PLAN DE TRABAJO 11 Período 23/10/06 al 3/11/06. Durante estas dos semanas estudiarás los modelos de regresiones lineales.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PLAN DE TRABAJO 11 Período 23/10/06 al 3/11/06. Durante estas dos semanas estudiarás los modelos de regresiones lineales."

Transcripción

1 Pla de Trabajo 0- Año 006 Curso Lbre Assdo de Esadísca II Docees resposables: Lercy Barros - María Sague PLAN DE TRABAJO Período 3/0/06 al 3//06 TEMAS A ESTUDIAR Durae esas dos semaas esudarás los modelos de regresoes leales. A) Comezarás co el modelo de regresó leal smple. Deberás compreder los sguees cocepos: Defcó del modelo: se supoe u modelo de regresó leal smple para eplcar la varable Y (depedee o edógea) dada la formacó de la varable eplcava X (depedee o eógea) cuado se plaea la relacó: ( Y / X ) β0 +β + ε,,..., dode β 0 y β so parámeros descoocdos (a esmar), ε so varables aleaoras o observables (perurbacoes o errores) y es el amaño de muesra. E el modelo de regresó smple se ea eplcar el comporameo de ua varable aleaora Y, medae ora, o aleaora (o que se supoe o aleaora, o cluso que smplemee se puede corolar) X; de allí que se llama a la prmera, la varable eplcada y a la seguda la varable eplcava. Los supuesos cláscos:. ( ε ) 0,,...,. E. ( ε ) σε,,..., (Homoscedascdad). V 3. COV( ε, ε j ) 0 j (Icorrelacó). 4. Las varables X esá dadas, so o esocáscas. Como cosecueca de los supuesos aerores se ee que:. E Y / X ) β + β,,..., ( 0 ε. V(Y / X ) σ,,..., 3. COV(Y,Y j / X, X j j ) 0 j El supueso 4 perme (auque co cero abuso de oacó) escrbr el modelo como: Y β 0 + β + ε,,...,

2 Pla de Trabajo 0- Año 006 Curso Lbre Assdo de Esadísca II Docees resposables: Lercy Barros - María Sague Deberás oar que el supueso de Normaldad o es u supueso clásco. El msmo será ecesaro para esmar los parámeros por el méodo de máma verosmlud y para realzar fereca acerca de los parámeros del modelo. Deberás defcar dferecar el modelo del modelo esmado que es co el que ermarás rabajado. Para la esmacó de los parámeros de u modelo, se emplea e geeral, el méodo de los Mímos cuadrados ordaros. Deberás compreder qué es lo que plaea y cómo fucoa el méodo. El modelo esmado esá dado por E 0 β y 0 β + β dode y es la esmacó puual de 0 y (Y / X ) E(Y ) β + meras que β β so los esmadores puuales de β 0 y β. La esmacó de los parámeros surge de realzar las sguees operacoes: ( Y Y )( ) Y Y ^ β ( ) ^ ^ β 0 Y β σε ε [ y y ] [ y ( β 0 + β )] Es esecal que compredas la erpreacó de los parámeros y de sus esmacoes e u modelo de regresó leal. Deberás compreder las propedades de los esmadores MCO y para ello deberás compreder el eorema de Gauss-Markov. Bajo los supuesos cláscos los esmadores MCO de β 0 y β so leales, sesgados y dero de los leales e sesgados so de míma varaza. Se dce que los esmadores β0 y β so los mejores esmadores leales e sesgados (MELI). Deberás compreder la esmacó de los parámeros por u méodo aleravo al MCO, el méodo de máma verosmlud. Te sugermos oar que e el caso e qué se supoe ormaldad de los errores, los esmadores proporcoados por ambos méodos cocde.

3 Pla de Trabajo 0- Año 006 Curso Lbre Assdo de Esadísca II Docees resposables: Lercy Barros - María Sague Deberás compreder la forma de calcular y el sgfcado del coefcee de deermacó de ua regresó leal (R ). El msmo dca qué proporcó de la varacó oal de la varable e esudo es capaz de ser eplcada por la regresó esmada. Te acosejamos defcar y compreder la relacó ere el coefcee de deermacó (R ) y el coefcee de correlacó leal de Pearso (ρ ) que vmos cuado aalzamos la relacó leal ere dos varables cuaavas. Deberás compreder las posbles fereca esadíscas que se puede realzar sobre los parámeros del modelo, se puede realzar pruebas de hpóess e ervalos de cofaza para β 0, β y σ ε. E el caso parcular del modelo de regresó smple, la prueba de hpóess H 0 ) β 0, se cooce como prueba de sgfcacó del modelo e su cojuo y puede hacerse co β β T ~ o co σ β SCReg SCErr/( - ) aálss de la varaza que se presea a couacó: que se calcula a parr de los daos del cuadro de ANALISIS DE VARIANZA Grados Suma Valor de de Cuadrados F críco lberad cuadrados Medos de F Regresó SCReg SCReg SCReg Resduos - SCErr SCErr/(-) SCErr/(-) f 0 P(F > f 0 ) Toal - SCT Deberás compreder odos los compoees del cuadro aeror y las relacoes que ese ere los msmos. Bajo H 0 ) β 0 cera se ee que β SCReg T ~ F,, co lo que el σ SCErr/( - ) β corase de sgfcacó de X puede realzarse ambé co ese esadísco. SCReg R F SCErr/( - ) ( R ) /( )

4 Pla de Trabajo 0- Año 006 Curso Lbre Assdo de Esadísca II Docees resposables: Lercy Barros - María Sague Observacó: la prueba T y la F llevará a las msmas coclusoes pues esear la sgfcacó de u modelo de regresó leal smple mplca esear la sgfcacó de la pedee (b ). Deberás compreder que ésos modelos so muy úles co el objevo de realzar predccoes del valor esperado de la varable depedee () o de u valor puual de la msma (), dados los valores de la varable depedee.. Iervalo de cofaza esmado al 00(-α) para ( Y / X ) E( Y ) β + β β + β ± 0, α / [ + ] ( ) E 0 ( ). Iervalo de predccó esmado al 00(-α) para β + β + ε β + β ± 0, α / Y 0 ( ) [ + + )] ( ) σε σε B) Couarás co el modelo de regresó leal geera. Deberás compreder los sguees cocepos: Su defcó: se supoe u modelo de regresó leal múlple para eplcar la varable Y (depedee o edógea) dada la formacó de las varables eplcavas X, X,..., X k- (depedees o eógeas) cuado se plaea la relacó ( Y / X,,..., Xk k ) β0 + β, + β, βk,k + ε,,..., dode β 0, β,..., β k- so parámeros descoocdos (a esmar), ε so varables aleaoras o observables (perurbacoes o errores) y es el amaño de muesra. Su oacó marcal: el modelo aeror, se puede escrbr de maera más compaca como Y Xâ + e dode

5 Pla de Trabajo 0- Año 006 Curso Lbre Assdo de Esadísca II Docees resposables: Lercy Barros - María Sague Y L β ε Y Y M Y, X M M L L k k M k, â 0 β M βk ε y e M ε Los esmadores MCO so la solucó a mí å å mí( Y Xâ ) ( Y Xâ ) co lo que debe cumplrse que X Xâ X Y (Ecuacoes ormales) y el esmador MCO del vecor b se obee resolvedo el ssema de ecuacoes. Supoedo que esa ( X X ) se obee ∠( X X ) X Y. Te sugermos verfcar que esas esmacoes cocde co las dadas e el modelo de regresó leal smple. Para que esa u úco ∠se requere que el rago de la marz X sea gual a k, lo que garaza la eseca de ( X ). Por esa razó a los supuesos cláscos del modelo de regresó leal smple se agrega la o colealdad perfeca de los vecores columa de la marz X. X La esmacó sesgada de la varaza es la sguee: ε σ ε k [ y y k ] â â E el caso del modelo de regresó múlple el R se corrge para omar e cuea el efeco de agregar varables eplcavas e la reduccó de la SCErr, así se defe al R SCErr/( - ) corregdo como R k C. Te sugermos pesar SCT/( -) las mplcacoes de esa correccó. Ifereca respeco de los parámeros del modelo. Al gual que e el modelo de regresó leal smple, co el supueso de ormaldad se puede realzar pruebas de hpóess y cosrur ervalos de cofaza para cualquera de los parámeros volucrados e el modelo. La prueba de sgfcacó del modelo e su cojuo oma la forma parcular: H 0 ) β β... β k- 0 H ) Algú β 0 para,,..., k-

6 Pla de Trabajo 0- Año 006 Curso Lbre Assdo de Esadísca II Docees resposables: Lercy Barros - María Sague y se realza usado el esadísco F que se obee del cuadro de aálss de la varaza de maera aáloga que e el modelo smple. Es esecal que compredas la erpreacó de los parámeros y de sus esmacoes y que apredas a leer las saldas que e brda los programas del curso (ecel y SPSS). Falmee e preseamos el croograma sugerdo: Temas Lecura de los capíulos 3. al 3.3 del Novales (los capíulos 3.4 al 3.6 so opcoales). Ejerccos, 6 y 7 de la prácca 5. Lecura de los capíulos 4. y 4. del Novales Ejerccos 9 y 6 de la prácca 5. Ejerccos 4, y 8 adcoales secor ecoómco. Lecura del capìulo 5 del Novales. Ejerccos, y 4 de la prácca 6. Ejerccos 3 y 8 adcoales secor ecoómco. Ocubre-ovembre

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Análisis de Regresión

Análisis de Regresión Aálss de Regresó Ig. César Augusto Zapata Urqujo Ig. José Alejadro Marí Del Río Facultad de Igeería Idustral Uversdad Tecológca de Perera 0-05 Modelo de Regresó Leal Smple Y Dados A (, ) =,,. Gráfco o

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

Ensayos Limitaciones del modelo lineal de probabilidad y alternativas de modelación microeconométrica

Ensayos Limitaciones del modelo lineal de probabilidad y alternativas de modelación microeconométrica Esayos Lmacoes del modelo leal de probabldad y aleravas de modelacó mcroecoomérca Resume Absrac Résumé E ese arículo se eama res méodos para desarrollar modelos de probabldad para ua varable de respuesa

Más detalles

1. Introducción 1.1. Análisis de la Relación

1. Introducción 1.1. Análisis de la Relación . Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado

Más detalles

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL ESTUDO DE OSTOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL Volume V apulo 3 forme Fal Revsó. VOLUMEN V APTULO 3 METODOLOGÍA PARA LA ATULZAÓN DE LAS URVA DE OSTOS ÓPTMOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL

Más detalles

CURSO DE ECONOMETRIA BÁSICA

CURSO DE ECONOMETRIA BÁSICA CURSO DE ECONOMETRIA BÁSICA D. Fracsco Parra Rodríguez. Jefe de Servco de Esadíscas Ecoómcas y Socodemografcas. Isuo Caabro de Esadísca. ICANE, ÍNDICE Tema. Regresó y correlacó leal smple Tema. Regresó

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

n t T é c n i c Curso de Estadística con R Autor: Francisco Parra Rodríguez Jefe de Servicio de Estadísticas Económicas y Sociodemográficas ICANE

n t T é c n i c Curso de Estadística con R Autor: Francisco Parra Rodríguez Jefe de Servicio de Estadísticas Económicas y Sociodemográficas ICANE D o c u m e Curso de Esadísca co R o s Auor: Fracsco Parra Rodríguez Jefe de Servco de Esadíscas Ecoómcas y Socodemográfcas ICANE DOC. Nº /6 ISSN 444-67 Saader, Caabra T é c c o s . EL MODELO LINEAL GENERAL...3..

Más detalles

INGENIERÍA DE CONFIABILIDAD.. PORQUE UNA DE LAS FORMAS MÁS IMPORTANTES DE AGREGAR VALOR, ES EVITAR QUE SE DESTRUYA

INGENIERÍA DE CONFIABILIDAD.. PORQUE UNA DE LAS FORMAS MÁS IMPORTANTES DE AGREGAR VALOR, ES EVITAR QUE SE DESTRUYA Lecura 6 PRONÓSTICOS EN ACTIVOS REPARABLES INGENIERÍA DE CONFIABILIDAD.. PORQUE UNA DE LAS FORMAS MÁS IMPORTANTES DE AGREGAR VALOR, ES EVITAR QUE SE DESTRUYA Medardo Yañez Yañez Meda, Medardo - Gómez de

Más detalles

ANÁLISIS DE REGRESIÓN. Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez

ANÁLISIS DE REGRESIÓN. Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea Fucoes homogéeas FUNCIONES HOMOGÉNEAS (ESQUEMA).- Cocepo y propedades...- Cocepo Defcó de coo Defcó de fucó homogéea Ierpreacó ecoómca de la fucó homogéea..- Propedades (Operacoes co fucoes homogéeas)

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

Estimación de parámetros en ecuaciones diferenciales estocásticas aplicadas a finanzas

Estimación de parámetros en ecuaciones diferenciales estocásticas aplicadas a finanzas Esmacó de parámeros e ecuacoes dferecales esocáscas aplcadas a fazas Joh Freddy Moreo Trujllo * jho.moreo@uexerado.edu.co * Docee vesgador. Faculad de Fazas, Gobero y Relacoes Ieracoales. Uversdad Exerado

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún:

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún: A. Morllas - p. - MUESTREO E POBLACIOES FIITAS () Dos aspectos báscos de la fereca estadístca, o vstos aú: Proceso de seleccó de la muestra Métodos de muestreo Tamaño adecuado e poblacoes ftas Fabldad

Más detalles

Estimación de parámetros Tema 2. Propiedades de los buenos estimadores. 2. Estimación por intervalos

Estimación de parámetros Tema 2. Propiedades de los buenos estimadores. 2. Estimación por intervalos Uverdad Auóoma de Madrd Emacó de parámero Tema. Emacó puual Propedade de lo bueo emadore. Emacó por ervalo.. Coruccó del ervalo de cofaza. íme cofdecale. Nvel de cofaza y vel de rego... Iervalo de cofaza

Más detalles

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

Curvas Sistemas Gráficos Ing. Horacio Abbate 1

Curvas Sistemas Gráficos Ing. Horacio Abbate 1 Crvas Ssemas Gráfcos Ig. Horaco Abbae Polomos de erse Para y cosderar Para y cosderar - - Forma a base ara los olomos de grado. Calqer olomo de grado se ede descrbr como a combacó leal de olomos de erse

Más detalles

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL TIPOS DE RELACIONES ENTRE VARIABLES Dos varables puede estar relacoadas por: Modelo determsta Modelo estadístco Ejemplo: Relacó de la altura co la edad e ños.

Más detalles

Tema 1: Introducción: Generalización y Extensión del Modelo de Regresión

Tema 1: Introducción: Generalización y Extensión del Modelo de Regresión Tema : Itroduccó: Geeralzacó y Etesó del Modelo de Regresó Tema : Itroduccó: Geeralzacó y Etesó del Modelo de Regresó Itroduccó Especfcacó del Modelo de Regresó Leal 3 Supuestos del Modelo Clásco de Regresó

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

Para el caso τ = 20 [min], la función se puede representar de las siguientes formas: a) Función Matemática: b) Tabla de Valores

Para el caso τ = 20 [min], la función se puede representar de las siguientes formas: a) Función Matemática: b) Tabla de Valores 1 RAPIDEZ DE CAMBIO Semaa 05 1 Varables depedees y o depedees Defr los cocepos: varable, cosae, cremeo, varacó. Defr los cocepos: varable depedee, varable depedee. Recoocer varables depedees e depedees.

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Capítulo 3. Consideraciones sobre métodos numéricos

Capítulo 3. Consideraciones sobre métodos numéricos 3.. Iroduccó 5 Capíulo 3. Cosderacoes sobre méodos umércos 3.. Iroduccó E ese capíulo se presea la eoría y alguos cocepos sobre los que se susea los esquemas umércos de ala resolucó. Su aplcacó a las ecuacoes

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

TEMA 3: EQUIVALENCIA FINANCIERA DE CAPITALES

TEMA 3: EQUIVALENCIA FINANCIERA DE CAPITALES Maemácas Faceras Prof. Mª Mercees Rojas e Graca TEMA 3: EQUIVALENIA FINANIERA DE APITALE ÍNDIE. PRINIPIO DE EQUIVALENIA DE APITALE: ONEPTO. APLIAIONE DEL PRINIPIO DE EQUIVALENIA: UTITUIÓN DE APITALE....

Más detalles

Manual del usuario. Software de Matemáticas Herramientas de Estadística y Probabilidad. HEST Versión 1.9.7

Manual del usuario. Software de Matemáticas Herramientas de Estadística y Probabilidad. HEST Versión 1.9.7 Maual del usuaro HET Versó.9.7 ofware de Maemácas Herrameas de Esadísca y robabldad Wdows X - Wdows Vsa - Wdows 7 - Wdows 8 - Wdows O F T W R E Refereca: HET www.vaasofware.com EÑOL ÍDICE Iroduccó...3

Más detalles

ELABORACIÓN DE UN ÍNDICE COMPUESTO CAPÍTULO = X

ELABORACIÓN DE UN ÍNDICE COMPUESTO CAPÍTULO = X 5 CAPÍTULO ELABORACIÓN DE UN ÍNDICE COMPUESTO Ls Ídces Cmpuess, expresa de maera resumda la varacó prmed de u cju de varables respec de u períd base. Csderems u Agregad Cmplej "X", csud pr las varables

Más detalles

Vida media residual de mixturas finitas y aplicaciones a sistemas coherentes

Vida media residual de mixturas finitas y aplicaciones a sistemas coherentes Vda meda resdual de mxuras fas y aplcacoes a ssemas coherees Vda meda resdual de mxuras fas y aplcacoes a ssemas coherees Navarro Camacho, Jorge jorgeav@umes Deparameo de Esadísca e Ivesgacó Operava Uversdad

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México Ua Esraega de Acumulacó de Reservas Medae Opcoes de Vea de Dólares. El Caso de Baco de Méxco INDICE I. REUMEN... II. INTRODUCCIÓN...3 III. IV. OPCIONE DE VENTA DE DÓLARE...4 III.. PRINCIPALE CARACTERÍTICA...4

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001

REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001 REVISA INVESIGACION OPERACIONAL Vol., No., SOLUCIONES A DIFERENES PROBLEMAS DENRO DEL CAMPO DE LA COMUNICACION ESADISICA J. Navarro Moreo, J.C. Ruz Mola y R.M. Ferádez Alcalá, Deparameo de Esadísca e Ivesgacó

Más detalles

Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears

Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears Aál etadítco báco (II) Magdalea Cladera Muar mcladera@ub.e Departamet d Ecooma Aplcada Uvertat de le Ille Balear CONTENIDOS Covaraza y correlacó. Regreó leal mple. REFERENCIAS Alegre, J. y Cladera, M.

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

Introducción a la Estadística Descriptiva

Introducción a la Estadística Descriptiva Iroduccó a la Esadísca Descrpva ª Edcó Carla Re Graña María Raml Díaz ITRODUCCIÓ A LA ESTADÍSTICA DESCRIPTIVA. ª Edcó o esá permda la reproduccó oal o parcal de ese lbro, su raameo formáco, la rasmsódeguaformaoporcualquermedo,aseaelecróco,mecáco,porfoocopa,por

Más detalles

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x) APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

Análisis de la Varianza

Análisis de la Varianza Descrpcó breve del tema Aálss de la Varaza Tema. troduccó al dseño de expermetos. El modelo. Estmacó de los parámetros. Propedades de los estmadores 5. Descomposcó de la varabldad 6. Estmacó de la dfereca

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA.

Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA. Taller de Preparacó para el eame Models Lfe Cogeces MLC de la SO. Trdad Gozález Bolla El presee es u forme del rabajo desarrollado durae el aller de preparacó para el eame MLC de SO ue uo lugar e la Faculad

Más detalles

Un indicador mensual adelantado del sector de construcción: IMACO

Un indicador mensual adelantado del sector de construcción: IMACO U dcador mesual adelaado del secor de cosruccó: IMACO Sere Documeos de Trabajo [No. 34] Abrl Al Acosa Dael Barráez Elsy Paracare Baco Ceral de Veezuela Caracas Gereca de Ivesgacoes Ecoómcas Produccó edoral

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

Regresión Lineal Simple

Regresión Lineal Simple REGRESIÓN LINEAL Regresió Lieal Simple Plaeamieo El comporamieo de ua magiud ecoómica puede ser explicada a ravés de ora F( Si se cosidera que la relació puede ser de ipo lieal, la formalizació vedría

Más detalles

1 Estadística. Profesora María Durbán

1 Estadística. Profesora María Durbán Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE Maemácas Faceras Prof. Mª Mercedes Rojas de Graca TEMA 5: APITALIZAIÓN OMPUESTA ÍNDIE. APITALIZAIÓN OMPUESTA..... ONEPTO..... DESRIPIÓN DE LA OPERAIÓN....3. ARATERÍSTIAS DE LA OPERAIÓN....4. DESARROLLO

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Ensayos de control de calidad

Ensayos de control de calidad Esayos de cotrol de caldad Fecha: 0170619 1. lcace. Este procedmeto es aplcable e la evaluacó del desempeño del persoal que ejecuta pruebas e la Dvsó de Laboratoros de Ifraestructura de la Coordacó de

Más detalles

ANALISIS BAYESIANO APLICADO A LA PROYECCION DE SINIESTRALIDAD DEL SEGURO OBLIGATORIO DE ACCIDENTES DE TRANSITO (SOAT).

ANALISIS BAYESIANO APLICADO A LA PROYECCION DE SINIESTRALIDAD DEL SEGURO OBLIGATORIO DE ACCIDENTES DE TRANSITO (SOAT). AALISIS BAYSIAO APLICADO A LA PROYCCIO D SIISTRALIDAD DL SGURO OBLIGATORIO D ACCIDTS D TRASITO (SOAT). JISSO JAVIR BOHORQUZ BOHORQUZ Trabao de Grado ara Oar el Tulo de Maemáco Asesor Cosaza Quero Guzmá

Más detalles

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Oposcoes de Secudara TEMA 8 MATRICES. ALGEBRA DE MATRICES. APLICACIONES AL CAMPO DE LAS CIENCIAS SOCIALES Y DE LA NATURALEZA.. Iroduccó.. Cocepo báscos... Tpos de marces. 3. M mx

Más detalles

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años.

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años. Ejerccos Resuelos Números Ídces Faculad Cecas Ecoómcas y Emresarales Dearameo de Ecoomía Alcada Profesor: Saago de la Fuee Ferádez 1. Ua emresa esuda la evolucó de los recos e euros de res comoees (A,

Más detalles

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu y Tea 5: Equlbro Geeral Parte III OWC Ecooía para Mateátcos Ferado Perera Tallo ttp://bt.ly/8l8ddu Esteca de Equlbro Ferado Perera-Tallo A lo largo de esta presetacó os vaos a cocetrar e espacos Eucldos,

Más detalles

TEMA 2.- LA CAPITALIZACIÓN COMPUESTA.

TEMA 2.- LA CAPITALIZACIÓN COMPUESTA. TEMA.- LA APITALIZAIÓN OMPUESTA. Objevo: Foralzar la ley de capalzacó copuesa y esudar sus agudes dervadas.. EXPRESIÓN ANALÍTIA Y REPRESENTAIÓN GRÁFIA. La ley facera de capalzacó copuesa ee la sguee expresó

Más detalles

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u FUNDAMENTOS DE LOS ESPACIOS VECTORIALES ABSTRACTOS Prmeros ejemplos. Cosderemos el cojuto V de los vectores lbres del plao. Recordemos que la operacó de sumar vectores verfcaba las sguetes propedades:

Más detalles

Qué conclusión extraeremos trabajando con un nivel de significación del 5%?

Qué conclusión extraeremos trabajando con un nivel de significación del 5%? sbb BB BBB Ejercco 1 Ua asocacó de defesa del cosumdor argumeta que el cotedo de las latas de atú de ua determada marca es feror a los 50 g que se dca e el paquete. ara cotrastarlo se coge ua muestra de

Más detalles

10 MUESTREO. n 1 9/ / σ σ 1

10 MUESTREO. n 1 9/ / σ σ 1 10 MUESTREO 1 Cómo varará la desvacó típca muestral s se multplca por cuatro el tamaño de la muestra? Y s se aumeta el tamaño de la muestra de 16 a 144? S µ y so la meda y la desvacó típca poblacoales,

Más detalles

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA 3. Itroduccó Los datos stétcos so elemetos de suma mportaca e los sstemas de dseño e presas de almaceameto, ya que se evalúa el propósto del sstema co sumo

Más detalles

Análisis de Regresión y Correlación. Material Preparado por Olga Susana Filippini y Hugo Delfino 1

Análisis de Regresión y Correlación. Material Preparado por Olga Susana Filippini y Hugo Delfino 1 Aálss de Regresó y Correlacó Materal Preparado por Olga Susaa Flpp y Hugo Delfo ORIGEN HISTÓRICO DEL TÉRMINO REGRESlÓN El térmo regresó fue troducdo por Fracs Galto. E u famoso artículo Galto platea que,

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

Duración y Convexidad I

Duración y Convexidad I Marí Herádez errao Modelo Aleravo Duracó y Covexdad I E ese maeral se presea de forma accesble, mas co u grado resposable de rgor maemáco, los cocepos de duracó y covexdad. e asume que el lecor cuea co

Más detalles

TEMA 6 MUESTREO POR CONGLOMERADOS MONOETÁPICO

TEMA 6 MUESTREO POR CONGLOMERADOS MONOETÁPICO TEA 6 UESTREO POR COGLOERADOS OOETÁPICO Cotedo 1- Defcó. Aplcacó. Seleccó de ua muestra por Coglomerados. Etapas. otacó. - uestreo mooetápco co coglomerados de gual tamaño. Estmacó de la meda, el total

Más detalles

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22 Tala de Coedo Preeacó... Cocepo áco ore regreó correlacó.... Supueo áco de regreó.... Lo upueo de regreó e Dedromería... 6. Emacó de lo parámero del modelo de regreó leal mple... 7.. El méodo de mímo cuadrado

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

PROBABILIDAD Y ESTADISTICA

PROBABILIDAD Y ESTADISTICA 1. Es u cojuto de procedmetos que srve para orgazar y resumr datos, hacer ferecas a partr de ellos y trasmtr los resultados de maera clara, cocsa y sgfcatva? a) La estadístca b) Las matemátcas c) La ceca

Más detalles

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005 Reglas para el maejo de los ídces de deuda de la BV Bolsa acoal de Valores Verso 4.4 3/07/005 ága de 6 COTEIDO ITRODUCCIÓ... 4. erspecva geeral... 4 MAEJO DE LOS ÍDICES... 6. Comé de Ídces de íulos de

Más detalles

Figura 1

Figura 1 Regresó Leal Smple 7 Regresó Leal Smple 7. Itroduccó Dra. Daa Kelmasky 0 E muchos problemas cetífcos teresa hallar la relacó etre ua varable (Y), llamada varable de respuesta, ó varable de salda, ó varable

Más detalles

por SANTIAGO RODRÍGUEZ FEIJOÓ Universidad de Las Palmas de Gran Canaria CARLOS GONZÁLEZ CORREA Consejería de E. y H. del Gobierno de Canarias

por SANTIAGO RODRÍGUEZ FEIJOÓ Universidad de Las Palmas de Gran Canaria CARLOS GONZÁLEZ CORREA Consejería de E. y H. del Gobierno de Canarias ESTADÍSTICA ESAÑOLA Vol. 44, Núm. 50, 2002, págs. 229 a 255 La eoría de la ardad Relava del oder de Compra ere erroros ecoómcos que ee ua msma moeda: ua aplcacó a las comudades auóomas españolas por SANTIAO

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

6.1. Solución. P( de que falle un televisor) = 1/5000 = p X = Número de televisores averiados de entre los asegurados.

6.1. Solución. P( de que falle un televisor) = 1/5000 = p X = Número de televisores averiados de entre los asegurados. Estadístca ara geeros Ejerccos resueltos TEMA 6- CONVERGENCIA DE VARIABE AEATORIA 6 olucó ( de que falle u televsor) / Núero de televsores averados de etre los asegurados B ( ) ( 9 ) Alcado el Teorea Cetral

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

Implantación del Modelo CyRCE:

Implantación del Modelo CyRCE: BACO DE MEXICO Imlaacó del Modelo CyRCE: Smlfcacoes or esrucura y esmacó de arámeros. erado Avla Embríz Javer Márquez Dez-Caedo Albero Romero Arada Abrl- Imlaacó del Modelo CyRCE: Smlfcacoes or esrucura

Más detalles

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS:

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS: SUBESPACIOS FINITAMENTE GENERADOS: Teorema S G={v, v,, v } es u sstema fto de geeradores de u subespaco S V K-EV, etoces G`= {v, v,, v,w} sedo w combacó leal de vectores de G, també geera a S. Demostracó

Más detalles

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY RESUMEN El ema raado e ese rabao se emarca dero del esquema de Cueas Saéle del Tursmo. Maemácamee se desarrolla u ssema de ecuacoes e dferecas. Se pare de la ecuacó macroecoómca fudameal e equlbro para

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

Tema 2: Errores de Especificación y Problemas con la Muestra

Tema 2: Errores de Especificación y Problemas con la Muestra Tema : Errores de Especfcacó y Problemas co la Muestra TEMA : ERRORES DE ESPECIFICACIÓN ) Itroduccó ) Omsó de Varables Relevates 3) Iclusó de Varables Superfluas 4) Mala Especfcacó de la Forma Fucoal 5)

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

METODO DE MAXIMA VEROSIMILITUD. Supongamos una muestra aleatoria de 10 observaciones de una distribución Poisson:

METODO DE MAXIMA VEROSIMILITUD. Supongamos una muestra aleatoria de 10 observaciones de una distribución Poisson: Aputes Teoría Ecoométrca I. Profesor: Vvaa Ferádez METODO DE MAIMA VEOSIMILITUD Supogamos ua muestra aleatora de observacoes de ua dstrbucó Posso: 5,,,,, 3,, 3,,. La desdad de probabldad para cada observacó

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

estimación de la estructura de Tasas nominales de chile: aplicación del modelo dinámico nelson-siegel

estimación de la estructura de Tasas nominales de chile: aplicación del modelo dinámico nelson-siegel Volume 4 - º / dcembre 0 estmacó de la estructura de Tasas omales de chle: aplcacó del modelo dámco elso-segel Rodrgo Alaro A. * Sebasá Becerra C. ** Adrés Sager T. *** I. IroduccIó La esmacó de la esrucura

Más detalles

Flujo en acuífero libre

Flujo en acuífero libre SESIÓN PRÁCTICA EDP PARABÓLICA CON MÉTODO FTCS Flujo e acuíero lbre E esa sesó se aalza medae el méodo eplíco de derecas as la evolucó emporal del vel reáco sobre ua geomería de acuíero lbre alerada por

Más detalles

VALOR EN RIESGO PARA UN PORTAFOLIO CON OPCIONES FINANCIERAS *

VALOR EN RIESGO PARA UN PORTAFOLIO CON OPCIONES FINANCIERAS * Revsa Igeerías Uversdad de Medellí VALOR EN RIESGO PARA UN PORTAFOLIO CON OPCIONES FINANCIERAS * Carlos Alexáder Grajales Correa ** Fredy Ocars Pérez Ramírez *** Recbdo: 6//009 Acepado: 08/0/00 RESUMEN

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles