Curvas en el espacio.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curvas en el espacio."

Transcripción

1 Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos r() y r(b) son los extremos inicil y finl de l curv. En el cso de que r() = r(b), diremos que l curv es cerrd. Decimos que dos funciones ϕ : [, b] R n y ψ : [α, β] R n son equivlentes si existe un función λ : [, b] [α, β] biyectiv y continu tl que ψ λ = ϕ. L función λ recibe el nombre de cmbio de prámetro. Dos funciones equivlentes representn prmetrizciones distints de l mism curv y l función λ represent un cmbio en l rpidez del movimiento. - Si λ es creciente, se dice que ls prmetrizciones ϕ y ψ conservn l orientción de l curv. - Si λ es decreciente, ls prmetrizciones ϕ y ψ invierten l orientción de l curv. Por ejemplo, ls funciones f 1 (t) = (cos t, sen t), f 2 (t) = (cos t, sen t), f 3 (t) = (cos 2t, sen 2t), t [0, 2π], t [0, 2π], t [0, π], son equivlentes (tods ells describen l circunferenci unidd), pero f 1 y f 3 hcen que l curv se recorr en sentido ntihorrio, y f 2 en sentido horrio. Ls propieddes geométrics de un curv pueden describirse medinte ls propieddes de l función que l describe. Definimos continución ls principles operciones con funciones vectoriles y enuncimos sus propieddes básics, ls cules se plicn directmente l estudio de ls curvs en el espcio. Operciones con funciones vectoriles. Teniendo en cuent el hecho de que tod función vectoril f : R R n se puede descomponer en n funciones esclres, se pueden definir ls operciones lgebrics con dichs funciones de mner nálog ls correspondientes con funciones esclres. Dds f, g : R R n y u : R R, se definen 1. Sum: f + g : R R n como (f + g)(t) = f(t) + g(t). 2. Multiplicción por un función esclr: uf : R R n, como (uf)(t) = u(t) f(t). 1

2 3. Producto esclr: f g : R R n, como (f g)(t) = f(t) g(t). 4. Producto vectoril (pr n = 3): f g : R R n, como (f g)(t) = f(t) g(t). 5. Composición: f u : R R n, como (f u)(t) = f(u(t)). Límites y continuidd de funciones vectoriles. Si f = (f 1,..., f n ) : R R n es un función vectoril, se define ( ) lím f(t) = lím f 1 (t),..., lím f n (t). t t 0 t t 0 t t0 Un función vectoril es continu en t 0 si lím t t0 f(t) = f(t 0 ). Derivción de funciones vectoriles. Un función vectoril f : R R n es derivble en t 0 si existe Si f es derivble en t, entonces f f(t 0 + h) f(t 0 ) (t 0 ) = lím. t t0 h df dt = f (t) = (f 1(t),..., f n(t)). Dd un curv r(t) = (x 1 (t),..., x n (t)), el vector r (t) (cso de ser no nulo) recibe el nombre de vector tngente l curv. Si r (t) = 0, no se define el vector tngente (en este cso el móvil está en reposo y puede hber un cmbio brusco de dirección). Denotmos por T (t) = r (t)/ r (t) l vector tngente unitrio. Llmmos tmbién rect tngente l curv r en P 0 l rect que ps por el punto P 0 = r(t 0 ) y tiene l dirección del vector r (t 0 ). Su ecución es, por tnto, f(λ) = r(t 0 ) + λ r (t 0 ). Observemos que el concepto de vector unitrio tngente no depende de l prmetrizción, pues si ϕ y ψ son prmetrizciones distints de l mism curv, entonces ψ λ = ϕ, de modo que ϕ (t) = ψ (λ(t)) λ (t) = ϕ (t) ϕ (t) = ψ (λ(t)) λ (t) ψ (λ(t)) λ (t) = ± ψ (λ(t)) ψ (λ(t)), donde el signo indic sólo si ls prmetrizciones mntienen o invierten l orientción de l curv. 2

3 Ejemplos. 1. Si r(t) = (x 0 + t, y 0 + bt, z 0 + ct) es un rect, su rect tngente coincide con l propi rect r. 2. Si r(t) C = es l ecución de un circunferenci (con centro C y rdio ), l rect tngente en un punto P = r(t) es perpendiculr r(t) C (vector que une el punto P con el centro C). 3. Si r(t) represent el vector de posición (como función del tiempo t) de un prtícul móvil en el espcio, entonces v(t) = r (t) y (t) = r (t) representn los vectores velocidd y celerción de l prtícul en el instnte t, respectivmente. El vector velocidd tiene l dirección de l rect tngente l curv. Csos prticulres (se dej como ejercicio l comprobción de los hechos que se citn): ) El movimiento rectilíneo viene ddo por el vector de posición r(t) = P +u(t) A, de modo que l velocidd v(t) = u (t) A y l celerción (t) = u (t) A tienen l mism dirección del movimiento. b) El movimiento circulr en el plno viene ddo por r(t) = (ρ cos u(t), ρ sen u(t)). Entonces v(t) = ρ u (t), donde u (t) represent l velocidd ngulr. Por ejemplo, si u(t) = ωt (ω > 0), el movimiento tiene sentido contrrio l de ls gujs del reloj y (t) = ω 2 r(t) es un vector que tiene sentido contrrio r(t) (de hí que recib el nombre de celerción centrípet). c) El movimiento helicoidl viene definido por el vector de posición r(t) = ( cos ωt, sen ωt, bt) y represent un hélice circulr en donde l componente z es proporcionl l ángulo de giro ϑ = ωt y l proyección sobre el plno XY es un circunferenci. En este cso, el vector celerción (t) = ω 2 ( cos ωt, sen ωt, 0) es prlelo l plno XY y v dirigido hci el eje Z. Además, los vectores velocidd y celerción son perpendiculres en todos los puntos del recorrido. Propieddes. Si f, g : R R n y u : R R son derivbles, demás de ls propieddes nálogs ls correspondientes con funciones esclres, se verificn ls siguientes: 1. d dt (f(t) g(t)) = f(t) g (t) + f (t) g(t). 3

4 2. 3. d dt (f(t) g(t)) = f(t) g (t) + f (t) g(t). d dt (f(u(t)) = u (t) f (u(t)). 4. Si f es derivble y tiene longitud constnte en un intervlo bierto I, entonces f(t) f (t) = 0, t I. (Bst observr que f(t) 2 = f(t) f(t) = c.) Integrción de funciones vectoriles. Un función vectoril f : R R n es integrble cundo lo son tods sus componentes. Se define sí: b ( b b ) f(t) dt = f 1 (t) dt,..., f n (t) dt. Propieddes. t 1. Si f : R R n es continu en R y g(t) = f(s) ds, entonces g es derivble y g (t) = f(t), t. b b 2. Si f y f son integrbles en [, b], entonces f(t) dt f(t) dt. Longitud de rcos de curvs. Un función vectoril ϕ : [, b] R n se dice que es regulr si ϕ C (1) ([, b]) y ϕ (t) 0, t [, b]. Llmmos entonces un curv regulr l que dmite lgun prmetrizción regulr. En generl, un curv regulr trozos es quell que dmite un prmetrizción ϕ regulr trozos, es decir cundo existe un prtición P de [, b] tl que l restricción de ϕ cd subintervlo bierto de P es regulr. Por ejemplo, l poligonl ϕ(t) = (t, t 1 ), t [0, 2], y l stroide x 2/3 + y 2/3 = 1 son curvs regulres trozos. Un plicción λ : [, b] [α, β] es un cmbio regulr de prámetro si i) λ es biyectiv. ii) λ C (1) [, b]. iii) λ (t) > 0, t (, b). 4

5 Por ejemplo, ϕ(t) = (t 3 + 1, t 3 ), t [ 1, 1], y ψ(t) = (t, t 1 ), t [0, 2], son prmetrizciones de l curv y = x 1 y l función λ(t) = t 3 + 1, t [ 1, 1] no es un cmbio regulr pues λ (0) = 0. Esto es debido que ϕ no es un prmetrizción regulr pues ϕ (0) = (0, 0). Proposición. Sen ϕ, ψ dos prmetrizciones equivlentes, con ψ λ = ϕ. ) Si ψ es regulr y λ un cmbio regulr de prámetro, entonces ϕ es regulr. b) Si ϕ, ψ son regulres, entonces λ es un cmbio regulr. L curv C es simple cundo ϕ es inyectiv (slvo quizás en los extremos). Así, por ejemplo, l curv definid por l función ϕ 1 (t) = (cos t, sen t), t [0, 2π], es simple pero si definimos ϕ 2 (t) = (cos 2t, sen 2t), t [0, 2π], entonces l curv obtenid no es simple. Dd un curv C con vector de posición r(t), se define l longitud de rco de curv entre los puntos r() y r(b) l supremo de ls longitudes de ls poligonles inscrits l curv entre dichos puntos, cso de existir. En este cso, se dice que l curv es rectificble. De form más precis, podemos dr l siguiente definición. Definición. Dd un función ϕ : [, b] R n, se llm vrición de ϕ con respecto un prtición P = {t 0, t 1,..., t m } de [, b] V (ϕ, P ) = ϕ(t i ) ϕ(t i 1 ). Llmmos vrición totl de ϕ en [, b] V (ϕ) = sup V (ϕ, P ), P cso de que exist. L función ϕ es de vrición cotd cundo V (ϕ) <. En este cso escribiremos ϕ VA[, b]. Por l propi definición, es clro que l(c) = V (ϕ). Propieddes. 1. ϕ VA[, b] si y sólo si cd un de sus componentes es de vrición cotd en [, b]. Bst observr que ( n 2 ϕ j (t i ) ϕ j (t i 1 ) 2 ϕ(t i ) ϕ(t i 1 ) 2 ϕ j (t i ) ϕ j (t i 1 ) ). j=1 5

6 2. Si ϕ, ψ son continus, entonces son equivlentes si y sólo si V (ϕ) = V (ψ). Lem. Si C es un curv rectificble y ϕ : [, b] R n un prmetrizción de C, entonces ε, δ > 0, P prtición de [, b] con diámetro menor que δ tl que l(c) V (ϕ, P ) < ε. Teorem. Si C es un curv regulr, entonces es rectificble y su longitud es l(c) = b ϕ (t) dt, donde ϕ : [, b] R n es un prmetrizción regulr de C. Si un curv es regulr trozos, su longitud se clcul sumndo ls longitudes de cd trmo regulr. Demostrción. L función ϕ (t) es continu, por tnto integrble. Si llmmos l = b ϕ (t) dt, debemos probr que l(c) l < ε, ε > 0. Por un prte, ddo ε > 0, existe δ > 0 tl que, si P es un prtición de diámetro menor que δ, P = {t 0, t 1,..., t m } y τ i [t i 1, t i ] es rbitrrio, l ϕ (τ i ) (t i t i 1 ) < ε/3. Por otr prte, si σ/2 = mín t b ϕ (t), como ϕ (t) > 0, pr todo t, entonces σ > 0. Ls componentes ϕ j son uniformemente continus en [, b]. Por tnto, existe δ j > 0 tl que (ϕ j(t )) 2 (ϕ j(t )) 2 < σ ε 6n(b ), si t t < δ j. Se δ = mín{δ, δ 1,..., δ n }. Por el lem nterior, existe un prtición P de diámetro menor que δ tl que l(c) V (ϕ, P ) < ε/3. 6

7 Agrupndo todo, result: m l(c) l l(c) V (ϕ, P ) + V (ϕ, P ) ϕ (τ i ) (t i t i 1 ) + ϕ (τ i ) (t i t i 1 ) l ε < 3 + [ ϕ(t i ) ϕ(t i 1 ) ϕ (τ i ) (t i t i 1 )] + ε 3. Pr cotr el término intermedio, hcemos lo siguiente: [ ϕ(t i ) ϕ(t i 1 ) ϕ (τ i ) (t i t i 1 )] n = ϕ j (t i ) ϕ j (t i 1 ) 2 ϕ (τ i ) (t i t i 1 ) j=1 n = ϕ j (s i) 2 ϕ (τ i ) (t i t i 1 ) j=1 n = j=1 ( ϕ j(s i ) 2 ϕ j(τ i ) 2 ) n (t i t i 1 ) j=1 ϕ j (s i) 2 + ϕ (τ i ) n j=1 (t i t i 1 ) = ε 3. σε 6n(b ) σ/2 Ejemplo. L curv f : [0, 1] R 2 definid por f(t) = (t, t cos π/(2t)) no es rectificble. Pr comprobrlo, bst elegir l prtición P = {0, 1/(2n), 1/(2n 1),..., 1/2, 1}. Prámetro rco. L longitud de rco permite definir un prmetrizción nturl de ls curvs. Se pues C un curv regulr y ϕ : [, b] R n un prmetrizción regulr de C. Si llmmos l l longitud de C, podemos definir s : [, b] [0, l] como s(t) = t 7 ϕ (u) du.

8 Clrmente, s() = 0 y s(b) = l. Por el teorem fundmentl del cálculo integrl, s (t) = ϕ (t) > 0, de modo que s es un función creciente y represent un cmbio regulr de prámetro. Definimos entonces l prmetrizción χ : [0, l] R n por χ = ϕ s 1, l cul recibe el nombre de representción prmétric intrínsec de l curv C. Es fácil demostrr hor que χ(u) = 1, u [0, l] (el vector tngente es unitrio en todo el recorrido de l curv). En efecto, como χ = ϕ s 1, entonces χ (u) = ϕ (s 1 (u)) (s 1 ) (u) = ϕ (s 1 (u)) s (s 1 (u)) = ϕ (s 1 (u)) ϕ (s 1 (u)). Ejemplo. Si ϕ(t) = (cos mt, sen mt) (0 t 2π, m N), entonces ϕ (t) = m, pr todo t. Bst definir s(t) = mt; de este modo, s 1 (u) = u/m y χ(u) = ϕ(u/m) = (cos u, sen u) es l representción intrínsec de l curv. Ejercicio. Identificr y clculr l longitud de ls curvs definids por ls funciones siguientes: () ϕ(t) = (t 3 4t, t 2 4), t [ 5/2, 5/2]. ( t (b) ϕ(t) = 2 t, ), 3 t [ 1, 1]. 1+t 2 1+t 2 (c) ϕ(t) = (t sen t, 1 cos t), t [0, 2π]. (d) ϕ(t) = (cos 3 t, sen 3 t), t [0, 2π]. (e) ϕ(t) = ( t, t 1/2 ), t [ 1, 1]. (f) ϕ(t) = (ch t, sh t, t), en [0, t]. (g) ϕ(t) = (cos t, sen t, t), en [0, t]. 8

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY.

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. 42 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril 2006. FUNCIONES SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. Resumen Se prueb que tod función holomorf es nlític, y recíprocmente. Se desrroll

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo 2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teorems de punto fijo Definición 1. Se X un espcio vectoril rel. Se dice que un

Más detalles

Contenidos. Tema 1. Geometría Diferencial. Producto Escalar y Vectorial Producto escalar.

Contenidos. Tema 1. Geometría Diferencial. Producto Escalar y Vectorial Producto escalar. Contenidos Tem 1. Geometrí Diferencil Curvs en el espcio Análisis Vectoril y Estdístico Preliminres Operciones con vectores en R 3 Producto esclr Producto Vectoril Deprtmento de Mtemátic Aplicd E.P.S.

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

TEMA 1. CÁLCULO VECTORIAL.

TEMA 1. CÁLCULO VECTORIAL. TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

Teorema del punto fijo Rodrigo Vargas

Teorema del punto fijo Rodrigo Vargas Teorem del punto fijo Rodrigo Vrgs Definición 1. Un punto fijo de un plicción f : M M es un punto x M tl que f(x) = x. Definición 2. Sen M, N espcios métricos. Un plicción f : M N es un contrcción cundo

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales Tem 8.4: Teorem de Runge. Aproximción de funciones holomorfs por funciones rcionles Fcultd de Ciencis Experimentles, Curso 2008-09 Enrique de Amo, Universidd de Almerí Sbemos que ls funciones holomorfs

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

1.6. Integral de línea de un Campo Vectorial Gradiente.

1.6. Integral de línea de un Campo Vectorial Gradiente. 1.6. Integrl de líne de un mpo Vectoril Grdiente. n Definición. Se l función esclr f definid por f : D R R, un función continumente diferencible, y se l curv, un curv prcilmente suve definid prmétricmente

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

Funciones vectoriales de una variable

Funciones vectoriales de una variable Cpítulo 4 Funciones vectoriles de un vrible Derivción de funciones vectoriles de un vrible. Teorem del incremento finito y desrrollo de Tylor. Longitud de un rco de curv. Integrl respecto l rco. Aplicciones

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

1. Introducción: longitud de una curva

1. Introducción: longitud de una curva 1. Introducción: longitud de un curv Integrles de L ide pr clculr l longitud de un curv contenid en el plno o en el espcio consiste en dividirl en segmentos pequeños, escogiendo un fmili finit de puntos

Más detalles

5. INTEGRAL DE LÍNEA. 5.1 Introducción. 5.2 Curvas

5. INTEGRAL DE LÍNEA. 5.1 Introducción. 5.2 Curvas 5. INTEGRAL DE LÍNEA 5.1 Introducción Nos proponemos mplir l noción de integrl, que y conocemos pr el cso de funciones de un vrile rel, cmpos de vris vriles. Cundo se definí l integrl definid pr un función

Más detalles

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por Operdor nbl El operdor nbl es: = xˆ x + ŷ y + ẑ z Definimos el grdiente de un cmpo esclr ϕ(x ) por: ϕ =xˆ ϕ x + ŷ ϕ y + ẑ ϕ z e A (x ) =A x (x )xˆ +A y (x )ŷ +A z (x )ẑ un cmpo vectorl. L divergenci de

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x.

INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x. INTEGRALES IMPROPIAS Hst hor hemos estudido l integrl de Riemnn de un función f cotd y definid en un intervlo cerrdo y cotdo [, ], con., Ahor generlizmos este concepto.. Integrl de un función cotd, definid

Más detalles

AN ALISIS MATEM ATICO B ASICO.

AN ALISIS MATEM ATICO B ASICO. AN ALISIS MATEM ATICO B ASICO. LONGITUDES, AREAS Y VOL UMENES. Un trtmiento mlio de l integrl ermite el clculo de longitudes de curvs, res de suercies (lns y lbeds) y de volumenes. Con nuestro conocimiento

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros.

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros. 4. Espcios vectoriles, definición propieddes Viguers En l Físic, con frecuenci se us el término vector pr descriir mgnitudes como l fuer, l velocidd, l celerción, otros fenómenos de l nturle, sin emrgo

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

LA INTEGRAL DE RIEMANN

LA INTEGRAL DE RIEMANN LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,

Más detalles

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero Vectores en el espcio º Bchillerto An Mª Zptero El conjunto R Es un conjunto de terns ordends de números reles R { ( x, y, z ) / x R, y R, z R } Primer componente Segund componente Tercer componente Iguldd

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

5.1. Integral sobre regiones elementales.

5.1. Integral sobre regiones elementales. Cpítulo 5 INTEGRAL MÚLTIPLE SECCIONES. Integrles dobles sobre rectángulos.. Integrles dobles sobre regiones generles. 3. Cmbio de vribles en l integrl doble. 4. Integrles triples. 5. Ejercicios propuestos.

Más detalles

CÁLCULO INTEGRAL EN VARIAS VARIABLES

CÁLCULO INTEGRAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO INTEGRAL EN VARIAS VARIABLES Rmón Bruzul Mrisel Domínguez Crcs, Venezuel Julio 25 Rmón

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Teoremas de convergencia

Teoremas de convergencia Cpítulo 3 Teorems de convergenci L necesidd de considerr límites de sucesiones o series de funciones es básic en el estudio del nálisis. Por tnto, es nturl preguntrse bjo qué condiciones se tiene que un

Más detalles

3 Funciones con valores vectoriales

3 Funciones con valores vectoriales GTP 3. Cálculo II - 20 3. Tryectoris: velocidd y longitud de rco 3 Funciones con vlores vectoriles 3. Tryectoris: velocidd y longitud de rco. Pr cd un de ls siguientes curvs determinr los vectores velocidd

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

Integrales de línea. Índice. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1.

Integrales de línea. Índice. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1. Integrles de líne ISABEL MARRERO Deprtmento de Análisis Mtemático Universidd de L Lgun imrrero@ull.es Índice 1. Introducción 1 2. minos 1 3. Integrl de líne de cmpos esclres 2 3.1. Definición.............................................

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.

Más detalles

Curvas en el plano o en el espacio

Curvas en el plano o en el espacio Lección 3 Curvs en el plno o en el espcio 3.1. Cminos y curvs en R n Definiciones. Un cmino en R n es un función continu γ : [,b] R n con,b R, < b. Decimos tmbién que el conjunto Γ = γ(t) : t b} es un

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

Tema VII: Plano afín y espacio afín

Tema VII: Plano afín y espacio afín Tem VII: Plno fín y espcio fín Hst hor el contexto en el que hemos trbjdo h sido fundmentlmente el de los espcios IR n, y de estos espcios nos h interesdo su estructur vectoril, es decir, por decirlo con

Más detalles

es pa c i o s c o n p r o d U c t o

es pa c i o s c o n p r o d U c t o Unidd 5 es p c i o s c o n p r o d U c t o i n t e r n o (n o r M, d i s t n c i ) Objetivos: Al inlizr l unidd, el lumno: Aplicrá los conceptos de longitud y dirección de vectores en R. Aplicrá el concepto

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

Capítulo 4 INTEGRACIÓN

Capítulo 4 INTEGRACIÓN pítulo 4 INTEGRAIÓN En el primer curso de álculo, se prendió el concepto de integrl indefinid y definid de funciones reles de vrible rel, y se dedujeron vris propieddes de ls misms: linelidd, monotoní,

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles