T4. Modelos con variables cualitativas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "T4. Modelos con variables cualitativas"

Transcripción

1 T4. Modelos con variables cualitativas Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

2 Índice 1 Las variables cualitativas en el ámbito económico 2 La trampa de las variables ficticias 3 Variables cualitativas dependientes Modelos Logit Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

3 Modelos con variables cualitativas Competencias Este tema analiza la posibilidad de incorporar características cualitativas para mejorar la capacidad explicativa de los modelos y presenta a título introductorio los modelos de variable cualitativa dependiente. Se pretende que a su finalización los alumnos hayan adquirido las siguientes competencias: Definir e interpretar las variables dummy Comprender las razones que impiden plantear modelos de regresión con variables dependientes cualitativas Interpretar los coeficientes estimados de un modelo logit Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

4 Las variables cualitativas en el ámbito económico Las variables cualitativas en el ámbito económico Algunas variables económicas pueden depender de características tales como el género, el sector de actividad, el lugar de residencia, la ideología poĺıtica... Ejemplos: Discriminación salarial por género, impacto sobre el gasto del tipo de gobierno En el análisis temporal pueden existir efectos asociados a la estacionalidad, o cambios de tendencia que también serán recogidos mediante variables cualitativas Ejemplos: Estacionalidad en el turismo, impacto de la ampliación de la Unión Europea,... Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

5 Las variables cualitativas en el ámbito económico Incorporación de variables cualitativas Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

6 Las variables cualitativas en el ámbito económico Incorporación de variables cualitativas Introducción de variable dummy: D = { 1 si el trabajador es hombre 0 si el trabajador es mujer Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

7 Las variables cualitativas en el ámbito económico Modelos con variable dummy: Y = β 1 + β 2 X + β 3 D + u Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

8 Las variables cualitativas en el ámbito económico Modelos con variable dummy: Y = β 1 + β 2 X + β 3 D + β 4 DX + u Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

9 Las variables cualitativas en el ámbito económico Modelos con variable dummy: Y = β 1 + β 2 X + β 3 D + β 4 DX + u En estos gráficos, β 3 y β 4 son significativos? Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

10 La trampa de las variables ficticias La trampa de las variables ficticias D A = D I = D C = D S = { 1 si el trabajador pertenece al sector agricultura 0 en otro caso { 1 si el trabajador pertenece al sector industria 0 en otro caso { 1 si el trabajador pertenece al sector construcción 0 en otro caso { 1 si el trabajador pertenece al sector servicios 0 en otro caso Y = β 1 + β 2 X + β 3 D A + β 4 D I + β 5 D C + β 6 D S + u Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

11 La trampa de las variables ficticias La trampa de las variables ficticias Y = β 1 + β 2 X + β 3 D A + β 4 D I + β 5 D C + β 6 D S + u D Ai + D Ii + D Ci + D Si = 1, i = 1,..., n 1 X 1 D A1 D I 1 D C1 D S1 1 X 2 D A2 D I 2 D C2 D S2 X = X n D An D In D Cn D Sn Relación lineal o Multicolinealidad entre las variables explicativas (rango no pleno ρ(x) k; X X = 0 X X no es invertible, EMC no definidos ) SOLUCIÓN: Excluir una de las r categorías consideradas, definiendo r-1 variables dummy (la categoría excluida es la referencia para la interpretación de coeficientes). Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

12 La trampa de las variables ficticias Modelo salarial en función de experiencia y sector económico: Y = β 1 + β 2 X + β 3 D I + β 4 D C + β 5 D S + u β 1 + β 2 X + β 5 β 1 + β 2 X + β 4 β 1 + β 2 X + β 3 β 1 + β 2 X Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

13 La trampa de las variables ficticias Ilustración: Variable dummy asociada al género Modelo 1: MCO, usando las observaciones Variable dependiente: salario Coeficiente Desv. Típica Estadístico t Valor p const experiencia Media de la vble. dep D.T. de la vble. dep Suma de cuad. residuos D.T. de la regresión R R 2 corregido F (1, 48) Valor p (de F ) Log-verosimilitud Criterio de Akaike Criterio de Schwarz Hannan--Quinn Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

14 La trampa de las variables ficticias Ilustración: Variable dummy asociada al género Modelo 2: MCO, usando las observaciones Variable dependiente: salario Coeficiente Desv. Típica Estadístico t Valor p const experiencia masculino Media de la vble. dep D.T. de la vble. dep Suma de cuad. residuos D.T. de la regresión R R 2 corregido F (2, 47) Valor p (de F ) 2.98e 30 Log-verosimilitud Criterio de Akaike Criterio de Schwarz Hannan--Quinn Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

15 La trampa de las variables ficticias Ilustración: Variable dummy asociada al género Modelo 3: MCO, usando las observaciones Variable dependiente: salario Coeficiente Desv. Típica Estadístico t Valor p const experiencia masculino exp masc Media de la vble. dep D.T. de la vble. dep Suma de cuad. residuos D.T. de la regresión R R 2 corregido F (3, 46) Valor p (de F ) 8.19e 45 Log-verosimilitud Criterio de Akaike Criterio de Schwarz Hannan--Quinn Los trabajadores de género MASCULINO ven aumentado su salario esperado y también el efecto marginal de la experiencia sobre el salario Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

16 La trampa de las variables ficticias Ilustración: Variable dummy asociada a la estacionalidad turismo Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

17 La trampa de las variables ficticias Ilustración: Variable dummy asociada a la estacionalidad Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

18 La trampa de las variables ficticias Ilustración: Variable dummy asociada a la estacionalidad Modelo 3: MCO, usando las observaciones 1983: :4 (T = 86) Variable dependiente: turismo Coeficiente Desv. Típica Estadístico t Valor p const dq dq dq Media de la vble. dep D.T. de la vble. dep Suma de cuad. residuos 1.38e+12 D.T. de la regresión R R 2 corregido F (3, 82) Valor p (de F ) Log-verosimilitud Criterio de Akaike Criterio de Schwarz Hannan--Quinn ˆρ Durbin--Watson Respecto al primer trimestre el turismo aumenta sistemáticamente el segundo trimestre y también el tercero. Por el contrario en el cuarto se reduce Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

19 Variables cualitativas dependientes Modelos de variable cualitativa dependiente En algunas ocasiones nuestro objetivo es explicar una variable dependiente cualitativa: Con dos modalidades: Modelos binomiales Con más de dos modalidades: Modelos multinomiales Con varias modalidades que presentan un orden natural: Modelos ordenados Con modalidades asociadas a una decisión que condiciona las siguientes: Modelos secuenciales Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

20 Variables cualitativas dependientes Modelos de variable cualitativa dependiente El modelo lineal y = Xβ + u no es aplicable para variables dependientes dicotómicas Las perturbaciones u son dicotómicas y por tanto no normales Al ser y dicotómica se cumple E(y) = p No está garantizado que E(y) = Xβ adopte valores entre 0 y 1 1 Y = t Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

21 Variables cualitativas dependientes Modelos de variable cualitativa dependiente SOLUCIÓN: Introducir una variable auxiliar ( variable índice ) Z continua que se interpreta como propensión a la categoría investigada (encontrar empleo, afiliarse a un sindicato, realizar una compra,...) { 1, si Z > 0 Y = 0, si Z 0 p i = P(Y = 1) = P(Z > 0) = P(x β + u > 0) = P(u > x β) = 1 F u ( x β) 1 p i = P(Y = 0) = P(Z 0) = P(x β + u 0) = P(u x β) = F u ( x β) Asumiendo ciertas distribuciones probabiĺısticas para u (logística, Normal, uniforme,... ) es posible conocer la distribución de probabilidad de la variable Y. Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

22 Variables cualitativas dependientes Modelos Logit, Probit y Uniforme Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

23 Variables cualitativas dependientes Modelos Logit Modelos Logit Función logística de distribución de los errores: F u (x) = e x p i = P(Y i = 1) = 1 F u ( x 1 iβ) = e x i β = ex 1 + e x i β p i ( 1 + e x i β) = e x i β e x i β = p i 1 p i ( ln e x β) ( ) pi i = ln = x 1 p iβ i ( ) pi ln = β 1 + β 2 X 2i + + β k X ki 1 p i Logit expresados como función lineal de las variables explicativas Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28 i β

24 Variables cualitativas dependientes Modelos Logit Ilustración: Modelo logit para el empleo Modelo logit para explicar si una persona está ocupada en función de sus estudios Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

25 Variables cualitativas dependientes Modelos Logit Ilustración: Modelo logit para el empleo teración 0: log-verosimilitud = teración 1: log-verosimilitud = teración 2: log-verosimilitud = teración 3: log-verosimilitud = riterio de parada basado en Log-Verosimilitud Modelo 2: Logit, usando las observaciones Variable dependiente: empleo Coeficiente Desv. Típica z Pendiente const estudios Media de la vble. dep D.T. de la vble. dep R 2 de McFadden R 2 corregido Log-verosimilitud Criterio de Akaike Criterio de Schwarz Hannan--Quinn Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

26 Variables cualitativas dependientes Modelos Logit Ilustración: Modelo logit para el empleo Falso negativo Falso negativo Falso positivo Falso positivo Falso positivo Falso positivo Falso positivo Falso positivo Falso positivo Falso positivo Falso positivo Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

27 Variables cualitativas dependientes Modelos Logit Bondad de los modelos Logit Medida basada en razón de verosimilitudes 2 ln L NR L R Medida de Mc Fadden (1974) R 2 = 1 ln L NR ln L R Proporción de aciertos Núm, predicciones correctas Núm. observaciones LNR: Máx de L respecto a todos los parámetros LR: Máximo de L restringido (con β i = 0, i) La razón de verosimilitudes contrasta la nulidad de β Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

28 Variables cualitativas dependientes Modelos Logit Ilustración: Modelo logit para el empleo Coeficiente Desv. Típica z Pendiente const estudios Media de la vble. dep D.T. de la vble. dep R 2 de McFadden R 2 corregido Log-verosimilitud Criterio de Akaike Criterio de Schwarz Hannan--Quinn Evaluado en la media úmero de casos correctamente predichos = 442 (59.7 percent) (β X ) en la media de las variables independientes = Contraste de azón de verosimilitudes: χ 2 (1) = [0.0000] Predicho 0 1 Observado Este modelo logit clasifica correctamente 442 casos (casi el 60 %). Hay 248 falsos positivos (34 %) y 50 falsos negativos (6 %) Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad con variables de Oviedo) cualitativas Curso / 28

Ejercicio Heterocedasticidad_2

Ejercicio Heterocedasticidad_2 Ejercicio heterocedasticidad 2. 1 Ejercicio Heterocedasticidad_2 Tengamos los siguientes datos de los beneficios (B i ) y ventas (V i ) de 20 empresas: obs B V 1 13,2 61 2 15 78 3 22,2 158 4 15,2 110 5

Más detalles

T6. Modelos multiecuacionales

T6. Modelos multiecuacionales T6. Modelos multiecuacionales Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 41 Índice 1 Los modelos multiecuacionales: SUR y SEM 2 Modelos

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

Prácticas Tema 5. Ampliaciones del Modelo lineal básico

Prácticas Tema 5. Ampliaciones del Modelo lineal básico Prácticas Tema 5. Ampliaciones del Modelo lineal básico Ana J. López y Rigoberto Pérez Dpto. Economía Aplicada, Universidad de Oviedo PRÁCTICA 5.1. Se ha examinado la evolución reciente de las ventas de

Más detalles

Modelos para variables categóricas

Modelos para variables categóricas Gabriel V. Montes-Rojas Modelo logit multinomial Supongamos que la variable dependiente toma muchos valores, ej. y = 0, 1, 2..., J, aunque los valores de y no representan ningún orden en particular. Éste

Más detalles

y x Estimar por MCO un modelo lineal entre la variable explicada (y) y las

y x Estimar por MCO un modelo lineal entre la variable explicada (y) y las Ejercicio MLG Disponemos de los siguientes datos y x x3 7 6 0 4 3 7 8 6 3 6 6 5 8 9 8 Se pide. Estimar por MCO un modelo lineal entre la variable explicada (y) y las explicativas (x).. Comprobar que el

Más detalles

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo José María Cara Carmona Adrián López Ibáñez MODELO ECONOMÉTRICO Explicación del desempleo Desarrollaremos un modelo econométrico para intentar predecir el desempleo. Trataremos los diversos problemas que

Más detalles

Economía Aplicada. Modelos con variables dependiente binarias. Departamento de Economía Universidad Carlos III de Madrid

Economía Aplicada. Modelos con variables dependiente binarias. Departamento de Economía Universidad Carlos III de Madrid Economía Aplicada Modelos con variables dependiente binarias Departamento de Economía Universidad Carlos III de Madrid Ver Stock y Watson (capítulo 11) 1 / 28 Modelos con variables dependiente binarias:

Más detalles

El Modelo de Regresión Lineal General Estimación

El Modelo de Regresión Lineal General Estimación Tema 5 El Modelo de Regresión Lineal General Estimación Pilar González y Susan Orbe Dpto Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Tema 5 MRLG: Estimación 1

Más detalles

ECONOMETRÍA I. Tema 5: Análisis de regresión múltiple con información cualitativa

ECONOMETRÍA I. Tema 5: Análisis de regresión múltiple con información cualitativa ECONOMETRÍA I Tema 5: Análisis de regresión múltiple con información cualitativa Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

TEMA 5. Modelos para Datos de Conteo

TEMA 5. Modelos para Datos de Conteo TEMA 5. Modelos para Datos de Conteo Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Datos de Conteo 2 Regresión de Poisson 3 Extensiones Datos de Conteo Variable de

Más detalles

Estimación del Probit Ordinal y del Logit Multinomial

Estimación del Probit Ordinal y del Logit Multinomial Estimación del Probit Ordinal y del Logit Multinomial Microeconomía Cuantitativa R. Mora Departmento de Economía Universidad Carlos III de Madrid Esquema Introducción 1 Introducción 2 3 Introducción El

Más detalles

Prácticas Tema 6. Modelos de ecuaciones simultáneas

Prácticas Tema 6. Modelos de ecuaciones simultáneas Prácticas Tema 6. Modelos de ecuaciones simultáneas Ana J. López y Rigoberto Pérez Dpto. Economía Aplicada, Universidad de Oviedo PRÁCTICA 6.1- La oferta agregada de determinado producto agrícola (QS)

Más detalles

Métodos Cuantitativos en Economía

Métodos Cuantitativos en Economía Métodos Cuantitativos en Economía Mitos, leyendas y alguna media verdad Miguel Jerez Universidad Complutense de Madrid Abril 2015 Ver. 16/04/2015, Slide # 1 Esta conferencia se centra en una única idea

Más detalles

TRABAJO ECONOMETRIA (ETAPAS 1,2 Y 3)

TRABAJO ECONOMETRIA (ETAPAS 1,2 Y 3) 1 UNIVERSIDAD TRABAJO ECONOMETRIA (ETAPAS 1,2 Y 3) NOMBRE ALUMNO: ************** ASIGNATURA: ECONOMETRIA FECHA ENTREGA: 05/12/2011 NOTA=70% 2 1. Introducción La integración comercial de Chile al mundo

Más detalles

Econometría III Examen. 29 de Marzo de 2012

Econometría III Examen. 29 de Marzo de 2012 Econometría III Examen. 29 de Marzo de 2012 El examen consta de 20 preguntas de respuesta múltiple. El tiempo máximo es 1:10 minutos. nota: no se pueden hacer preguntas durante el examen a no ser que sean

Más detalles

Introducción a la regresión ordinal

Introducción a la regresión ordinal Introducción a la regresión ordinal Jose Barrera jbarrera@mat.uab.cat 20 de mayo 2009 Jose Barrera (UAB) Introducción a la regresión ordinal 20 de mayo 2009 1 / 11 Introducción a la regresión ordinal 1

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

Modelos con Datos de Panel

Modelos con Datos de Panel Modelos con Datos de Panel Econometría II Grado en Economía Universidad de Granada Modelosdedatosdepanel 1/26 Contenidos Modelosdedatosdepanel 2/26 Elmodelo Modelosdedatosdepanel 3/26 Elmodelo Hasta el

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

T1. Modelos econométricos

T1. Modelos econométricos T1. Modelos econométricos Rigoberto Pérez y Ana J. López Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 16 Índice 1 La modelización econométrica 2 Construcción de modelos

Más detalles

Econometría de Económicas Ejercicios para el tema 2 y 3

Econometría de Económicas Ejercicios para el tema 2 y 3 Econometría de Económicas Ejercicios para el tema 2 y 3 Curso 2005-2006 Profesores Amparo Sancho Perez Guadalupe Serrano Pedro Perez 1 1- Los datos que se adjuntan hacen referencia a los datos de producción

Más detalles

Modelo lineal general (K variables)

Modelo lineal general (K variables) Modelo lineal general (K variables) Interpretación y usos Mariana Marchionni marchionni.mariana@gmail.com Mariana Marchionni Modelo lineal general 1 / 45 Temario de la clase 1 El modelo lineal general

Más detalles

CALIFICACION: - P C: precio medio de los productos sustitutivos existentes en el mercado en euros.

CALIFICACION: - P C: precio medio de los productos sustitutivos existentes en el mercado en euros. 6 + 10 + 3 = 19 CALIFICACION: Ventasgdt Una empresa que produce una marca de detergente líquido desea contar con un modelo para planificar su producción, estimar las necesidades de materias primas y de

Más detalles

Estadística para la Economía y la Gestión IN 3401 Clase 5

Estadística para la Economía y la Gestión IN 3401 Clase 5 Estadística para la Economía y la Gestión IN 3401 Clase 5 21 de octubre de 2009 1 Variables Dummies o cualitativas 2 Omisión de Variables Relevantes Impacto sobre el Insesgamiento Impacto sobre la Varianza

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Universidad de la República, Facultad de Ciencias Económicas y Administración.

Universidad de la República, Facultad de Ciencias Económicas y Administración. Universidad de la República, Facultad de Ciencias Económicas y Administración. ECONOMETRIA II- CURSO 2010 Practica 5 MODELOS DE VARIABLE DEPENDIENTE TRUNCADA CENSURADA, MODELOS DE SELECTIVIDAD, MODELOS

Más detalles

Actividad A5. Modelo de Regresión Lineal General. Estimación. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Actividad A5. Modelo de Regresión Lineal General. Estimación. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Actividad A5 Modelo de Regresión Lineal General. Estimación Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Actividad A5. Estimación

Más detalles

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.

Más detalles

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13 Auxiliar 9 MNL y MLE Daniel Olcay IN4402 21 de octubre de 2014 Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de 2014 1 / 13 Índice Modelos no lineales Probabilidad lineal Probit Logit Máxima verosimilitud

Más detalles

Ejemplo 4.2. Variables ficticias en Gretl. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejemplo 4.2. Variables ficticias en Gretl. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejemplo 4.2 Variables ficticias en Gretl Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejemplo 4.2 Variables ficticias 1 / 40

Más detalles

Tema 4: Cuestiones importantes en el Modelo Lineal General (MLG) Universidad Complutense de Madrid 2013

Tema 4: Cuestiones importantes en el Modelo Lineal General (MLG) Universidad Complutense de Madrid 2013 Tema 4: Cuestiones importantes en el Modelo Lineal General (MLG) Universidad Complutense de Madrid 2013 1 Colinealidad (I) La multicolinealidad es un problema que surge cuando las variables explicativas

Más detalles

Ejemplo 7.1. Heterocedasticidad. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejemplo 7.1. Heterocedasticidad. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejemplo 7.1 Heterocedasticidad Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejemplo 7.1. Heterocedásticidad 1 / 22 Enunciado.

Más detalles

Diplomado en Estadística Aplicada

Diplomado en Estadística Aplicada Diplomado en Estadística Aplicada Con el propósito de mejorar las habilidades para la toma de decisiones, la División de Estudios de Posgrado de la Facultad de Economía ha conjuntado a profesores con especialidad

Más detalles

FACTORES INFLUYENTES EN EL EMPLEO. Econometría II GECO Marina Calvillo Fuentes Rocío Crespo Roldán

FACTORES INFLUYENTES EN EL EMPLEO. Econometría II GECO Marina Calvillo Fuentes Rocío Crespo Roldán FACTORES INFLUYENTES EN EL EMPLEO Econometría II GECO Marina Calvillo Fuentes Rocío Crespo Roldán 2 ÍNDICE: 1. INTRODUCCIÓN 2. PLANTEAMIENTO DEL PROBLEMA 3. GRÁFICOS DE LOS DATOS 4. ESTIMACIÓN DEL MODELO

Más detalles

Ejercicio 5. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejercicio 5. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejercicio 5 Estimación del Modelo de Regresión Lineal General Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejercicio 5 Estimación

Más detalles

Tema 4: Cuestiones importantes en el Modelo Lineal General (MLG) Universidad Complutense de Madrid Febrero de 2012

Tema 4: Cuestiones importantes en el Modelo Lineal General (MLG) Universidad Complutense de Madrid Febrero de 2012 Tema 4: Cuestiones importantes en el Modelo Lineal General (MLG) Universidad Complutense de Madrid Febrero de 2012 Colinealidad (I) La multicolinealidad es un problema que surge cuando las variables explicativas

Más detalles

Documento de Trabajo. Debo inscribir más de 22 créditos?

Documento de Trabajo. Debo inscribir más de 22 créditos? Documento de Trabajo Debo inscribir más de 22 créditos? Rodrigo Navia Carvallo 2004 El autor es Ph.D in Economics, Tulane University, EEUU. Máster of Arts in Economics, Tulane University, EEUU. Licenciado

Más detalles

Prácticas Tema 2: El modelo lineal simple

Prácticas Tema 2: El modelo lineal simple Prácticas Tema 2: El modelo lineal simple Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 2.1- Se han analizado sobre una muestra de 10 familias las variables

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera. Asignatura: Método Cuantitativo Empresarial

UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera. Asignatura: Método Cuantitativo Empresarial UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera Asignatura: Método Cuantitativo Empresarial CLAVE: PDF-421 Prerrequisitos: Licenciatura No. de Créditos: 03 I. PRESENTACION El método

Más detalles

Ejemplo 6.2. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejemplo 6.2. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejemplo 6.2 Inferencia en el Modelo de Regresión Lineal General Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejemplo 6.2 Inferencia

Más detalles

Ejercicio 6. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejercicio 6. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejercicio 6 Inferencia en el Modelo de Regresión Lineal General Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejercicio 6 Inferencia

Más detalles

El Modelo de Regresión Lineal

El Modelo de Regresión Lineal ECONOMETRÍA I El Modelo de Regresión Lineal Dante A. Urbina CONTENIDOS 1. Regresión Lineal Simple 2. Regresión Lineal Múltiple 3. Multicolinealidad 4. Heterocedasticidad 5. Autocorrelación 6. Variables

Más detalles

Regresores deterministas

Regresores deterministas CAPíTULO 7 Regresores deterministas 7.1. Variables ficticias Los datos estadísticos que se utilizan en un modelo de regresión pueden corresponder a variables cuantitativas y cualitativas. Mientras que

Más detalles

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows. TEMA 13 REGRESIÓN LOGÍSTICA Es un tipo de análisis de regresión en el que la variable dependiente no es continua, sino dicotómica, mientras que las variables independientes pueden ser cuantitativas o cualitativas.

Más detalles

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal Estadística Inferencial Sesión No. 9 Regresión y correlación lineal Contextualización En la administración, las decisiones suelen basarse en la relación entre dos o más variables. En esta sesión se estudia

Más detalles

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)

Más detalles

Guía docente 2007/2008

Guía docente 2007/2008 Guía docente 2007/2008 Plan 247 Lic.Investigación y Tec.Mercado Asignatura 43579 METODOS CUANTITATIVOS PARA LA INVESTIGACION DE MERCADOS Grupo 1 Presentación Métodos y técnicas cuantitativas de investigación

Más detalles

Econometría Aplicada

Econometría Aplicada Econometría Aplicada y función de Verosimilitud Víctor Medina Los objetivos de esta parte del curso principalmente son: 1. Dar algunos ejemplos de decisiones económicas donde la variable dependiente es

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Taller 10: Modelos con variable dependiente cualitativa Econometría

Taller 10: Modelos con variable dependiente cualitativa Econometría Taller 10: Modelos con variable dependiente cualitativa 06216 11-04- 2011 Profesor: Carlos Giovanni González Espítia Monitores: Adriana Caicedo Jessica Echeverry Samir Aristizábal Notas: Recuerde que únicamente

Más detalles

Lucila Finkel Temario

Lucila Finkel Temario Lucila Finkel Temario 1. Introducción: el análisis exploratorio de los datos. 2. Tablas de contingencia y asociación entre variables. 3. Correlación bivariada. 4. Contrastes sobre medias. 5. Regresión

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

TEMA 3. Modelos de Elección Discreta

TEMA 3. Modelos de Elección Discreta TEMA 3. Modelos de Elección Discreta Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Introducción 2 Modelos para respuesta binaria Modelo Lineal de Probabilidad Modelos

Más detalles

Variables Cualitativas

Variables Cualitativas Tema 7 Variables Cualitativas Contenido 7.1. Introducción. Un ejemplo...................... 118 7.2. Modelo con una variable cualitativa................ 118 7.2.1. Incorporación de variables cuantitativas.............

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes 1 Tema 2: Análisis de datos bivariantes En este tema: Tabla de contingencia, tabla de doble entrada, distribución conjunta. Frecuencias relativas, marginales, condicionadas. Diagrama de dispersión. Tipos

Más detalles

TEMA V ANÁLISIS DE REGRESIÓN LOGÍSTICA

TEMA V ANÁLISIS DE REGRESIÓN LOGÍSTICA TEMA V ANÁLISIS DE REGRESIÓN LOGÍSTICA LECTURA OBLIGATORIA Regresión Logística. En Rial, A. y Varela, J. (2008). Estadística Práctica para la Investigación en Ciencias de la Salud. Coruña: Netbiblo. Páginas

Más detalles

Cálculo de Probabilidades II Preguntas Tema 2

Cálculo de Probabilidades II Preguntas Tema 2 Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución

Más detalles

MODELO ECONOMETRICO DE VENTA DE CAMIONETAS

MODELO ECONOMETRICO DE VENTA DE CAMIONETAS MODELO ECONOMETRICO DE VENTA DE CAMIONETAS Nombre: Evelyn Neira Cinthya Toledo Macarena Candia Fecha: 10 de Mayo 2012 Asignatura: Econometría Profesor: Pablo Quezada Introducción El mercado de vehículos

Más detalles

Andrea Bayancela Espinel Coordinación y edición: Eugenio Paladines y David Villamar

Andrea Bayancela Espinel Coordinación y edición: Eugenio Paladines y David Villamar Determinación de los niveles óptimos del Seguro de Depósitos del Ecuador a partir de su función de distribución de pérdidas esperadas y de la estimación de las probabilidades de riesgo alto de las entidades

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Brindar al alumno los conocimientos de los métodos econométricos fundamentales y de los conceptos estadísticos que éstos requieren,

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD NACIONAL DE SALUD PÚBLICA Héctor Abad Gómez ldbello@saludpublica.udea.edu.co Facultad Nacional de Salud Pública Héctor Abad Gómez www.leondariobello.com www.ciemonline.info/moodle

Más detalles

Pérdida Esperada. Pérdida Esperada (PE): Valor esperado de pérdida por riesgo crediticio en un horizonte de tiempo determinado.

Pérdida Esperada. Pérdida Esperada (PE): Valor esperado de pérdida por riesgo crediticio en un horizonte de tiempo determinado. Pérdida Esperada Uno de los objetivos de este estudio es construir una función de pérdidas para el portafolio de la cartera de préstamos que ofrece la entidad G&T Continental, basados en el comportamiento

Más detalles

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía ECONOMETRÍA I Tema 2: El Modelo de Regresión Lineal Simple Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 42 Modelo de Regresión

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

EVOLUCIÓN DE DOS ÍNDICES BURSÁTILES Y DEL PRECIO DEL PETÓLEO EN ECONOMÍAS ABIERTAS EN CICLOS DE EXPANSIÓN-CRISIS EN EL PERÍODO 2003:1-2010:5.

EVOLUCIÓN DE DOS ÍNDICES BURSÁTILES Y DEL PRECIO DEL PETÓLEO EN ECONOMÍAS ABIERTAS EN CICLOS DE EXPANSIÓN-CRISIS EN EL PERÍODO 2003:1-2010:5. EVOLUCIÓN DE DOS ÍNDICES BURSÁTILES Y DEL PRECIO DEL PETÓLEO EN ECONOMÍAS ABIERTAS EN CICLOS DE EXPANSIÓN-CRISIS EN EL PERÍODO 2003:1-2010:5. En este trabajo realizo un estudio entre las variables, con

Más detalles

GRADO : ADE ASIGNATURA: ECONOMETRÍA I. Curso: 2 Cuatrimestre: 2 Asignaturas que se recomienda tener superadas: Estadística I y II

GRADO : ADE ASIGNATURA: ECONOMETRÍA I. Curso: 2 Cuatrimestre: 2 Asignaturas que se recomienda tener superadas: Estadística I y II FICHA DESCRIPTIVA DE LA ASIGNATURA GUIA DOCENTE Curso Académico 2012/2013 GRADO : ADE ASIGNATURA: ECONOMETRÍA I Módulo Materia Ampliaciones de Métodos Cuantitativos Econometría Créditos 6 Ubicación Carácter

Más detalles

Metodología cuantitativa IV

Metodología cuantitativa IV Departamento de Ciencias Políticas y Sociales Grado en Ciencias Políticas y de la Administración Universitat Pompeu Fabra Metodología cuantitativa IV Clase 8: regresión logística binaria Bruno Arpino (Despacho:

Más detalles

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple ESTDÍSTIC PLICD Grado en Nutrición Humana y Dietética Planteamiento del problema Tema 4: Regresión lineal simple Recta de regresión de mínimos cuadrados El modelo de regresión lineal simple IC y contrastes

Más detalles

Guía breve de análisis de series temporales unidimensionales con Gretl

Guía breve de análisis de series temporales unidimensionales con Gretl Guía breve de análisis de series temporales unidimensionales con Gretl 1. Pasos a seguir 1. Representación de la serie temporal (Variable Gráfico de series temporales). 2. Serie temporal no estacionaria

Más detalles

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA GUÍA DOCENTE 2012-2013 ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1. Denominación de la asignatura: ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA Titulación GRADO EN FINANZAS Y CONTABILIDAD Código 5592

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes Tema 2: Análisis de datos bivariantes Los contenidos a desarrollar en este tema son los siguientes: 1. Tablas de doble entrada. 2. Diagramas de dispersión. 3. Covarianza y Correlación. 4. Regresión lineal.

Más detalles

Modelos Dinámicos. Tema Introducción

Modelos Dinámicos. Tema Introducción Tema 6 Modelos Dinámicos 6.1. Introducción Este tema vuelve a ocuparse de la modelización de relaciones entre variables dentro de un contexto de datos en el tiempo o series temporales. Como ya comentamos

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

Tema 6. Multicolinealidad. Contenido Multicolinealidad perfecta Multicolinealidad de grado alto

Tema 6. Multicolinealidad. Contenido Multicolinealidad perfecta Multicolinealidad de grado alto Tema 6 Multicolinealidad Contenido 6.1. Multicolinealidad perfecta...................... 108 6.. Multicolinealidad de grado alto................... 110 108 Tema 6. Multicolinealidad A la hora de estimar

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

Tribunal de la Oposición al Cuerpo Superior de Estadísticos del Estado

Tribunal de la Oposición al Cuerpo Superior de Estadísticos del Estado Tribunal de la Oposición al Cuerpo Superior de Estadísticos del Estado Pruebas selectivas para el ingreso en el Cuerpo Superior de Estadísticos del Estado. Orden ECC/1517/2015, de 16 de Julio (BOE 27/07/2015).

Más detalles

UNIVERSIDAD DE MÁLAGA FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA (ESTADÍSTICA Y ECONOMETRÍA) TESIS DOCTORAL

UNIVERSIDAD DE MÁLAGA FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA (ESTADÍSTICA Y ECONOMETRÍA) TESIS DOCTORAL UNIVERSIDAD DE MÁLAGA FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA (ESTADÍSTICA Y ECONOMETRÍA) TESIS DOCTORAL ANÁLISIS ECONÓMICO DE LA SATISFACCIÓN LABORAL DIRECTORA:

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Regresión logística Profesor: Dr. Wilfrido Gómez Flores 1 Regresión logística Supóngase que se tiene una variable binaria de salida Y, y se desea modelar la probabilidad condicional P(Y=1

Más detalles

Marco Hernando Albarrán Núñez. Facultad de Ciencias Universidad Nacional Autónoma de México.

Marco Hernando Albarrán Núñez. Facultad de Ciencias Universidad Nacional Autónoma de México. FACTORES QUE CONDICIONAN LA PROBABILIDAD DE COTIZAR A LAS PENSIONES DE RETIRO EN MÉXICO Marco Hernando Albarrán Núñez Facultad de Ciencias Universidad Nacional Autónoma de México marcoalbarran@ciencias.unam.mx

Más detalles

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación ECONOMETRÍA I Tema 3: El Modelo de Regresión Lineal Múltiple: estimación Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 45

Más detalles

Contrastes de restricciones lineales y predicción

Contrastes de restricciones lineales y predicción Tema 4 Contrastes de restricciones lineales y predicción Contenido 4.1. Contrastes de restricciones lineales................. 78 4.2. Contrastes utilizando Gretl..................... 80 4.3. Estimación

Más detalles

Guillermo Ayala Gallego Universidad de Valencia

Guillermo Ayala Gallego Universidad de Valencia GoBack Regresión logística Guillermo Ayala Gallego Universidad de Valencia 4 de febrero de 2009 1 / 22 Puede que sea el procedimiento estadístico más utilizado. Con aplicaciones frecuentes en Medicina

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Sesión 7 - Modelos de variable censurada y truncada

Sesión 7 - Modelos de variable censurada y truncada Sesión 7 - Modelos de variable censurada y truncada Manuel Barrón 5 de Julio de 2010 1 Mecanismos de censura y truncamiento 1.1 Distribución truncada Una distribución truncada es una parte de una distribución

Más detalles

Análisis de Datos y Métodos Cuantitativos para la D.T. VI versión MGM

Análisis de Datos y Métodos Cuantitativos para la D.T. VI versión MGM Universidad Católica del Norte Escuela de Negocios Mineros Magister en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la D.T. VI versión MGM Antofagasta, Junio de 2013 Profesor: Fernando

Más detalles

EJERCICIOS RESUELTOS DE ECONOMETRÍA CON GRETL

EJERCICIOS RESUELTOS DE ECONOMETRÍA CON GRETL EJERCICIOS RESUELTOS DE ECONOMETRÍA CON GRETL PRÁCTICA Rosa Badillo Amador Susana Tena Nebot Rocío Munuera Navarro PRÁCTICA Se pretende analizar de qué factores depende el salario mensual de las familias

Más detalles

(3620) ECONOMETRÍA (3620)

(3620) ECONOMETRÍA (3620) Programa de la asignatura Curso: 2013 / 2014 (3620) ECONOMETRÍA (3620) PROFESORADO Profesor/es: MARIA ISABEL LANDALUCE CALVO - correo-e: iland@ubu.es FICHA TÉCNICA Titulación: LICENCIATURA EN ADMINISTRACIÓN

Más detalles

PRINCIPIOS DE ECONOMETRÍA

PRINCIPIOS DE ECONOMETRÍA PRINCIPIOS DE ECONOMETRÍA 2009-2010 I. IDENTIFICACIÓN Asignatura: Duración: Titulación: Ciclo: Departamento: Profesor: Principios de Econometría Semestral (Primer semestre) Licenciatura en Economía Primer

Más detalles

Modelo de Regresión Lineal Múltiple

Modelo de Regresión Lineal Múltiple Tema 3 Modelo de Regresión Lineal Múltiple Contenido 3.1. Introducción. Un ejemplo...................... 52 3.2. Estimación de Mínimos Cuadrados Ordinarios utilizando Gretl. 54 3.3. Análisis de los resultados

Más detalles

Curs de Modelització Estadística Bàsica amb Deducer. Anabel Blasco Ana Vázquez Anna Espinal Llorenç Badiella Oliver Valero

Curs de Modelització Estadística Bàsica amb Deducer. Anabel Blasco Ana Vázquez Anna Espinal Llorenç Badiella Oliver Valero Curs de Modelització Estadística Bàsica amb Deducer Anabel Blasco Ana Vázquez Anna Espinal Llorenç Badiella Oliver Valero 1. Model de Regressió Lineal 2. Model ANOVA 3. Model Lineal General 4. Model de

Más detalles

DEMANDA DE AUTOMOVILES EN ESPAÑA

DEMANDA DE AUTOMOVILES EN ESPAÑA MODELO ECONOMETRICO DEMANDA DE AUTOMOVILES EN ESPAÑA Pablo Javier Benavides Montes (pablojavier@correo.ugr.es) 3º GECO A INDICE: Pagina 1. Resumen..2 2. Motivaciones.2 3. Introducción..2-4 4. Datos 5-9

Más detalles

PORQUE LA ECONOMIA YA NO CRECE COMO EN LOS 60-70?.

PORQUE LA ECONOMIA YA NO CRECE COMO EN LOS 60-70?. PORQUE LA ECONOMIA YA NO CRECE COMO EN LOS 60-70?. La creciente apertura externa de la economía nicaragüense no deja de ser fuente de problemas y preocupaciones, en la medida en que porcentajes crecientes

Más detalles

Sesión 3 - Modelos de elección discreta binarios I

Sesión 3 - Modelos de elección discreta binarios I Sesión 3 - Modelos de elección discreta binarios I Manuel Barrón 28 de Junio de 2010 1 Modelo de probabilidad lineal (MPL) Empezaremos la discusión siguiendo el ejemplo de participación laboral en Greene.

Más detalles