 80 mnutos: y = 0, ,9 = 15,5 Angstrom x

20 Coefcente de correlacón de la poblacón La medda del grado de relacón entre dos varables, se llama coefcente de correlacón (r) Supuestos para aplcar este modelo: a) X e Y son varables aleatoras. b) La poblacón bvarable debe ser normal. (X e Y dstrbudas normalmente) c) La relacón entre X e Y es, en certo sentdo, lneal. Este supuesto mplca que todas las medas de Y asocadas con valores de X, caen sobre una recta que es la recta de regresón de Y en X. Análogamente, todas las medas de X asocadas con valores de Y, caen sobre la recta de regresón de X en Y.

21 Coefcente de Correlacón Es la medda de la ntensdad de la relacón lneal entre dos varables. El valor del coefcente de correlacón puede tomar valores desde menos uno hasta uno, ndcando que mentras más cercano a uno sea el valor del coefcente de correlacón, en cualquer dreccón, más fuerte será la asocacón lneal entre las dos varables. Mentras más cercano a cero sea el coefcente de correlacón ndcará que más débl es la asocacón entre ambas varables. S es gual a cero se conclurá que no exste relacón lneal alguna entre ambas varables. S el valor del coefcente de correlacón muestral es mayor de 0,93 se consdera buena la estmacón que se realza con la recta de regresón.

22 Hablaremos de correlacón lneal fuerte cuando la nube se parezca mucho a una recta y será cada vez más débl (o menos fuerte) cuando la nube vaya desparramándose con respecto a la recta. En el gráfco observamos que en nuestro ejemplo la correlacón es bastante fuerte, ya que la recta que hemos dbujado está próxma a los puntos de la nube.

23 Cuando la recta es crecente la correlacón es postva o drecta: al aumentar una varable, la otra tene tambén tendenca a aumentar, como en el ejemplo anteror. Cuando la recta es decrecente la correlacón es negatva o nversa: al aumentar una varable, la otra tene tendenca a dsmnur.

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL TIPOS DE RELACIONES ENTRE VARIABLES Dos varables puede estar relacoadas por: Modelo determsta Modelo estadístco Ejemplo: Relacó de la altura co la edad e ños.

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Regresión y correlación simple 113

Regresión y correlación simple 113 Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes

Más detalles

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales: EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Midiendo la Asociación lineal entre dos variables

Midiendo la Asociación lineal entre dos variables Unversdad de Sonora XVIII Semana Regonal de Investgacón y Docenca en Matemátcas Mdendo la Asocacón lneal entre dos varables Rosa Ma. Montesnos Csneros Adán Durazo Armenta Departamento de Matemátcas Hermosllo,

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Facultad de Ciencias Básicas

Facultad de Ciencias Básicas Facultad de Cencas Báscas ANÁLISIS GRÁFICO DE DATOS EXPERIMENTALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos expermentales. Establecer un crtero para el análss de grafcas

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

3. Asociación, Correlación y Regresión Lineal

3. Asociación, Correlación y Regresión Lineal 3. Asocacón, Correlacón y Regresón Lneal 3 3.. Asocacón y Causaldad Algunos sucesos o crcunstancas tenden a segur a otros cuando ocurren en el tempo. varos de estos sucesos que ocurren repetdamente en

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Relación 2: Regresión Lineal.

Relación 2: Regresión Lineal. Relacón 2: Regresón Lneal. 1. Se llevó a cabo un estudo acerca de la cantdad de azúcar refnada (Y ) medante un certo proceso a varas temperaturas dferentes (X). Los datos se codfcan y regstraron en el

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

Algunas aplicaciones del test del signo

Algunas aplicaciones del test del signo 43 Algunas aplcacones del test del sgno Test de Mc emar para sgnfcacón de cambos: En realdad este test se estuda en detalle en Métodos no Paramétrcos II, en el contexto de las denomnadas Tablas de Contngenca.

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

1. Variable aleatoria. Clasificación

1. Variable aleatoria. Clasificación Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

TEMA 10: ESTADÍSTICA

TEMA 10: ESTADÍSTICA TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

1 EY ( ) o de E( Y u ) que hace que g E ( Y ) sea lineal. Por ejemplo,

1 EY ( ) o de E( Y u ) que hace que g E ( Y ) sea lineal. Por ejemplo, Modelos lneales generalzados En los modelos no lneales (tanto en su formulacón con coefcentes fjos o coefcentes aleatoros) que hemos vsto hasta ahora, exsten algunos que se denomnan lnealzables : son modelos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca www.aulatecnologa.com 1 ETADÍTICA DECRIPTIVA Lo prmero que buscamos con la Estadístca es el tratamento matemátco a partr de una nformacón epermental. Cuando queremos observar la evolucón de

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

T. 9 El modelo de regresión lineal

T. 9 El modelo de regresión lineal 1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

Mª Dolores del Campo Maldonado. Tel: :

Mª Dolores del Campo Maldonado. Tel: : Mª Dolores del Campo Maldonado Tel: : 918 074 714 e-mal: ddelcampo@cem.mtyc.es Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n

Más detalles

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general). 3. En el modelo lneal general Y = X b + e, explcar la forma

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES PRONÓSTICOS PREDICCIÓN, PRONÓSTICO Y PROSPECTIVA Predccón: estmacón de un acontecmento futuro que

Más detalles

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X.

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X. Conceptos de Probabldad A contnuacón se presenta una revsón no ehaustva y a manera ntroductora de conceptos báscos de la teoría de probabldades. Un estudo proundo y ormal de estos se puede hacer en Mood

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

EL MODELO DE REGRESIÓN LINEAL SIMPLE

EL MODELO DE REGRESIÓN LINEAL SIMPLE Unversdad Carlos III de Madrd César Alonso ECONOMETRIA EL MODELO DE REGRESIÓN LINEAL SIMLE Índce 1. Relacones empírcas y teórcas......................... 1 2. Conceptos prevos................................

Más detalles

Pronósticos. Humberto R. Álvarez A., Ph. D.

Pronósticos. Humberto R. Álvarez A., Ph. D. Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun Práctca 1 - Programacón en C++ Pág. 1 Práctcas de C++ Practca Nº 1 Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Práctca 1 - Programacón en C++ Pág. 1 INDICE ÍNDICE... 1 1.1 Ejercco

Más detalles

ESTADÍSTICA BIDIMENSIONAL

ESTADÍSTICA BIDIMENSIONAL el blog de mate de ada CI: Estadístca bdmensonal Pág. 1 ETADÍTICA BIDIMEIOAL La estadístca bdmensonal es la cenca que se ocupa de determnar s este relacón o no entre dos varables. Ejemplos: - Horas de

Más detalles

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. 5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

Riesgos Proporcionales de Cox

Riesgos Proporcionales de Cox Resgos Proporconales de Cox Resumen El procedmento Resgos Proporconales de Cox esta dseñado para ajustar un modelo estadístco sem-parámetrco a los tempos de falla de una o mas varables predctoras. Los

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Para una población dada, se pueden estudiar simultáneamente dos o más caracteres cuantitativos diferentes.

Para una población dada, se pueden estudiar simultáneamente dos o más caracteres cuantitativos diferentes. BLOQUE III. VALORACIÓN INMOBILIARIA. SISTEMAS DE LA INFORMACIÓN. GESTIÓN PATRIMONIAL. T E M A 10 Estadístca valoracón urbana (II): Austes por el método de los mínmos cuadrados. Regresón correlacón. Regresón

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento

Más detalles

Hidrología superficial

Hidrología superficial Laboratoro de Hdráulca Ing. Davd Hernández Huéramo Manual de práctcas Hdrología superfcal 7o semestre Autores: Héctor Rvas Hernández Juan Pablo Molna Agular Rukmn Espnosa Díaz alatel Castllo Contreras

Más detalles

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han

Más detalles

Modelos para más de una variable

Modelos para más de una variable 1 Modelos para más de una varable Hasta ahora se han vsto dferentes modelos estadístcos para el caso de una sola magntud bológca medda. Pero en los expermentos es frecuente tratar el caso donde hay más

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor

Más detalles

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

ESTADÍSTICA DESCRIPTIVA I

ESTADÍSTICA DESCRIPTIVA I ESTADÍSTICA DESCRIPTIVA I 1.- DISTRIBUCIONES UNIDIMENSIONALES. CONCEPTOS GENERALES. La estadístca se puede dvdr en dos partes: Estadístca descrptva o deductva. Estadístca nferencal o nductva. La estadístca

Más detalles

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE Especalsta en Estadístca y Docenca Unverstara REGRESION LINEAL MULTIPLE El modelo de regresón lneal múltple El modelo de regresón lneal múltple con p varables predctoras y basado en n observacones tomadas

Más detalles

5 Centrales Hidráulicas

5 Centrales Hidráulicas Curso SmSEE IIE 2012 Cap. 5 pág 1/6 5 Centrales Hdráulcas 5.1 Centrales Hdráulcas con Embalse En el caso de centrales con embalses, tendremos que agregar restrccones adconales para mponer los límtes de

Más detalles

PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO

PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO Concepto de equlbro físco Sstema Fase Componente Solubldad Transferenca Equlbro Composcón 2 Varables de mportanca en el equlbro de fases:

Más detalles

( ) = ( ) ( ) E X x p. E X Y = E X E Y XY independientes. E X Y E X E Y Cauchy Schwarzt ( ) 2. Pr X a E X a Markov

( ) = ( ) ( ) E X x p. E X Y = E X E Y XY independientes. E X Y E X E Y Cauchy Schwarzt ( ) 2. Pr X a E X a Markov 1 2 Varables aleatoras 2.1 Dscretas 2.1.1 Genércas Esperanza de una v.a. o Valor esperado Propedades de la Esperanza k = ( x ) E X x p EmX+ b = mex + b EK Varanza de una v.a. = K ( + ) = + E X Y E X E

Más detalles

NOMBRE Apellido Paterno Apellido Materno Nombre(s) Porcentaje de defectos producidos Máquina Porcentaje de producción

NOMBRE Apellido Paterno Apellido Materno Nombre(s) Porcentaje de defectos producidos Máquina Porcentaje de producción UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIONES

Más detalles

Estadistica No Parametrica

Estadistica No Parametrica Estadstca No Parametrca CLASE 3 Pruebas Basadas en la Dstrbucon Bnomal JAIME MOSQUERA RESTREPO Bnomal Test La prueba bnomal es quzás la prueba mas antgua encontrada en al lteratura. Se encuentra asocada

Más detalles

Tema 1. Conceptos generales

Tema 1. Conceptos generales Análss de Datos I Esquema del Tema Tema. Conceptos generales. COCEPTOS PREVIOS. DEFIICIÓ DE MEDICIÓ 3. DEFIICIÓ DE ESCALAS DE MEDIDA 4. VARIABLES CLASIFICACIÓ Y OTACIÓ REGLAS DEL SUMATORIO 5. EJERCICIOS

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles