= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS"

Transcripción

1 POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS COINCIDENTES Todo lo punto comune Pendiente m y m m m m = m RECTAS SECANTES \ RECTAS PARALELAS O COINCIDENTES Se toma un punto de una de la ecta y e compueba i petenece a la ota P y P P y P RECTAS PARALELAS RECTAS COINCIDENTES Vectoe de diección u ( ab, ) y v( cd, ) a b c d u y v on l.i. La ecta tienen ditinta diección RECTAS SECANTES \ a b = c d u y v on l.d. La ecta tienen la mima diección RECTAS PARALELAS O COINCIDENTES Se toma un punto de una de la ecta y e compueba i petenece a la ota P y P P y P RECTAS PARALELAS RECTAS COINCIDENTES I.E.S. Miguel de Cevante (Ganad Depatamento de Matemática GBG 1

2 1. Etudia la poición elativa de lo iguiente pae de ecta: 3x+ 4y 5= x 2y+ 4= 3x 6y+ 12 = c) x 3y 6= 2x + 4y + 4 = 2x + 4y 8 = I.E.S. Miguel de Cevante (Ganad Depatamento de Matemática GBG 2

3 1. Etudia la poición elativa de lo iguiente pae de ecta: :3x+ 4y 5= : x 2y+ 4= : 3x 6y+ 12 = c) : x 3y 6= : 2x+ 4y+ 4= : 2x+ 4y 8= :3x+ 4y 5= : x 3y 6= 3 4 y on SECANTES 1 3 : x 2y+ 4= : 2x+ 4y+ 4= = y on PARALELAS c) : 3x 6y+ 12 = : 2x+ 4y 8= = = y on COINCIDENTES I.E.S. Miguel de Cevante (Ganad Depatamento de Matemática GBG 3

4 2. Detemina la poición elativa de lo iguiente pae de ecta: x+ 4 y+ 1 x = 2+ 4λ : = : x = 1+ 9λ 3 2 : c) 2x + 5 x = 3 3λ : y = : 3 : y+ 3= 3( x 4) = λ I.E.S. Miguel de Cevante (Ganad Depatamento de Matemática GBG 4

5 2. Detemina la poición elativa de lo iguiente pae de ecta: x+ 4 y+ 1 x = 2+ 4λ : = : x = 1+ 9λ 3 2 : c) 2x + 5 x = 3 3λ : y = : 3 : y+ 3= 3( x 4) = λ c) x+ 4 y+ 1 : = 3 2 2x + 5 : y = 3 2 ( 3, 2) m = : y = x+ m = m = m Po lo tanto la ecta eán paalela o coincidente. Tomamo un punto de una de la ecta y compobamo i petenece a la ota ecta. Tomamo el punto P( 4, 1), P. En la ecta, paa x = 4, y = = = = Aí pue, P y la ecta on coincidente. y on COINCIDENTES x = 2+ 4λ : 3 3 y 5 3 ( 4, 3) m = = = λ 4 4 m m x = 3 3λ 5 5 : v( 3, 5) m = = y 4 5 = + λ 3 3 Po lo tanto la ecta eán ecante. x = 1+ 9λ : : y+ 3= 3 4 ( x ) m y on SECANTES 9, 3 9 m = = 3 3 = 3 m = m Po lo tanto la ecta eán paalela o coincidente. Tomamo un punto de una de la ecta y compobamo i petenece a la ota ecta. Tomamo el punto P ( 1, 5), P, y compobamo i petenece a. En la ecta, 5+ 3= 8 3 ( 1 4) = 3 ( 5) = 15 Luego, P y la ecta on paalela y on PARALELAS I.E.S. Miguel de Cevante (Ganad Depatamento de Matemática GBG 5

6 3. Detemina la poición elativa de lo iguiente pae de ecta: x = 2+ 8λ x+ 2 y 5 : : = : 6x 4y+ 11 = = 5 6 λ 3 4 c) x = 2 + λ x = 2 12λ x = 1+ 9λ : : : y = λ = λ = 1 12 λ I.E.S. Miguel de Cevante (Ganad Depatamento de Matemática GBG 6

7 3. Detemina la poición elativa de lo iguiente pae de ecta: x = 2+ 8λ x+ 2 y 5 : : = : 6x 4y+ 11 = = 5 6 λ 3 4 c) x = 2 + λ x = 2 12λ x = 1+ 9λ : : : y = λ = λ = 1 12 λ x = 2+ 8λ : = 5 6 λ x = 2 12λ : = λ v ( 8, 6) ( 12, 9) v 8 6 = 12 9 v Po lo tanto la ecta eán paalela o coincidente. Tomamo un punto de una de la ecta y compobamo i petenece a la ota ecta. Tomamo el punto P( 2, 1), P, y compobamo i petenece a. En la ecta, 2= 2+ 8λ λ=. 1= 5 6λ λ= 1 Como lo valoe de λ obtenido on ditinto, P y, po lo tanto, la ecta on paalela. y on PARALELAS x+ 2 y 5 : = 3 4 x = 1+ 9λ : = 1 12 λ v ( 3, 4) ( 9, 12) v 3 4 = 9 12 v v Po lo tanto la ecta eán paalela o coincidente. Tomamo un punto de una de la ecta y compobamo i petenece a la ota ecta. Tomamo el punto P ( 1, 1), P, y compobamo i petenece a. En la ecta, = = = P = = Como P, la ecta on coincidente. y on COINCIDENTES c) : 6x 4y+ 11 = x = 2 + λ : = λ v ( 4, 6) ( 1, 3) v 4 6 / 1 3 Como lo vectoe tienen ditinta diección la ecta on ecante. y on SECANTES v I.E.S. Miguel de Cevante (Ganad Depatamento de Matemática GBG 7

8 4. En cada uno de lo ejecicio anteioe, i la ecta on ecante, calcula el punto de inteección y el ángulo que foman, y, i la ecta on paalela, la ditancia ente ella. I.E.S. Miguel de Cevante (Ganad Depatamento de Matemática GBG 8

9 4. En cada uno de lo ejecicio anteioe, i la ecta on ecante, calcula el punto de inteección y el ángulo que foman, y, i la ecta on paalela, la ditancia ente ella. :3x+ 4y 5= y on SECANTES : x 3y 6= 1 3 Paa halla el punto de inteección e euelve el itema : 3x+ 4y 5= 3x+ 4y 5= x+ 3 6= : x 3y 6 = ( 3) 3x+ 9y+ 18 = x = 3 13y + 13 = y = 1 Po lo tanto, la ecta e cotan en el punto P( 3, 1) ( 4, 6) u ( 2, 3) El ángulo α que foman la ecta lo deteminamo con lo vectoe de diección:. v ( 3, 1) v co α= co α= = = α= 74º 44' 41,57" v : x 2y+ 4= = y on PARALELAS : 2x+ 4y+ 4= Paa halla la ditancia ente ella tomamo un punto de una de la ecta y calculamo la ditancia de ee punto a la ota ecta. En ete cao eulta má cómodo toma el punto de la ecta. Paa y = 1, x = 2. Tenemo el punto P( 2, 1) con P. ( ) + + d( P, ) = = = = = Po lo tanto 6 5 d(, ) = 5 (NOTA: Se puede implifica la ecuación de ante de ealiza el etudio de la poición y lo cálculo.) x = 2+ 4λ : 2 x = 3 3λ : = λ v ( 4, 3) ( 3, 5) y on SECANTES v Paa halla el punto de inteección e expea una de ella en foma continua o geneal, y e utituye un punto genéico de la ota, expeado en función del paámeto. Po ejemplo, expeemo en foma geneal la ecta. x 3 y+ 4 = 5 x 3 = 3 y+ 4 5x 15 = 3y 12 5x+ 3y 3 = 3 5 :5x+ 3y 3= Lo punto de eán de la foma P ( 2+ 4 λ, 5 3λ ) con λ. Deteminemo cuál de ello petenece también a (punto de inteección de y ) λ λ 3 = 1 + 2λ+ 15 9λ 3 = 11λ+ 22 = λ= 2 Aí, paa λ= 2, e tiene, El punto de inteección de y e P( 6, 11). x = = 6 y = = 11 y eá P( 6, 11) el punto de inteección de y. I.E.S. Miguel de Cevante (Ganad Depatamento de Matemática GBG 9

10 ( 4, 3) El ángulo que foman lo podemo halla uando lo vectoe diectoe:. v ( 3, 5) v 4 ( 3) + ( 3) 5 27 co α= co α= = α= 22º 9' 58,84" v x = 1+ 9λ : 2c) : y+ 3= 3 x 4 y on paalela. Paa halla la ditancia ente ella e expea una de ella en foma geneal y e calcula la ditancia de un punto de la ota ecta a eta. Expeemo la ecta en foma geneal. y+ 3= 3 x 4 y+ 3= 3x+ 12 3x+ y 9= :3x+ y 9= Tomamo un punto de, P( 1, 5), P, y calculamo ( ) + d( P, ) Po lo tanto = = = d(, ) = 1 I.E.S. Miguel de Cevante (Ganad Depatamento de Matemática GBG 1

Unidad 12: Posiciones y Métrica en el espacio.

Unidad 12: Posiciones y Métrica en el espacio. Unidad 12: Poicione y Mética en el epacio. 1) Poicione elativa en el epacio: a) De un punto con ecta y plano: a1) Un punto A petenece a una ecta i cumple u ecuacione geneale, en cao contaio e dice que

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

TEMA 7: PROPIEDADES MÉTRICAS

TEMA 7: PROPIEDADES MÉTRICAS Depatamento e Matemática º Bachilleato TEMA 7: PROPIEDADES MÉTRICAS 1- HAZ DE PLANOS PARALELOS Too lo plano paalelo a un plano Ax + By + Cz + D tenán el mimo vecto nomal que el e : n A, Po lo tanto, too

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

TEMA IV: DISTANCIA ENTRE ELEMENTOS

TEMA IV: DISTANCIA ENTRE ELEMENTOS TEMA IV: DISTANCIA ENTRE ELEMENTOS 4.1.D Ditancia ente do punto Teniendo en cuenta la elacione mética que e etablecen ente la poyeccione otogonale obe un plano de un egmento AB e puede obtene la ditancia

Más detalles

TEMA 13: EL ESPACIO MÉTRICO

TEMA 13: EL ESPACIO MÉTRICO TEMA 3: EL ESACIO MÉTRICO. DISTANCIA ENTRE DOS UNTOS. ÁNGULO ENTRE DOS RECTAS 3. VECTOR NORMAL CARACTERÍSTICO O ASOCIADO AL LANO 4. ANGULO ENTRE DOS LANOS 5. ANGULO ENTRE RECTA Y LANO 6. DISTANCIA DE UN

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos Bloque 3. Geometía y Tigonometía Tema 3 La ecta en el plano Ejecicio euelto 3.3-1 Halla la ecuación vectoial, en paamética, continua y geneal de la ecta que paa po el punto indicado y tiene po vecto dieccional

Más detalles

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z Poducto escala 060 Halla la ecuación de la ecta que cota a y s pependiculamente. x = 1 x = 6 µ : y = 11+ s: y = + µ z = 1+ z = + µ Hallamos un punto P y un punto Q s de modo que el vecto PQ sea pependicula

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

Si sólo tenemos en cuenta las relaciones existentes entre los puntos del espacio y los vectores de V

Si sólo tenemos en cuenta las relaciones existentes entre los puntos del espacio y los vectores de V IES Pae Poea (Guaix) Matemática II UNIDAD 0 GEOMETRÍA MÉTRICA Si ólo tenemo en cuenta la elacione exitente ente lo punto el epacio y lo ectoe e V, la geometía etingiá u etuio a la poicione elatia e punto,

Más detalles

Si solo tenemos en cuenta las relaciones existentes entre los puntos del espacio y los vectores de V

Si solo tenemos en cuenta las relaciones existentes entre los puntos del espacio y los vectores de V IES Pae Poea (Guaix) UNIDAD 0 GEOMETRÍA MÉTRICA Si olo tenemo en cuenta la elacione exitente ente lo punto el epacio y lo ectoe e V, la geometía etingiá u etuio a la poicione elatia e punto, ecta y plano

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

81 BAC CNyS GEOMETRÍA ANALÍTICA PLANA ÍNDICE 1. PRESENTACIÓN DEL TEMA 2. PUNTOS Y VECTORES EN EL PLANO 3. ECUACIONES DE LA RECTA 4.

81 BAC CNyS GEOMETRÍA ANALÍTICA PLANA ÍNDICE 1. PRESENTACIÓN DEL TEMA 2. PUNTOS Y VECTORES EN EL PLANO 3. ECUACIONES DE LA RECTA 4. GEOMETRÍ NLÍTIC LN 81 C CNyS ÍNDICE 1. RESENTCIÓN DEL TEM 2. UNTOS Y VECTORES EN EL LNO 3. ECUCIONES DE L RECT 4. HZ DE RECTS 5. RLELISMO Y ERENDICULRIDD 6. OSICIONES RELTIVS DE DOS RECTS 7. NGULO QUE

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

IV. Geometría plana. v v2 2. u v = u v cos α

IV. Geometría plana. v v2 2. u v = u v cos α Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1

Más detalles

EJERCICIOS DEL TEMA VECTORES

EJERCICIOS DEL TEMA VECTORES EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

RECTAS EN EL ESPACIO.

RECTAS EN EL ESPACIO. IES Pade Poeda (Guadi UNI 9 GEOETRÍ FÍN RETS EN EL ESPIO EUIONES E L RET Una ecta queda deteminada po Un punto ( a a a Un ecto de diección ( ( ; se le llama deteminación lineal de la ecta Si X ( es un

Más detalles

( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio

( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio TEMA V. Ecuaciones del plano. Ecuaciones de la ecta. Haz de planos 4. Incidencia de planos y ectas 5. Ángulos en el espacio 6. Condiciones de pependiculaidad 7. Distancias en el espacio. Ecuaciones del

Más detalles

EJERCICIOS SOBRE VECTORES

EJERCICIOS SOBRE VECTORES EJERCICIOS SOBRE VECTORES 1) Dados los puntos A = ( 2, 1,4) ( 3,1, 5) uuu vecto AB B =, calcula las componentes del 2) Dados los puntos A = ( 2, 1,4), B = ( 3,1, 5) ( 4,2, 3) C =, detemina las uuu uuu

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

ÁNGULOS y DISTANCIAS entre RECTAS y PLANOS

ÁNGULOS y DISTANCIAS entre RECTAS y PLANOS ÁNGULOS y DISTANCIAS ente RECTAS y PLANOS MATEMÁTICAS II º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática 1. PROBLEMAS DE ÁNGULOS 1 1.1 ÁNGULO DE DOS RECTAS: Si la do ecta on paalela

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

A) TRAZADO DE RECTAS TANGENTES

A) TRAZADO DE RECTAS TANGENTES ecta tangente a una cicunfeencia que paan po un punto (pc). a) El punto etá en la cicunfeencia. (1 olución) A) TAZAD DE ECTAS TANGENTES ecta tangente a do cicunfeencia de ditinto adio (cc). a) Tangente

Más detalles

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

1. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS.

1. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS. IES Pae Poea (Guaix) UNIDAD 0: GEOMETRÍA MÉTRICA Si sólo tenemos en cuenta las elaciones existentes ente los puntos el espacio y los ectoes e V, la geometía estingiá su estuio a las posiciones elatias

Más detalles

ÁLGEBRA LINEAL GEOMETRÍA

ÁLGEBRA LINEAL GEOMETRÍA ÁLGER LINEL GEOMETRÍ ESPCIO VECTORIL DE LOS VECTORES LIRES: V 3 Se llama vecto fijo de oigen y extemo al egmento oientado. Si el oigen y el extemo coinciden, hablamo del vecto nulo : = 0. Un vecto fijo

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u Geometía. Puntos, ectas y planos en el espacio. Poblemas méticos en el espacio Pedo Casto Otega. Coodenadas o componentes de un vecto Sean dos puntos ( a, a ) y ( ) uuu uuu vecto son: = ( b a, b a, b a

Más detalles

TANGENCIAS Tangencias como aplicación de los conceptos de potencia e inversión TEMA5. Objetivos y orientaciones metodológicas. 1.

TANGENCIAS Tangencias como aplicación de los conceptos de potencia e inversión TEMA5. Objetivos y orientaciones metodológicas. 1. ANGNIAS angencia como aplicación de lo concepto de potencia e inveión A5 DIBUJ GÉI bjetivo y oientacione metodológica l objetivo de ete tema e hace aplicación de lo concepto de potencia e inveión en la

Más detalles

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS ANGENCIAS ENRE RECAS Y CIRCUNFERENCIAS 1 RECA Y CIRCUNFERENCIA ANGENES. Una ecta y una cicunfeencia on tangente cuano tienen un único punto en común, llamao punto e tangencia. Ente una ecta y una cicunfeencia

Más detalles

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes. 826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El

Más detalles

ÁNGULOS y DISTANCIAS entre RECTAS y PLANOS

ÁNGULOS y DISTANCIAS entre RECTAS y PLANOS ÁNGULOS y DISTANCIAS ente RECTAS y PLANOS MATEMÁTICAS II º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática 1. PROBLEMAS DE ÁNGULOS 1.1 ÁNGULO DE DOS RECTAS: Si la do ecta on paalela

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍ NLÍTIC PLN / Ecuaciones de la ecta Un punto y un vecto Dos puntos Un punto y la pendiente,,,,,, Coodenadas del vecto diecto ECUCION VECTORIL (x, y) (p, p ) + τ (v, v ) ECUCION PRMETRIC x p + τ

Más detalles

1. Dado el triángulo de vértices A(5,2), B(-1,6) y C(3,-2), hallar las ecuaciones de las rectas mediana y mediatriz correspondientes al lado AB.

1. Dado el triángulo de vértices A(5,2), B(-1,6) y C(3,-2), hallar las ecuaciones de las rectas mediana y mediatriz correspondientes al lado AB. CURSO / FICH BLOQUE. GEOMETRÍ. Dado el iángulo de véice () B(-) C(-) halla la ecuacione de la eca mediana mediaiz coepondiene al lado B. B C Paa calcula la mediana (eca que une el véice opueo al lado B

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO

GEOMETRÍA ANALÍTICA EN EL ESPACIO GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR a b a b cosx (uando sepamos el ángulo que foman a y b). a ba b a b a b (uando sepamos las coodenadas de a y b ). uando los ectoes son pependiculaes su poducto escala

Más detalles

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011 EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO Función Lineal Rectas Noviembe RECORDAR: Una unción lineal es de la oma popiedad que los cocientes incementales:

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

La recta n forma un ángulo de 60 (trazar con reglas) con la recta r. Qué ángulos forma la recta n con la recta s? NOMBRE: Nº 1ºESO

La recta n forma un ángulo de 60 (trazar con reglas) con la recta r. Qué ángulos forma la recta n con la recta s? NOMBRE: Nº 1ºESO 1. OCBULRIO BÁSICO 1. Dibuja las siguientes ectas siguiendo las instucciones: La ecta vetical es pependicula a las ectas s y q. La distancia ente estas dos ectas es de 20mm. o La ecta n foma un ángulo

Más detalles

XIII. La a nube de puntos-variables

XIII. La a nube de puntos-variables XIII. La a nube de punto-vaiable Una vaiable e epeentada con un vecto en R n. El conunto de etemidade de lo vectoe que epeentan la vaiable contituyen la nube de punto N. m im m n i m Pogama PRESTA - 999

Más detalles

I.E.S PADRE SUAREZ Geometría 1 TEMA V GEOMETRIA DEL ESPACIO TRIDIMENSIONAL R 3

I.E.S PADRE SUAREZ Geometría 1 TEMA V GEOMETRIA DEL ESPACIO TRIDIMENSIONAL R 3 I.E.S PADRE SUAREZ Geometía TEMA V GEOMETRIA DEL ESPACIO TRIDIMENSIONAL R. El epacio ectoial de lo ectoe libe del epacio V.. Podcto ecala de ectoe en V. Popiedade. Epacio eclídeo... 6. Podcto ectoial..

Más detalles

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad.

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad. Geomeía del espacio Ángulos, disancias Obseación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Seleciidad.. Calcúlese la disancia del oigen al plano que pasa po A(,,

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio 1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto

Más detalles

Diagramas de Bode de magnitud y fase

Diagramas de Bode de magnitud y fase Diagama de Bode de magnitud y fae Diagama de Bode de magnitud y fae de una contante Dada la función cicuital F(j~) = K, podemo expeala en la foma: j K e F( j~ ) = ) j K e K K > < La magnitud en decibelio

Más detalles

Plano Tangente a una superficie

Plano Tangente a una superficie Plano Tangente a una supeficie Plano Tangente a una supeficie Sea z f ( una función escala con deivadas paciales continuas en (a b del dominio de f. El plano tangente a la supeficie en el punto P( a b

Más detalles

SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN GRÁFICA Y CLASIFICACIÓN

SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN GRÁFICA Y CLASIFICACIÓN SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN GRÁFICA Y CLASIFICACIÓN (Representación gráfica de sistemas de dos ecuaciones lineales con dos incógnitas) La gráfica de una ecuación de

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

CI51J HIDRAULICA DE AGUAS SUBTERRANEAS Y SU APROVECHAMIENTO

CI51J HIDRAULICA DE AGUAS SUBTERRANEAS Y SU APROVECHAMIENTO CI5J CI5J HIDRAULICA DE AGUAS SUBTERRANEAS Y SU AROVECHAIENTO TEA 5 ECUACIONES GENERALES DE LA HIDRAULICA EN EDIOS OROSOS SOLUCION DIRECTA DE LA ECUACION DE LALACE ETODO DE LAS IAGENES OTOÑO 8 UNIVERSIDAD

Más detalles

Geometría plana. Rectas

Geometría plana. Rectas Gemetía plana Matemática. Ecacine e la ecta. Gemetía plana. Recta P p O La ecación e na ecta viene eteminaa p n pnt P(,, )R n vect, V p pnt P(, ) R Q(, ) R qe viene a e l mim. l vect llamaem vect iect

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

I.E.S PADRE SUAREZ Curso Geometría 1 TEMA V GEOMETRIA DEL ESPACIO TRIDIMENSIONAL R 3

I.E.S PADRE SUAREZ Curso Geometría 1 TEMA V GEOMETRIA DEL ESPACIO TRIDIMENSIONAL R 3 I.E.S PADRE SUAREZ Co Geometía TEMA V GEOMETRIA DEL ESPACIO TRIDIMENSIONAL R. El epacio ectoial de lo ectoe libe del epacio V.. Podcto ecala de ectoe en V. Popiedade. Epacio eclídeo... 6. Podcto ectoial..

Más detalles

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO SSTEMA ÉRCO Paalelismo, pependiculaidad y distancias Vedadeas magnitudes lineales Objetivos y oientaciones metodológicas TEMA 9 Esta unidad temática es fundamental y, a la vez, su explicación se puede

Más detalles

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro OBJETIVO 1 CLASIICAR POLIEDROS NOMBRE: CURSO: ECHA: POLIEDROS Un poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Aista Los polígonos que limitan al poliedo se llaman caas. Caa

Más detalles

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS 1.3. OPERCIONES CON SEGMENTOS 1. Realiza las siguientes opeaciones con segmentos a b c 1º a+2b-c 1º 2º a+c-b 2º 3º 3a+c-b 3º TEM 1 - Opeaciones con segmentos página 3 1.3.2. TEOREM DE TLES 1. Divide el

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

RECTAS en el PLANO MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas

RECTAS en el PLANO MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas RECTAS en el PLANO MATEMÁTICAS I 1º Bachilleato CCNN Alfonso González IES Fenando de Mena Dpto. de Matemáticas I. ECUACIONES de la RECTA I.1) Deteminación pincipal de la ecta: A u Es evidente que una ecta

Más detalles

Unidad 12. Geometría (I).Ecuaciones de recta y plano

Unidad 12. Geometría (I).Ecuaciones de recta y plano Unidad.Geometía (I).Ecuaciones de la ecta el plano Unidad. Geometía (I).Ecuaciones de ecta plano. Intoducción. Espacio fín... Vecto en el espacio. Vecto libe fijo... Opeaciones con vectoes.. Dependencia

Más detalles

TANGENCIAS ENTRE CIRCUNFERENCIAS

TANGENCIAS ENTRE CIRCUNFERENCIAS 1. Cicunfeencias tangentes EXERIORES a una cicunfeencia a la dada y ente ellas. Dada la cicunfeencia debemos dibuja una cicunfeencia que sea tangente a la pimea. Después vamos a dibuja ota cicunfeencia

Más detalles

El haz de planos paralelos queda determinado por un vector normal, n A, B,

El haz de planos paralelos queda determinado por un vector normal, n A, B, HAZ DE PLANOS HAZ DE PLANOS PARALELOS Dado un plano, por ejemplo, π :3x4y2z1 cuyo vector normal es n 3, 4, 2, cualquier otro plano que tenga el mismo vector normal será un plano paralelo a. El plano π

Más detalles

Tema 4: Intersecciones. Perpendicularidad y mínimas distancias. Paralelismo.

Tema 4: Intersecciones. Perpendicularidad y mínimas distancias. Paralelismo. Tema 4: nteeccone. ependculadad y mínma dtanca. aalelmo. nteeccone. Una nteeccón e el luga geométco de lo punto que petenecen a la vez a todo lo elemento que ntevenen (fgua ). La nteeccón de do plano e

Más detalles

Tema03: Circunferencia 1

Tema03: Circunferencia 1 Tema03: Circunferencia 1 3.0 Introducción 3 Circunferencia La definición de circunferencia e clara para todo el mundo. El uo de la circunferencia en la práctica y la generación de uperficie de revolución,

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE

Más detalles

Antes de ver la definición, estudiemos unos ejemplos de espacios vectoriales para ver las propiedades comunes.

Antes de ver la definición, estudiemos unos ejemplos de espacios vectoriales para ver las propiedades comunes. Espacios vectoiales. Popiedades. Antes de ve la definición, estudiemos unos ejemplos de espacios vectoiales paa ve las popiedades comunes. R 2 =RxR={(x,y)/x,y R} conjunto de todos los paes de númeos eales

Más detalles

UNIDAD 10.- Geometría afín del espacio (tema 5 del libro)

UNIDAD 10.- Geometría afín del espacio (tema 5 del libro) UNIDD.- Geometía afín del espacio tema del libo). VECTOR LIBRE. OPERCIONES CON VECTORES LIBRES En este cuso amos a tabaja con el espacio ectoial de dimensión,, que es simila al tatado en º de Bachilleato,

Más detalles

UNIDAD 4: CIRCUNFERENCIA CIRCULO:

UNIDAD 4: CIRCUNFERENCIA CIRCULO: UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y

Más detalles

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo DIBUJO ÉCNICO BACHILLERAO Láminas esueltas del EMA 4. ANGENCIAS. Depatamento de Ates lásticas y Dibujo 1.- Dibuja 2 cicunfeencias adio 10 mm. que sean ANGENES EXERIORES a la dada y ente ellas. 2.- Dibuja

Más detalles

Geometría Analítica. Ejercicio nº 1.-

Geometría Analítica. Ejercicio nº 1.- Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco

Más detalles

Cátedra: Mindlin Física 1 (ByG), 2do cuatrimestre Guía 1: Cinemática

Cátedra: Mindlin Física 1 (ByG), 2do cuatrimestre Guía 1: Cinemática Guía 1: Cinemática 1) Eciba la ecuación difeencial paa la poición en función del tiempo en un movimiento a velocidad (v 0 ) contante. Integando la ecuación anteio, encuente una olución paa x(t) 2) Eciba

Más detalles

Si se denotan en color azul los parámetros conocidos y en rojo los desconocidos, el Formulario 1 quedaría como sigue:

Si se denotan en color azul los parámetros conocidos y en rojo los desconocidos, el Formulario 1 quedaría como sigue: Ejecicios esueltos: Tomando como base el Fomulaio y los Consideandos, se plantea a continuación la esolución de divesos ejecicios.. El único electón de un átomo hidogenoide tiene una enegía potencial de

Más detalles

La Recta. Hermes Pantoja Carhuavilca. Matemática I. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

La Recta. Hermes Pantoja Carhuavilca. Matemática I. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos La Recta Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matemática I Hermes Pantoja Carhuavilca 1 de 11 CONTENIDO Ecuaciones de la recta en R 2 Ecuación

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Relación. Geometría en el espacio (II) 1. Estudiar la posición relativa de los siguientes conjuntos de planos: (a)

Más detalles

FORMULARIO DE ESTADÍSTICA

FORMULARIO DE ESTADÍSTICA Reúmee de Matemática paa Bachilleato I.E.S. Ramó Gialdo FORMULARIO DE ESTADÍSTICA Cocepto báico Població: cojuto de todo lo elemeto objeto de ueto etudio Mueta: ubcojuto, extaído de la població,(mediate

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

BLOQUE IV. Geometría. 11. Movimientos 12. Áreas y volúmenes

BLOQUE IV. Geometría. 11. Movimientos 12. Áreas y volúmenes LQUE IV Geometía 11. Movimiento 12. Áea y volúmene 11 Movimiento 1. Tanfomacione geomética onideando poitivo el entido contaio a la aguja del eloj, y ecoiendo lo vétice del tiángulo ectángulo en oden alfabético,

Más detalles