Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5"

Transcripción

1 UNIDAD 5: LÍMITES Y CONTINUIDAD. 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Fíjte en el comportmiento de l unción ( x ) x 1 tom vlores cercnos. cundo x Si x se proxim, l unción tom vlores cercnos 5. Se escribe: x x ( ) 5 y decimos que 5 es el ite cundo x tiende de x 1. Se dice que L es el ite de un unción cundo x tiende ( x ), si l cercrse x cd vez más (pero x distinto de ), l dierenci L se hce tn pequeñ como se quier (es decir, se proxim L tnto como se quier). Se escribe: L Si un unción tiene ite en un punto, este ite es único. Gráicmente: si x se proxim se proxim L :. LÍMITES LATERALES. El comportmiento de un unción cundo x se proxim un vlor, NO siempre coincide si nos cercmos con vlores menores que (izquierd de ), o con vlores myores que (derech de ). Si x se proxim 1 por l izquierd, se proxim. Se escribe: Si x se proxim 1 por l derech, se proxim. Se escribe: Por tnto: Si x se proxim con vlores menores que, obtenemos el ite lterl por l izquierd de en. Si x se proxim con vlores myores que, obtenemos el ite lterl por l derech de en. Estos ites reciben el nombre de ites lterles de en. Propiedd: Un unción tiene ite en un punto si existen los ites lterles en dicho punto y demás coinciden, y recíprocmente. En cso contrrio, NO existe el ite en ese punto. Propiedd: El ite, si existe, es único. Deprtmento de Mtemátics 1 Bloque II: Análisis de Funciones Proesor: Rmón Lorente Nvrro

2 Ejemplo 1: Observ ls siguientes gráics y determin el ite de ls unciones en los puntos que se indicn: Solución: ) En x 0; En x 1; / 1 b) En x ; En x 0; x 0 Fíjte que en el prtdo b) l unción NO está deinid en x 0 pero esto no impide l existenci del ite en x 0. x 4 si x x si x x si x 4 y determin su ite en x 1, x, x y x 4. Ejemplo : Represent l unción: Solución: [, 1] ( 1,) (,4] En x 1; En x ; x 1 x 1 x x / x 1 x 1 En x ; Sólo existe 1 x (No es posible cercrse por su izquierd ). En x 4; Sólo existe (No es posible cercrse 4 por su derech ). x 4 Deprtmento de Mtemátics Bloque II: Análisis de Funciones Proesor: Rmón Lorente Nvrro

3 . LÍMITES INFINITOS. Observ ls siguientes unciones: Se dice que un unción tiene ite cundo x tiende, si l proximrse x los vlores de se hcen tn grndes como se quier (myores que un cierto número rel k preijdo). Se escribe: Se dice que un unción tiene ite cundo x tiende, si l proximrse x los vlores de se hcen tn pequeños como se quier (menores que un cierto número rel k preijdo). Se escribe: Observ: Tmbién puede ocurrir que NO exist el ite: x x x x / x x / x 4. LÍMITES EN EL INFINITO. Observ l gráic de l siguiente unción: x x Se dice que L es el ite de un unción cundo x tiende hci más ininito x se proxim L tnto como se quier cundo x tom vlores ( x ), si ( ) suicientemente grndes (es decir, l dierenci L se hce tn pequeñ como se quier si x tom vlores myores que un cierto número rel k preijdo). Se escribe: x x ( ) L Deprtmento de Mtemátics Bloque II: Análisis de Funciones Proesor: Rmón Lorente Nvrro

4 Se dice que L es el ite de un unción cundo x tiende hci menos x se proxim L tnto como se quier cundo x tom vlores ininito ( ) x, si ( ) suicientemente pequeños (es decir, l dierenci L se hce tn pequeñ como se quier si x tom vlores menores que un cierto número rel k preijdo). Se escribe: x x ( ) L x L Tmbién puede suceder que si x ó x como puedes observr en ls siguientes igurs: ( ), x L x entonces o bien x x x x Igulmente puede ocurrir que no exist el ite como ocurre con senx. Por qué? Ejemplo: Fíjte en ls gráics y en el cálculo de los siguientes ites: ) Dom ( ) R Rec ( ) R x b) Dom ( ) R { 1, 1} ; Re ( ) R [ 1, 0) x x x 4 x 4 ( ) / x 4 Observ que, sin embrgo, ( 1) 1 c c) ( g) R {} Dom ; Re c ( g) ( 0, ) 1 1 g 0 x x x / / g 4 x g x g Deprtmento de Mtemátics 4 Bloque II: Análisis de Funciones Proesor: Rmón Lorente Nvrro

5 5. CÁLCULO DE LÍMITES. El cálculo de un ite prtir de l gráic de un unción es un tre ácil. Bst con observr con tención dich gráic. Sin embrgo no siempre se dispondrá de ell por lo que hbrá que recurrir su expresión lgebric. No obstnte, el cálculo nlítico del ite de un unción puede ser ácil de obtener, o bien dr lugr un indeterminción que se debe resolver del modo decudo. Propieddes: Entonces: Si L y g M x x ) [ ± g ] L ± M b) g L M x L c) 0 g M x ( Si M ) x x g L M d ) NOTA: Si L y/o M son ites ininitos ó M0, pueden precer indeterminciones en ls expresiones nteriores. Se resolverán de un modo especíico. Csos de indeterminción: k 0 ) 0 b ) 0 ) c d ) [ ] ) [ 0 ] e ) [ ] 1 ) 0 g [ ] ) Recordemos en l pizrr, de un modo práctico, el cálculo de ites con diversos ejemplos. h [ 0 ] 6. ASÍNTOTAS. Rms ininits: Trmos de l curv que se lejn indeinidmente del origen de coordends. Asíntot: Rect l que se ciñe (proxim) un rm ininit (l distnci entre l rect y l curv tiende cero). Rm sintótic: Rm ininit que se ciñe un síntot. 6.1 RAMAS INFINITAS EN x. ASÍNTOTAS VERTICALES. Si x ó x ( ) y/o ( ) ó entonces l unción tiene un rm ininit por l derech o por l izquierd (o por ls dos), y l rect x es un síntot verticl. Situción de l curv respecto l síntot: (x) (x) x x Deprtmento de Mtemátics 5 Bloque II: Análisis de Funciones Proesor: Rmón Lorente Nvrro

6 Observción: P Si ( ) x rcionl, los cndidtos síntots verticles son los vlores de x que Q nuln el denomindor. Un unción puede tener ininits síntots verticles. Ejemplo 1: Clcul ls síntots verticles de ls siguientes unciones: 5 x x x 6 x 4 ) b ) c ) d ) x x x x x 4 x 4 Ejemplo : Cuánts síntots verticles tiene l unción? x 16 (L Rioj. Junio 1998) 6. RAMAS INFINITAS CUANDO x (ó x ). Se pueden presentr tres csos: ) ASÍNTOTAS HORIZONTALES. Si x x ( ) b ( b R) entonces l unción tiene un rm ininit cundo x y l rect y b es un síntot horizontl en. Situción de l curv respecto de l síntot: Estudimos el signo de b pr vlores grndes de x : Si b > 0 curv por encim de l síntot. Si b < 0 curv por debjo de l síntot. b > 0 b < 0 Análogmente si x. Observciones: Un unción tendrá, lo sumo, dos síntots horizontles, un en y otr en. P Si ( ) x es un cociente de polinomios, l unción tendrá l mism síntot Q horizontl en y en. Será necesrio que Grdo P GrdoQ. Ejemplo: Clcul ls síntots horizontles de ls siguientes unciones: x 1 x 4 ) x b ) c ) x x x 1 x x 1 x Deprtmento de Mtemátics 6 Bloque II: Análisis de Funciones Proesor: Rmón Lorente Nvrro

7 b) ASÍNTOTAS OBLICUAS. Si x [ ( mx n) ] 0 entonces l unción tiene un rm ininit cundo x y l rect y mx n es un síntot oblicu en. Pr clculrl: m n [ mx] x x x Situción de l curv respecto de l síntot: Estudimos el signo de ( mx n) pr vlores grndes de x : Si ( mx n) > 0 curv por encim de l síntot. Si ( mx n) < 0 curv por debjo de l síntot. ( mx n) > 0 ( mx n) < 0 Análogmente si x. Observciones: P Si ( ) x es un cociente de polinomios, l unción tendrá síntot oblicu si Q Grdo P Grdo Q 1. En este cso, l síntot oblicu se podrá obtener como el cociente de l división de polinomios. Un unción tendrá, lo sumo, dos síntots oblicus, un en y otr en. Si hy síntot horizontl No hy síntot oblicu y vicevers. Ejemplo: Clcul ls síntots oblicus de ls siguientes unciones: x 5x 4x x 1 ) b ) x 4 x 1 c) RAMAS PARABÓLICAS (en unciones rcionles). Si Grdo P Grdo Q entonces hy un rm prbólic hci rrib o P P hci bjo dependiendo de que ó respectivmente. x Q x x Q x ( ) ( ) x Análogmente si x. x Ejemplo: Estudi si ls siguientes unciones tienen rms prbólics: 5 x 5x x x 1 ) b ) x x Deprtmento de Mtemátics 7 Bloque II: Análisis de Funciones Proesor: Rmón Lorente Nvrro

8 7. CONTINUIDAD DE UNA FUNCIÓN. 7.1 CONTINUIDAD DE UNA FUNCIÓN EN UN PUNTO. Un unción es continu en si ( ) Est deinición implic que se cumpln tres condiciones: Si no se cumple lgun de ests tres condiciones, diremos que l unción es discontinu en. 7. CONTINUIDAD DE UNA FUNCIÓN EN UN INTERVALO. es continu en (, b) si lo es en todo punto de ese intervlo. es continu en [, b] si es continu en (, b) y, demás, es continu por l derech en y por l izquierd en b. Not: 1) Existe ( ) ) Existe ) ( ) es continu por l derech en si ( ). es continu por l izquierd en b si ( b) 7. TIPOS DE DISCONTINUIDADES. ) Discontinuidd inevitble de slto inito: Present un slto en ese punto. Existen los ites lterles y son initos, pero distintos. x b (Es decir, Dom( ).) y es inito. (Es decir, 1) y ) coinciden)... b) Discontinuidd inevitble de slto ininito: Tiene rms ininits en ese punto Uno o los dos ites lterles son ininitos. c) Discontinuidd evitble: Tiene ese punto desplzdo o bien le lt ese punto. x. En este cso existe ( ), pero no coincide con ( ), o bien no existe ( ) Deprtmento de Mtemátics 8 Bloque II: Análisis de Funciones Proesor: Rmón Lorente Nvrro

9 Propiedd: Si y g son unciones continus en, ls siguientes unciones tmbién son continus en : ) ± g b) g c) k g k R d ) / g si g( ) 0 e) o g Ls unciones polinómics, rcionles, irrcionles, exponenciles, logrítmics, trigonométrics y sus compuests, son continus en su dominio de deinición. Ejemplo 1: Estudir l continuidd de l unción Representrl gráicmente. x 11 x 1 x si si si x < x x > Ejemplo : Determine el vlor de y b pr que (Ctluñ. Junio 007) Ejemplo : Hlle el vlor de k pr que 4x si x x 5 si x < 1 se continu. bx si x 1 x 8 si x x se continu en x. k si x (L Rioj. Septiembre 006) Deprtmento de Mtemátics 9 Bloque II: Análisis de Funciones Proesor: Rmón Lorente Nvrro

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tem 5 Límites de funciones, continuidd y síntots Mtemátics CCSSII º Bch 1 TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 5.1 LÍMITE DE UNA FUNCIÓN 5.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de

Más detalles

LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bch 1 LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de un función en un punto f () l Se lee: El

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

Matemáticas Bachillerato

Matemáticas Bachillerato Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente

Más detalles

LÍMITE DE UNA FUNCIÓN

LÍMITE DE UNA FUNCIÓN LÍITE DE UNA FUNCIÓN. Limite de un unción en un punto.. Límites lterles.. Limites ininitos.. Límites en el ininito.. Propieddes de los límites. 6. Operciones con ininito. 7. Cálculo de límites. 8. Cálculo

Más detalles

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD Introducción Ide de ite Propieddes de los ites Operciones con. Indeterminciones Regls práctics pr l obtención del ite Asíntots horizontles y verticles Continuidd

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso.

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso. Límite de un unción en un punto Diremos que () b si podemos logrr que los vlores de ( ) sen tn próimos b como quermos, con tl de tomr vlores de tn próimos como se preciso. Podemos dr un deinición más orml

Más detalles

Tema 7 (I). FUNCIONES DE UNA VARIABLE. LÍMITES Y CONTINUIDAD.

Tema 7 (I). FUNCIONES DE UNA VARIABLE. LÍMITES Y CONTINUIDAD. Tem 7 I FUNCIONES DE UNA VARIABLE LÍMITES Y CONTINUIDAD Concepto de función Un función entre dos conjuntos X e Y es un relción definid de tl mner que cd elemento X le corresponde ectmente otro elemento

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Límite de funciones. Continuidad MATEMÁTICAS II 1

Límite de funciones. Continuidad MATEMÁTICAS II 1 Límite de funciones. Continuidd MATEMÁTICAS II LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor 0? En generl, pr tener un ide de l respuest

Más detalles

TEMA 2: LÍMITES Y CONTINUIDAD

TEMA 2: LÍMITES Y CONTINUIDAD MATEMATICAS TEMA CURSO 4/5 CONCEPTO DE LÍMITE: Límite de un función en un punto: TEMA : LÍMITES Y CONTINUIDAD El símbolo ( y se lee tiende hci ) y signific que elegimos vlores muy próimos l vlor, (tn próimos

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

UNIDAD 8 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 8 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Pdr Povd (Gudi Mtmátics Aplicds ls CCSS I UNIDAD 8 LÍMITES DE FUNCIONES CONTINUIDAD CONCEPTOS PREVIOS: Dcimos qu: y s l tind, si tom vlors cd vz más próimos Ejmplo: L scunci d númros ; ; ; 9; 8; ;

Más detalles

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL º BT Mt I CNS FUNCIONES REALES DE VARIABLE REAL Función rel de vrible rel.- Un unción rel de vrible rel es un plicción de D en R, siendo D un subconjunto de R distinto del conjunto vcío D Φ. Al conjunto

Más detalles

Matemáticas 2º de Bachillerato Ciencias Sociales

Matemáticas 2º de Bachillerato Ciencias Sociales FUNCIONES ELEMENTALES LÍMITES Y CONTINUIDAD DERIVADAS APLICACIONES DE LAS DERIVADAS Mtemátics º de Bchillerto Ciencis Sociles Proesor: Jorge Escribno Colegio Inmculd Niñ Grnd www.coleinmculdnin.org TEMA.-

Más detalles

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim Función no Acotd en uno o en los dos etremos del Intervlo de Integrción Si f () está definid sobre (, b] y si f () cundo, se define f () d = lim f () d ε + +ε Si f () está definid sobre [, b) y si f ()

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOE) EXAMEN MODELOCURSO - MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím

Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím Universidd Ncionl Autónom de Hondurs Fcultd de Ciencis Económics Guí de Ejercicios No. DET 85, Métodos Cuntittivos III PARTE : Propieddes de límites: No. Teorem Form de reconocerlo C C ite de un constnte

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

INTEGRALES IMPROPIAS INTRODUCCION

INTEGRALES IMPROPIAS INTRODUCCION INTEGRALES IMPROPIAS INTRODUCCION Cundo intentmos explicr que er un integrl hicimos vris suposiciones: l función dentro de l integrl estb definid en un intervlo FINITO [,b], l función no tení discontinuiddes.

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

CÁLCULO DIFERENCIAL. Lím h. Definición: Se dice que f(x) es derivable en A cuando es derivable en todo punto de A.

CÁLCULO DIFERENCIAL. Lím h. Definición: Se dice que f(x) es derivable en A cuando es derivable en todo punto de A. CÁLCULO DIFERENCIAL MATEMÁTICAS II Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci 1.- CONCEPTO DE DERIVADA. Se un unción rel deinid en un entorno del punto. Deinición: Se dice que es derivle en

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

BLOQUE 3. FUNCIONES REALES DE UNA VARIABLE REAL. LÍMITES Y CONTINUIDAD DE FUNCIONES

BLOQUE 3. FUNCIONES REALES DE UNA VARIABLE REAL. LÍMITES Y CONTINUIDAD DE FUNCIONES BLOQUE 3 FUNCIONES REALES DE UNA VARIABLE REAL LÍMITES Y CONTINUIDAD DE FUNCIONES Funciones reles de un vrile rel Límite de un unción rel Continuidd de un unción rel Con este tem se inici el estudio de

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales Mtemátics II TEMA 7 Repso del conjunto de los números reles y de funciones reles El conjunto de los números reles El conjunto de los números reles, R, es el más mplio de los números usules Puede considerrse

Más detalles

Lamberto Cortázar Vinuesa la función se va a - infinito x 2 2x

Lamberto Cortázar Vinuesa la función se va a - infinito x 2 2x http://matematicas-tic.wikispaces.com Lamberto Cortázar Vinuesa 07 LÍMITES EN EL INFINITO. ASÍNTOTAS EJERCICIOS WIKI Idea Se trata de estudiar lo que sucede con la unción () cuando damos a valores tan

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

TEMA 4.- FUNCIONES ELEMENTALES

TEMA 4.- FUNCIONES ELEMENTALES TEMA 4.- FUNCIONES ELEMENTALES 1.- FUNCIONES: CLASIFICACIÓN Y DOMINIOS Un unción rel de vrible rel es un regl que sign cd número rel perteneciente un cierto conjunto D, un único número rel. Formlmente

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0 FUNCIONES FUNCIÓN: RELACIÓN ENTRE DOS MAGNITUDES X E Y TAL QUE A CADA VALOR DE X LE CORRESPONDE UN ÚNICO VALOR DE Y X: vrible independiente Y: vrible dependiente f()= Notción: f(2)=4, si =2, entonces =4

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO. 5.- ANÁLISIS (1ª PARTE).- Límites, Continuidad, Derivadas y aplicaciones.

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO. 5.- ANÁLISIS (1ª PARTE).- Límites, Continuidad, Derivadas y aplicaciones. MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO 5.- ANÁLISIS ª PARTE.- Límites, Continuidd, Derivds y plicciones..- MODELO DE PRUEBA Conceptos de unción continu en un punto y derivd de un unción

Más detalles

Límites. Continuidad.

Límites. Continuidad. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Límite finito cuando x tiende a infinito (1) Límite finito cuando x tiende a infinito (2) Se dice que el límite de la función f(x) cuando

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Complementos de Mtemátics, ITT Telemátic Tem 3. Deprtmento de Mtemátics, Universidd de Alclá Índice 1 básic 2 Obtención de ls regls de cudrtur 3 Error de cudrtur 4 Regls compuests Introducción Integrl

Más detalles

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)?

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)? LÍMITES Y CONTINUIDAD DE FUNCIONES. C O N C E P T O D E L Í M I T E D E U N A F U N C I Ó N E N U N P U N T O Consideremos la función f(x)x², cuya gráfica es una parábola. Si x se aproxima a, a qué valor

Más detalles

MÉTODOS DE INTEGRACIÓN

MÉTODOS DE INTEGRACIÓN Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)

Más detalles

EJERCICIOS DE INTEGRALES IMPROPIAS

EJERCICIOS DE INTEGRALES IMPROPIAS EJERCICIOS DE INTEGRALES IMPROPIAS. Integrles impropis de primer especie. Clculr Pr n, n con >. F (b) = b n n+ = n + Si n >, entonces F (b) =, con lo que Si n

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

Definición de la función logaritmo natural.

Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se sbe que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

Ficha 4. Funciones lineales y cuadráticas

Ficha 4. Funciones lineales y cuadráticas Fich 4. Funciones lineles y cudrátics ) Deinición de unción linel Sen A y B dos conjuntos no vcíos y un unción deinid de A hci B ( : A B ), entonces se le llm un unción linel si su criterio es de l orm

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

Continuidad. Funciones

Continuidad. Funciones I. E. S. Siete Colins (Ceut) Deprtmento de Mtemátics Mtemátics de º de Bchillerto Continuidd de Funciones Por Jvier Crroquino CZs Ctedrático de mtemátics del I.E.S. Siete Colins Ceut 005 Continuidd De

Más detalles

CAPÍTULO 10: FUNCIONES POLINÓMICAS Y DE PROPORCIONALIDAD INVERSA.

CAPÍTULO 10: FUNCIONES POLINÓMICAS Y DE PROPORCIONALIDAD INVERSA. 0 CAPÍTULO 0: FUNCIONES POLINÓMICAS Y DE PROPORCIONALIDAD INVERSA. Mtemátics ºB ESO Antes de comenzr, vmos representr medinte gráfics ls siguientes situciones: Actividdes resuelts 0 9 8 0 9 8 Situción

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 203-204 Contents

Más detalles

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS. FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. CONCEPTO DE FUNCIÓN. Llmmos correspondenci entre dos conjuntos A B culquier form de signr lgunos o todos los elementos de A otros elementos de

Más detalles

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción. MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 5: Límites y continuidad. LibrosMareaVerde.tk

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 5: Límites y continuidad. LibrosMareaVerde.tk Mtemátics Aplicds ls Ciencis Sociles II. º Bchillerto. Cpítulo : Límites y continuidd Autor: Letici González Pscul Menéndez Índice. LÍMITES.. IDEA INTUITIVA DE LÍMITE.. DEFINICIÓN MATEMÁTICA DE LÍMITE..

Más detalles

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales.

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales. NÚMEROS REALES, R CPR. JORGE JUAN Xuvi-Nrón Es el conjunto de números que se obtiene l unir el conjunto de los números rcionles con el conjunto de los números irrcionles. R= QI Los números reles poseen

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x))

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x)) Matemáticas II Curso 03-04 6. Asíntotas Se dice que una función y f ( tiene una rama infinita cuando, f( o ambas al mismo tiempo crecen infinitamente. De esta manera el punto (, f ( ) se aleja infinitamente

Más detalles

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006 Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente

Más detalles

Optimización de funciones

Optimización de funciones Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en

Más detalles

Primitivas e Integrales

Primitivas e Integrales Cpítulo 25 Primitivs e Integrles En este cpítulo vmos trbjr con funciones de un vrible. En él estbleceremos un cso prticulr del Teorem Fundmentl del Cálculo Integrl (ver [3] pr el cso generl), con el que

Más detalles

s=1/2 2 t 2 v=s/t v, y como el espacio que recorre el ciclista es de 10 metros, 10 La relación se define así: b = 1,5a s=5 t

s=1/2 2 t 2 v=s/t v, y como el espacio que recorre el ciclista es de 10 metros, 10 La relación se define así: b = 1,5a s=5 t 0 CAPÍTULO : FUNCIONES POLINÓMICAS, DEFINIDAS A TROZOS Y DE PROPORCIONALIDAD INVERSA Antes de comenzr, vmos representr medinte gráfics ls siguientes situciones: 0 9 8 0 9 8 Tiempo (t) Espcio (s) 0 0 9

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

Nombre: Carnet Sección: TERCER EXAMEN PARCIAL MA-1111 (40%) Conteste las siguientes preguntas justificando detalladamente sus respuestas.

Nombre: Carnet Sección: TERCER EXAMEN PARCIAL MA-1111 (40%) Conteste las siguientes preguntas justificando detalladamente sus respuestas. Universidd Simón Bolívr. Deprtmento de Mtemátics Purs Aplicds. MA-.Tipo A Nombre: Crnet Sección: TERCER EXAMEN PARCIAL MA- (0% Conteste ls siguientes pregunts justiicndo detlldmente sus respuests..- (

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE 1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2 FUNDAMENTACIÓN TEÓRICA ESCENARIO Dominio I: Conocimientos de Mtemátics Tem: Funciones reles de un vrible rel. L función eponencil. L función logrítmic. Asignturs involucrds en l formción universitri: Análisis

Más detalles

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será: Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua

Más detalles

Matemáticas II. 2º Bachillerato. Capítulo 7: Límites y continuidad LibrosMareaVerde.tk

Matemáticas II. 2º Bachillerato. Capítulo 7: Límites y continuidad LibrosMareaVerde.tk Mtemátics II. º Bchillerto. Cpítulo 7: Límites y continuidd Autor: Letici González Pscul Menéndez 9 Índice. IDEA INTUITIVA DE LÍMITE. DEFINICIÓN DE LÍMITE.. DEFINICIÓN MATEMÁTICA.. LÍMITES LATERALES. OPERACIONES

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN

ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN La gráfica de una función elemental puede presentar ninguna una o varias asíntotas verticales y además puede presentar a lo sumo una asíntota horizontal o una asíntota

Más detalles

TEMA25.Límites de funciones. Continuidad y discontinuidades. Teorema de Bolzano. Ramas Infinitas

TEMA25.Límites de funciones. Continuidad y discontinuidades. Teorema de Bolzano. Ramas Infinitas TEMA 5. Límites de unciones. Continuidd y discontinuidd. Bozno. Rms ininits TEMA5.Límites de unciones. Continuidd y discontinuiddes. Teorem de Bozno. Rms Ininits. Introducción L continuidd es un de s propieddes

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

Limites. Introducción Límites

Limites. Introducción Límites Introducción Limites El límite de funciones reles de un vrible rel. Es el concepto sobre el cul descnsn los dos pilres más importntes del cálculo. En efecto el cálculo diferencil e integrl veces denomind

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles