PROBLEMA DE FLUJO DE COSTO MINIMO.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMA DE FLUJO DE COSTO MINIMO."

Transcripción

1 PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 5 y 4 millones de [kwh] respectivamente. El valor máximo de consumo ocurre a las 2 PM y es de 45, 2, 3 y 3 millones de [kwh] en las ciudades 1, 2, 3 y 4 respectivamente. El costo de enviar 1 [kwh] depende de la distancia que deba recorrer la energía. La siguiente tabla muestra los costos de envío unitario desde cada planta a cada ciudad. Formule un modelo de programación lineal que permita minimizar los costos de satisfacción de la demanda máxima en todas las ciudades. Desde Hacia Ciudad 1 Ciudad 2 Ciudad 3 Ciudad 4 (Millones kwh) Planta Planta Planta (Millones KWh) /15/ /2/ /3/ 45/3/1/ 2/ 3/ 3/ Costo total: 15(8)+2(9)+1(14)+2(6)+3(16) 125 Está en equilibrio R/ En la ciudad 1 si se quiere satisfacer la demanda se necesita 15 de la planta 1, 2 de la planta 2 y 1 de la planta 3. En la ciudad 2 se cubre la demanda con 2kw en la planta 1. En la ciudad 3 necesitan comprar 3 en la planta 3 y la ciudad 4 necesitan 3 en la planta 2 para un costo mínimo de Una empresa dedicada a la fabricación de componentes de ordenador tiene dos fábricas que producen, respectivamente, 8 y 15 piezas mensuales. Estas piezas han de ser transportadas a tres tiendas que necesitan 1, 7 y 6 piezas, respectivamente. Los costes de transporte, en pesetas por pieza son los que aparecen en la tabla adjunta. Cómo debe organizarse el transporte para que el coste sea mínimo? Tienda A Tienda B Tienda C Fabrica I Fabrica II /2/ /7/ 1/8/ 7/ 6/ Es Equilibrado Costo total: 2(3)+8(2)+7(2)+6(1) 42 R/ En la fábrica I la tienda A compra 2 y en la II compra 8, la tienda B compra en la fabrica II, 7 y la tienda C compra en la fábrica I, 6. Se reducirá costos a 42.

2 3. Una empresa dedicada a la distribución de aceite de oliva debe enviar 3 toneladas a Madrid, 4 a Barcelona, 2 a Valencia y 1 a Bilbao. Esta empresa suministra en Badajoz, Cáceres y Jaén, cuyas disponibilidades son de 35, 25 y 2 toneladas, respectivamente. Los costes en euros de envió de una tonelada de los lugares de promoción a los destinos son : Por cada tonelada no recibida en los puntos de destino, la empresa tiene unas pérdidas de 5, 8, 6 y 4 euros, respectivamente. La empresa desea minimizar el coste total de la distribución de la mercancía. Como podría hacerse la distribución optima? Madrid Barcelona Valencia Bilbao Badajoz Cáceres Jaén /25/ /2/ / 2 2/ 3/5/ 4/2/ 2/ 1/ 1 1 Oferente Ficticio Se equilibró con un oferente ficticio Costo total: 25(1)+5(6)+2(7)+2(2)+2()+1(9) 91 R/ Madrid necesita que se le distribuya 25 de Badajoz, 5 de Cáceres; para Barcelona se necesitan 2 de Cáceres y 2 de Jaén; Valencia necesita 2 de un ficticio y Bilbao 1 de Cáceres y se reducen costos a Un fabricante de chips tiene que planificar la producción para los próximos tres meses de tres diferentes chips (A,B,C). Los costes de producción por chip son de A, 6 céntimos en los primeros meses y de 9 céntimos en el tercero; de B, 8 los dos primeros y 11 el último mes; y de C, 6 céntimos los dos primeros meses y 8 el ultimo. El departamento de marketing ha llevado a cabo un estudio estimado que la demanda en los tres meses ser la de 3, 4 y 5 unidades, respectivamente. La fábrica puede producir 4 unidades de cada tipo de chip. Cómo se puede optimizar la distribución de la fabricación de los chips en estos tres meses? meses A B C /1/ / / 3/ 4/ 5/4/ Esta equilibrado Costo total: 3(6)+1(6)+4(6)+4(11) 92 R/ Del chip A se deben producir 3 en el 1er mes, en el chip B deben producirse 4 en el 3er mes y del chip C 1 en el primero y 4 en el segundo para obtener un costo mínimo de Una empresa de componentes informáticos puede comprar discos duros a tres proveedores y su objetivo es minimizar el coste total de la compra. Los proveedores disponen de 1, 3 y 1 discos respectivamente. La empresa necesita los discos en tres cadenas de montaje sitas en tres localidades distintas. Dichas cadenas requieren 15, 1 y 25 discos respectivamente. Los precios en cientos de euros por cada disco entregado a cada cadena son como siguen: Calcular la solución óptima. Proveedor Cadena

3 / / / 15/ 1/ 25/15/ 5 5 Esta equilibrado Costo total: 15(3)+1(11)+1(2)+15(2) 2,5 R/ La cadena 1 necesita comprar al proveedor 2, 15 discos; la cadena 2 debe comprar 1 al proveedor 3 y la cadena 3 debe distribuir su compra con el proveedor 1, 1 y con el 2, 15 para reducir costos a 2,5. 6. Una fábrica de vidrio cuenta con 4 toneladas de arena tipo A y 2 toneladas de arena tipo B para utilizar este mes. La arena se funde para fabricar vidrio óptico, vidrio para envases o vidrio para ventanas. La compañía tiene órdenes por 2 toneladas de vidrios óptico, 25 toneladas de vidrio para envases y 25 toneladas de vidrio para ventanas. Los costos para producir una tonelada de cada tipo de vidrio a partir de cada tipo de arena están a continuación. Resuelva el problema formulándolo como uno de transporte. Tipo de Óptico Envases Ventanas vidrio Arena A Arena B Problema /15/ /1/ 1 1/ 2/1/ 25/ 25/1/ 7 7 Oferente ficticio Se equilibra agregando un oferente ficticio Costo total: 1(8)+1()+25(3)+15(5) Cierta empresa tiene dos plantas y tres distribuidores. En la siguiente tabla se muestran los costos de transporte de cada planta a cada centro de distribución, junto con las ofertas disponibles de cada planta y los requerimientos de cada distribuidor. Resuelve el problema formulándolo como uno de transporte. Distribuidor Planta A B C J K Distribuidor Planta A B C J / K /2/5/ 15/ 25/5/ 2/ 6 /6 Costo total: 2(85)+15()+15(5)+75(2) 575

4 8. Una empresa de camiones envía camiones cargados de grano desde tres silos a cuatro molinos. La oferta (en camiones cargados) y la demanda (también en camiones cargados), junto con los costes de transporte por carga de camión en las diferentes rutas se resumen en el modelo de transporte siguiente. Los costos de transporte por unidad, cij, son en cientos de soles. Determinar el costo mínimo del programa de envió entre los silos y los molinos. Silos Molinos Método húngaro Silos Molinos Costo total: =24 9. Una compañía fabrica estufas y hornos. La compañía tiene tres almacenes y dos tiendas de venta al detalle. En los tres almacenes se dispone, respectivamente, de 6, 8 y 5 estufas, y de 8, 5 y 5 hornos. En las tiendas de detalle se requieren, respectivamente, 1 y 9 estufas, y 6 y 12 hornos. En la siguiente tabla se dan los costos de envío por unidad, de los almacenes a las tiendas de detalle, los cuales se aplican tanto a estufas como a hornos. Encontrar las soluciones factibles óptimas para estos problemas de transporte. Almacén Cadena Los costos de envío por unidad de los almacenes a las tiendas, los cuales se aplican tanto a estufas como a hornos la suma de ellos se detalla en la primera tabla. Esto para equilibrar el problema. Almacén Cadena 1 2 Estufas y Estufas Hornos Hornos Estufas 1 9 Hornos Estufas y Hornos

5 Cadena 1 2 Estufas y Hornos / Almacén /11/ / Estufas y Hornos 16/2/ 21/1/ Costo total: 14(3)+2(2)+11(3)+1(3) 19 R/ Para satisfacer la demanda de los almacenes y solucionar el problema de transporte se deben enviar 14 del almacén 1 a la cadena 1 y 2 del almacén 2 a la cadena 1; del almacén 2 a la cadena 2, 11 y del almacén 3 deben enviarse 1 a la cadena Una fábrica produce tres artículos A, B y C, en las siguientes tres plantas que posee. La primera y segunda planta pueden fabricar los tres artículos pero la tercera solo los artículos A y C. La demanda de los artículos A, B y C son 6, 8 y 7 unidades diarias respectivamente. La primera como la tercera planta su producción es de 6 unidades diarias y la segunda planta es de 9 unidades diarias. El costo de fabricación Soles/unidad es: Artículos Planta A B C X 5 Plantear y resolver el problema como un modelo de transporte. Planta Artículos A B C X / 8/1/ 7/6/ 6/ 9/1/ 6/ Costo total: 6(5)+8(8)+1(5)+6(5) 129 R/ Para satisfacer la demanda el articulo A de la planta 1, 6; el articulo B de la planta 2, 8; y del articulo C es necesario satisfacer 1 de la planta 2 y 6 de la planta 3.

6 11. Tres plantas producen un producto, que luego es transportado a dos centros de consumo. Los costos de producción, los costos de transporte desde las plantas a los centros de consumo, así como la oferta y la demanda se dan en la siguiente tabla: Planta Costo de Producción $/u Costo de C. de consumo1 Transporte $/u C. de consumo Resolver el problema como un modelo de transporte con el objetivo de minimizar el costo total e interpretar los resultados. Planta Costo de Producción $/u Costo de C. de consumo1 Transporte $/u C. de consumo Planta Costo de Producción $/u Costo de C. de consumo Transporte $/u C. de consumo2 Ficticio 7 9/ / 1 6/3/1/ 1.2/3/ 7/ 1/ 2/2 CT=5(5)+5(5)+3(6)+2(6)=55 R/ Para satisfacer los centros de consumo se distribuyen 5 de la planta 1 al centro 1 y 3 de la planta 3 al centro 1; para el centro 2, 5 de la planta 2 y 2 de la planta 3; al 3er centro 1 de la planta Tres plantas de energía eléctrica con capacidad de 2, 35 y 4 millones de kilovatios/hora, proporcionan electricidad a tres ciudades. La demanda máxima en las tres ciudades se calcula en 3, 35 y 25 millones de kilovatios/hora. La tabla proporciona el precio por millón de kilovatios/hora en las tres ciudades. Durante el mes de agosto hay un incremento de 2% en la demanda en cada una de las tres ciudades, que se puede satisfacer comprándole electricidad a otra red, a un precio de $1 por millón de kilovatios/hora. Sin embargo esta red no está conectada con la ciudad 1. La Compañía de Servicios Públicos quiere determinar el plan más económico para la distribución y la compra de energía eléctrica adicional. Resuelva e interprete la solución óptima.

7 Ciudades Planta $6 $7 $4 2 $32 $3 $35 3 $5 $48 $45 Planta $6 $7 $4 2 2/ 2 $32 $3 35 $35 35/ 3 $5 3 $48 $ /1/ 5/ 3/ 35/ 25/5/ 5/ 95/95 CT=4(2)+3(35)+5(3)+45(5)=3575 R/Se debe distribuir 3 kw de la planta 3 a la ciudad 1, 35 de la planta 2 a la ciudad 2; 2 de la planta 1 a la ciudad 3 y 5 de la planta 3 a la ciudad 3 y por ultimo 5 de la planta 3 a la ciudad Una compañía dispone de tres fábricas para elaborar cuatro productos: A, B, C y D. La oferta de producción de las tres fábricas son: 9, 12 y 7 respectivamente sin importar que producto se fabrica. Las demandas son 5 unidades de A, 7 unidades de B, 9 unidades de C y 9 unidades de D. La fábrica 3 no puede elaborar el producto B. Hay una penalización por demanda insatisfecha de un producto, la cual es para cada producto de un 25% de su menor costo de fabricación, pero el producto B se debe satisfacer toda su demanda. Los costos de fabricación se dan en la siguiente tabla: Resuelva e interprete la solución óptima con el objetivo de minimizar el costo. Productos Fábricas A B C D Fabrica A B C D / /3/ /3/ 4 2/ 5/2/ 7/4/ 9/ 9/ 3/3 CT= 9(2)+3(4)+9(2)+3(4)=6

8 14. Tres refinerías con capacidades diarias máximas de 6, 5 y 6 millones de galones de gasolina reparten a tres áreas de distribución con demandas diarias de 5, 7 y 7 millones de galones del combustible. La gasolina se transporta a las tres áreas de distribución a través de una red de tubería. El costo de transporte se calcula con base en la longitud de la tubería a un dólar por 1 galones por milla recorrido. La tabla siguiente indica la distancia de la Refinería a las áreas de distribución en millas. Área de distribución Refinería Asimismo, el área de distribución 1 debe recibir toda su demanda y cualquier escasez en las áreas 2 y 3 dará lugar a una penalización de diez dólares por 1 galones. Hallar e interpretar la solución óptima / /4/ /1/ 5 1 2/ 2 5/ 7/3/2/ 7/1/ 19/19 CT= 6(8)+ 4(1) +1(9)+ 5(2)+ 1(25)+ 2()= Una empresa dispone de tres obreros los cuales pueden ser asignados a dos trabajos a la vez. La empresa ofrece cuatro trabajos diferentes. La empresa suministra la tabla de rendimiento de obreros & trabajo. T 1 T 2 T 3 T 4 Cómo se debe hacer la asignación y cuál es el valor del óptimo del O rendimiento? O O O O O O O1 2 O

9 O1 O CT= =25

Problema 1. Oferta /15/ /20/0 5 40/30/0. Demanda 45/30/10/0 20/0 30/0 30/

Problema 1. Oferta /15/ /20/0 5 40/30/0. Demanda 45/30/10/0 20/0 30/0 30/ Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE PROBLEMA DE FLUJO DE COSTO MINIMO. 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250 Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250 EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 3, 0 y 40 millones

Más detalles

Práctica Método Dual simplex y Método de transporte

Práctica Método Dual simplex y Método de transporte Práctica Método Dual simplex y Método de transporte a) Resolver con el método Dual Simplex: 1. Maximizar Z= 2000X1 + 1000X2 3X1 + X2 >= 40 2X1 + 2X2 >= 60 X1 + X2 >= 0 2. Maximizar Z= 5X1 + 6X2 X1 + 9X2

Más detalles

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación

Más detalles

UNIDAD DOS MODELOS DE TRANSPORTE

UNIDAD DOS MODELOS DE TRANSPORTE Ing. César Urquizú UNIDAD DOS MODELOS DE TRANSPORTE Ing. César Urquizú Modelos de Transporte Método de la Esquina Noroeste Método del Costo Mínimo o Menor Método de Aproximación de Vogel (MAV) Método del

Más detalles

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 1.1 Modelo de transporte Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos TEMA N

Más detalles

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI Carrera: Ingeniería de Sistemas Nombre de la asignatura: Investigación de Operaciones I Año académico: Tercer año Semestre: Sexto - Contenido I-

Más detalles

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES I TAREA Problemas de Transporte, transbordo y asignación Prof. :

Más detalles

Programación Lineal y Optimización Segundo Examen Parcial Profr. Eduardo Uresti, enero-mayo 2013

Programación Lineal y Optimización Segundo Examen Parcial Profr. Eduardo Uresti, enero-mayo 2013 Programación Lineal y Optimización Segundo Examen Parcial Profr. Eduardo Uresti, enero-mayo 2013 Matrícula: Nombre: NO HAGA MÁS DE 105 PUNTOS 1. Suponga que tiene una empresa que produce tres tipos de

Más detalles

PROBLEMAS DE PROGRAMACIÓN ENTERA I

PROBLEMAS DE PROGRAMACIÓN ENTERA I Problemas de Programación Entera I 1 PROBLEMAS DE PROGRAMACIÓN ENTERA I 1. Un departamento ha dispuesto 2 millones de pesetas de su presupuesto general para la compra de material informático, con el que

Más detalles

Trabajo Práctico Nº 8: Programación Lineal

Trabajo Práctico Nº 8: Programación Lineal Trabajo Práctico Nº 8: Programación Lineal 1. Utilice el método gráfico para resolver los siguientes problemas: a. Maximizar Z = x1 + x2 x 1 + 5x 2 = 0 b. Maximizar

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Investigación de Operaciones Encuentro #3 Tema: Optimización de Redes: El problema del árbol de expansión mínima y el problema de costo mínimo Prof.: MSc. Julio

Más detalles

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés.

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. Universidad Nacional de Ingeniería Sede: UNI-Norte II Semestre 2008 Investigación de Operaciones I El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. martes, 21 de octubre de 2008 El Problema

Más detalles

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0 Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid Hoja, ejercicios de programación lineal, curso 2010 2011. 1. Un artesano fabrica collares y pulseras. Hacer un collar le

Más detalles

UNIDAD 5. Problema de Transporte

UNIDAD 5. Problema de Transporte UNIDAD 5 Problema de Transporte En matemáticas y economía, un problema de transporte es un caso particular de problema de programación lineal en el cual se debe minimizar el coste del abastecimiento a

Más detalles

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1 Ejercicios de Dualidad y Análisis de Sensibilidad 1. Radioco fabrica dos tipos de radios. El único recurso escaso que se necesita para producir los radios es la mano de obra. Actualmente, la compañía tiene

Más detalles

Formule una solución para este problema de manera que se cumpla el pedido y se minimice los costos. A B C D Oferta

Formule una solución para este problema de manera que se cumpla el pedido y se minimice los costos. A B C D Oferta CASO #1: La empresa químicos del caribe S.A posee 4 depósitos de azufre que deben ser usados para fabricar 4 tipos de productos diferentes (A, B, C, D), además por cada litro que se haga de los productos

Más detalles

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL.

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. 1º/ Un taller de fabricación de muebles de oficina dispone de 700 kg de hierro y 1000 kg de alumnio para la producción de sillas y sillones metálicos. Cada silla

Más detalles

AlumnosA N AlumnosB AlumnosC

AlumnosA N AlumnosB AlumnosC Ejercicios de matrices como expresiones de tablas y grafos: Ejemplo. Sean los grafos siguientes: a) Escriba la matriz de adyacencia asociada a los grafos y de la figura anterior. b) Si las matrices y D

Más detalles

UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I. Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012

UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I. Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012 UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012 Problemas de PL con varias variables Análisis de Sensibilidad Problema 1: Ken & Larry

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal El Problema del Transporte Departamento de Matemáticas ITESM El Problema del Transporte TC3001 - p. 1/25 Veamos ahora el problema del transporte, cuál es su formulación

Más detalles

5 de mayo de Evaluación 1 PETROLEO MUNDIAL C.A. El Constructor. Gasolina. Fábrica de calzados. calzados. Analisis de Sensibilidad

5 de mayo de Evaluación 1 PETROLEO MUNDIAL C.A. El Constructor. Gasolina. Fábrica de calzados. calzados. Analisis de Sensibilidad - INSTITUTO TECNOLOGICO METROPOLITANO INGENIERIA DE PRODUCCCION Investigacion de operaciones I sensibilidad-teoria de la Wbaldo Londoño 5 de mayo de 206 Contenido - 2 3 4 5 6 7-8 - La empresa puede comprar

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura UNIDAD III. ANÁLISIS DE REDES OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Modelos de transporte

Más detalles

TRANSPORTE Y TRANSBORDO

TRANSPORTE Y TRANSBORDO TRANSPORTE Y TRANSBORDO En ésta semana estudiaremos un modelo particular de problema de programación lineal, uno en el cual su resolución a través del método simplex es dispendioso, pero que debido a sus

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA PROBLEMAS RESUELTOS DE PROGRAMACIÒN LINEAL POR METODO GRAFICO CON POM-QM. Profesor: MSc. Julio Rito Vargas Avilés Elaborado por: Yucep Gutiérrez Baltodano. Carlos Reynaldo Guevara.

Más detalles

PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015

PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015 PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015 1. (S2015) Un heladero artesano elabora dos tipos de helados A y B que vende cada día. Los helados tipo A llevan 1 gramo de nata

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

2) Existen limitaciones o restricciones sobre las variables de la función objetivo.

2) Existen limitaciones o restricciones sobre las variables de la función objetivo. 1 Introducción La programación lineal es un método de resolución de problemas que se ha desarrollado para ayudar a profesionales de distintos ambitos a tomar mejores decisiones Desde su aparición a finales

Más detalles

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.

Más detalles

1 de septiembre de 2017

1 de septiembre de 2017 - INSTITUTO TECNOLOGICO METROPOLITANO INGENIERIA DE PRODUCCCION Investigacion de operaciones I Planteamiento de Modelos - Metodo Grafico Wbaldo Londoño de septiembre de 207 Contenido - 2 3 4 5 6 7 8-9

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías

Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías Modelos de Transporte: método de la esquina noroeste M. En C. Eduardo Bustos Farías as Problemas de transporte Surge cuando se necesita un modelo costo-efectividad que permita transportar ciertos bienes

Más detalles

Práctica N 6 Modelos de Programación Lineal Entera

Práctica N 6 Modelos de Programación Lineal Entera Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes

Más detalles

Colegio Portocarrero. Departamento de matemáticas. PL con solución

Colegio Portocarrero. Departamento de matemáticas. PL con solución PL con solución Problema 1: Un mayorista de frutos secos tiene almacenados 1800 kg de avellanas y 420 kg de almendras para hacer dos tipos de mezclas que embala en cajas como se indica a continuación:

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

www.klasesdematematicasymas.com

www.klasesdematematicasymas.com 1. Resolver el siguiente problema por el sistema dual simplex Max Z = 0,50X 1 + 0,40X 2 2X 1 + X 2 120 2X 1 + 3X 2 240 X 1, X 2 0 El modelo estándar es: Z 0,5X 1 0,40X 2 + 0S 1 + 0S 2 = 0 2X 1 + X 2 +

Más detalles

TEMA 4: LA FUNCIÓN PRODUCTIVA DE LA EMPRESA

TEMA 4: LA FUNCIÓN PRODUCTIVA DE LA EMPRESA TEMA 4: LA FUNCIÓN PRODUCTIVA DA EMPRESA EJERCICIOS DE REPASO * SOLUCIONES a.-costes. 1.-Una empresa presenta unos costes fijos de 6600 y unos costes variables que se recogen en la siguiente tabla: Unidades

Más detalles

Conocido el concepto de determinante, necesitamos conocer el concepto de Matriz Adjunta para poder calcular la inversa:

Conocido el concepto de determinante, necesitamos conocer el concepto de Matriz Adjunta para poder calcular la inversa: TEMA : MATRICES: Resumen de Teoría 2 3 CÁLCULO DE LA INVERSA MEDIANTE EL DETERMINANTE Y LA ADJUNTA: Existe otro método para calcular la inversa y que sólo usaremos para matrices cuadradas de orden 3. Para

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Matrices y programación lineal

Colegio Portocarrero. Curso Departamento de matemáticas. Matrices y programación lineal Matrices y programación lineal Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados, que se envasan en dos tipos de caja del modo siguiente: Caja tipo 1: 200 g de polvorones

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UC3M Curso 08/09 1. Una compañía de transporte dispone de 10 camiones con capacidad de 40000 libras y de 5 camiones con

Más detalles

es una matriz de 3 filas y 2 columnas, donde por ejemplo el elemento es 4.

es una matriz de 3 filas y 2 columnas, donde por ejemplo el elemento es 4. Tema 7: Matrices. 7.1 Concepto de Matriz. Tablas grafos. Una matriz A es un cuadro de elementos dispuestos en m filas n columnas, donde el elemento es aquel que está situado en la fila 3 en la columna

Más detalles

PONENCIA UNIVERSIDAD-MATEMÁTICAS APLICADAS 2º BACHILLERATO SOCIALES

PONENCIA UNIVERSIDAD-MATEMÁTICAS APLICADAS 2º BACHILLERATO SOCIALES PONENA UNVERSDAD-MATEMÁTAS APLADAS º BALLERATO SOALES Algunos ejemplos de ejercicios de matrices como expresiones de tablas y grafos: Ejemplo. Sean los grafos siguientes: a) Escriba la matriz de adyacencia

Más detalles

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN. Asignación y Transporte

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN. Asignación y Transporte Asignación y Transporte Objetivo: Utilizar modelos matemáticos para la solución de problemas que contemplen la asignación y transporte. Introducción: La metodología de asignación y transporte está relacionada

Más detalles

PROGRAMACIÓN LINEAL 25.- (Jun. 2008, 3 ptos) 26. (Sep. 2008, 3 ptos)

PROGRAMACIÓN LINEAL 25.- (Jun. 2008, 3 ptos) 26. (Sep. 2008, 3 ptos) PROGRAMACIÓN LINEAL 25.- Un distribuidor de aceite de oliva compra la materia prima a dos almazaras, A y B. Las almazaras A y B venden el aceite a 2000 y 3000 por tonelada, respectivamente. Cada almazara

Más detalles

Problemas de PL con varias variables Análisis de Sensibilidad

Problemas de PL con varias variables Análisis de Sensibilidad UNIVERSIDAD NACIONAL DE INGENIERIA UN-NORTE SEDE-ESTELI Asignatura: Investigación de Operaciones I Problemas de PL con varias variables Análisis de Sensibilidad M.C. Ing. Julio Rito Vargas Avilés 1 P.

Más detalles

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6 Programación Lineal 1. Una compañía destiladora tiene dos grados de güisqui en bruto (sin mezclar), I y II, de los cuales produce dos marcas diferentes. La marca regular contiene un 0% de cada uno de los

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución.

Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución. I.E.S. CASTILLO DE LUNA Programación lineal En un problema de programación lineal con dos variables x; y, se trata de optimizar (hacer máximo o mínimo, según los casos) una función, llamada función objetivo

Más detalles

El Problema de Transporte

El Problema de Transporte El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Julio 202 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el cual

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono /Telefax

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono /Telefax UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES EJERCICIOS PARA RESOLVER Problemas de Transporte y Transborde Profesor:

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal Introducción a la Programación Lineal J. Montealegre I. Flores Febrero de 2015 1. Desigualdades en el plano cartesiano Si en un plano P consideramos una recta L éste queda dividido en tres conjuntos: el

Más detalles

Planificación colaborativa de la oferta y la demanda para empresas de productos de consumo

Planificación colaborativa de la oferta y la demanda para empresas de productos de consumo de la solución SAP SAP for Consumer Products Objetivos Planificación colaborativa de la oferta y la demanda para empresas de productos de consumo Equilibrio de la oferta y la demanda con un costo óptimo

Más detalles

UNIVERSIDAD DE OCCIDENTE

UNIVERSIDAD DE OCCIDENTE UNIVERSIDAD DE OCCIDENTE UDO - ESTELI Por la Excelencia Académica Carrera: Ingeniería en Computación y Sistemas Nombre de la asignatura: Métodos de Optimización I Año académico: Quinto año Cuatrimestre:

Más detalles

Asignatura: Investigación de Operaciones

Asignatura: Investigación de Operaciones Asignatura: Investigación de Operaciones Tema II: Programación Lineal Contenido: Definición de P.L. Planteamiento del modelo de P.L. Objetivos: Conocer e interpretar los elementos del modelo. Platear modelos

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1 Un fabricante desea encontrar la producción semanal óptima de los artículos A, B y C para maximizar sus beneficios. Las ganancias por unidad de estos artículos son:

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Sistemas, matrices, programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Sistemas, matrices, programación lineal resueltos. Sistemas, matrices, programación lineal resueltos. Problema 1: Sean las matrices Encuentra el valor o valores de x de forma que B 2 = A Problema 2: En la remodelación de un centro de enseñanza se quiera

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

Fundamentos de Investigación de Operaciones Certamen # 2

Fundamentos de Investigación de Operaciones Certamen # 2 Certamen # 2 Profesores: María Cristina Riff & Esteban Sáez 6 de junio de 2003 1. Una pequeña empresa constructora debe construir 3 casas en los próximos 5 meses. Una vez que alguna de las casas está terminada,

Más detalles

EJERCICIOS PAU DE PRODUCTIVIDAD

EJERCICIOS PAU DE PRODUCTIVIDAD EJERCICIOS PAU DE PRODUCTIVIDAD 1.- Una empresa produce 2.125 unidades de producto durante el mes de febrero, 2.500 en marzo y 2.850 en abril. La plantilla de la empresa durante febrero era de 12 trabajadores,

Más detalles

Práctico N 5 Parte a: Programación lineal

Práctico N 5 Parte a: Programación lineal U.N.C.P.B.A FACULTAD DE INGENIERÍA PROCESOS QUÍMICOS II Práctico N 5 Parte a: Programación lineal Planteo n 1: Supóngase que una compañía fabrica 2 conjuntos xx e yy. Cada unidad de los respectivos productos

Más detalles

Ejercicios de Umbral de Rentabilidad

Ejercicios de Umbral de Rentabilidad Ejercicios de Umbral de Rentabilidad EJERCICIO AUDÍFONOS Una empresa fabricante de AUDÍFONOS incurre en unos costes fijos anuales de 30.000 euros, siendo los costes variables por unidad producida de 10

Más detalles

El Problema de Transporte

El Problema de Transporte El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Octubre 2008 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el

Más detalles

Métodos de distribución

Métodos de distribución Métodos de distribución Ejercicios: 1)Que es una red de distribución. Describa sus componentes. 2)Enuncie las condiciones que debe satisfacer una solución inicial factible básica. 3)Detalle el procedimiento

Más detalles

* Las necesidades de materia prima y servicios del departamento de producción.

* Las necesidades de materia prima y servicios del departamento de producción. TEMA 1: EL APROVISIONAMIENTO LA EMPRESA: funciones y organización. La empresa es una unidad económica que se crea con el fin de obtener un beneficio a través del ejercicio de una actividad empresarial.

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL Y SU SOLUCIÓN ÓPTIMA. Considere el siguiente modelo de programación lineal y su solución óptima. Tabla simplex Final

EJERCICIOS DE PROGRAMACIÓN LINEAL Y SU SOLUCIÓN ÓPTIMA. Considere el siguiente modelo de programación lineal y su solución óptima. Tabla simplex Final EJERCICIOS DE PROGRAMACIÓN LINEAL Y SU SOLUCIÓN ÓPTIMA. Ejercicio 1 X j : Número de horas destinadas a realizar el proceso j; j= 1,2 Máx Z = 1X 1 + 11X 2 (Funcion de Ganancia, $) 1X 1 + 1X 2 12 (Disponibilidad

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Programación de producción.

Programación de producción. Programación de producción. 1. Sensibilización 2. Conceptos 3. Taller práctico AGENDA PRESENTACIÓN DE LA DOCENTE LUZ ADRIANA GALEANO JARAMILLO (lucilugaleano@hotmail.com) COLEGIO TERESIANO (1994) INGENIERA

Más detalles

{x 3 y 3. Ejercicios. y la función objetivo que hay que maximizar es

{x 3 y 3. Ejercicios. y la función objetivo que hay que maximizar es Ejercicios 1. [S/97]Cada mes una empresa puede gastar, como máximo, un millón de pesetas en salarios y un millón ochocientas mil pesetas en energía (electricidad y gasóleo). La empresa sólo elabora dos

Más detalles

Pogramación Lineal. Matemáticas Aplicadas Ciencias Sociales II. José Manuel del Toro Programación Lineal - 1

Pogramación Lineal. Matemáticas Aplicadas Ciencias Sociales II. José Manuel del Toro  Programación Lineal - 1 Pogramación Lineal 1) (Junio-00) Una empresa, especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y sillas que vende a 2000 pts y 3000 pts por unidad, respectivamente.

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

Programación lineal. Tema Introducción / motivación

Programación lineal. Tema Introducción / motivación Tema Programación lineal Mientras que para funciones reales de variable real la derivación ha permitido resolver el problema de optimalidad en su conjunto, en este tema, la programación lineal resuelve

Más detalles

PRACTICA DIRIGIDA SOLUCIÓN DE MODELOS DE PROGRAMACIÓN LINEAL POR EL MÉTODO GRÀFICO

PRACTICA DIRIGIDA SOLUCIÓN DE MODELOS DE PROGRAMACIÓN LINEAL POR EL MÉTODO GRÀFICO 1 UNIVERSIDAD INCA GARCILASO DE LA VEGA FACULTAD DE INGENIERIA DE SISTEMAS, CÓMPUTO y TELECOMUNICACIONES Carrera Profesional de Ingeniería de Sistemas y Cómputo ASIGNATURA: INVESTIGACION DE OPERACIONES

Más detalles

UNIVERSIDAD NACIONAL DE SALTA Facultad de Ciencias Económicas, Jurídicas y Sociales Cátedra: Métodos Cuantitativos para los Negocios

UNIVERSIDAD NACIONAL DE SALTA Facultad de Ciencias Económicas, Jurídicas y Sociales Cátedra: Métodos Cuantitativos para los Negocios PROBLEMA Nº 1: FÁBRICA DE BOMBONES Una fábrica de bombones entrega sus productos en cajas de un kilogramo en dos variedades A y B. La caja tipo A contiene trescientos gramos de bombones de licor, quinientos

Más detalles

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato 4. PROGRAMACIÓN LINEAL 4.1. Introducción 1. Determina las variables, la función objetivo y el conjunto de restricciones de los siguientes problemas de programación lineal: a) En una empresa de alimentación

Más detalles

Tema 8: Programación lineal. Nociones elementales. Ejemplos.

Tema 8: Programación lineal. Nociones elementales. Ejemplos. Tema 8: Programación lineal. Nociones elementales. Ejemplos.. Introducción / motivación: -La optimización en problemas reales depende en general de varias variables -Las técnicas de diferenciabilidad siguen

Más detalles

PROBLEMAS RESUELTOS SOBRE PROGRAMACIÓN LINEAL EN DOS VARIABLES.- MÉTODO GRÁFICO

PROBLEMAS RESUELTOS SOBRE PROGRAMACIÓN LINEAL EN DOS VARIABLES.- MÉTODO GRÁFICO PROBLEMAS RESUELTOS SOBRE PROGRAMACIÓN LINEAL EN DOS VARIABLES.- MÉTODO GRÁFICO www.cedicaped.com PROBLEMAS RESUELTOS SOBRE PROGRAMACIÓN LINEAL EN DOS VARIABLES.- MÉTODO GRÁFICO 1. Un dietista está diseñando

Más detalles

X m,j. X m,n C m,n C m,j. X m, C m,1. X i,n. C i,n MODELO DE TRANSPORTE. Matemáticamente:

X m,j. X m,n C m,n C m,j. X m, C m,1. X i,n. C i,n MODELO DE TRANSPORTE. Matemáticamente: MODELO DE TRANSPORTE El modelo de transporte se define como una técnica que determina un programa de transporte de productos o mercancías desde unas fuentes hasta los diferentes destinos al menor costo

Más detalles

La variabilidad del coste de transporte en el total de la cadena logística

La variabilidad del coste de transporte en el total de la cadena logística La variabilidad del coste de transporte en el total de la cadena logística Introducción: AECOC Más de 25.000 empresas asociadas Asociación multisecotrial Gran consumo, sanidad, ferretería y bricolaje,

Más detalles

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos:

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: Solución óptima a los problemas de transporte La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: a) Calcular los

Más detalles

Aplicaciones de la línea recta

Aplicaciones de la línea recta 1 FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 4 SEMESTRE II RESEÑA HISTÓRICA Aplicaciones de la línea recta RESEÑA HISTÓRICA EUCLÍDES Nació: 365 AC en Alejandría,

Más detalles

a) Cuadrado de lado 12,25 cm (Área = lado lado) b) Rectángulo de dimensiones 7,315 cm de largo y 2'7 cm de ancho (Área = largo ancho)

a) Cuadrado de lado 12,25 cm (Área = lado lado) b) Rectángulo de dimensiones 7,315 cm de largo y 2'7 cm de ancho (Área = largo ancho) NUMEROS DECIMALES III 1 Calcula el cociente con 2 cifras decimales: a) 26,63 : 3,5 b) 3,201 : 0,61 2 Un kilo de pescado fresco cuesta 5,73 Euros Cuánto costará 3,25 Kg de pescado? 3 Efectúa las siguientes

Más detalles

Programación Lineal y Optimización Segundo Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Agosto-Diciembre 2011

Programación Lineal y Optimización Segundo Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Agosto-Diciembre 2011 Matrícula: Nombre: Programación Lineal y Optimización Segundo Examen Parcial Respuesta: : Profr. Eduardo Uresti, Agosto-Diciembre 2011 1. Suponga que tiene una empresa que produce tres tipos de productos

Más detalles

Ejercicios Propuestos

Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 1 Modelación Matemática. Programación

Más detalles

Optimización de redes

Optimización de redes UNIVERSIDAD DE MANAGUA Al más alto nivel Optimización de redes Problema de la Ruta más corta Problema del Árbol de expansión mínima Problema del Flujo máximo Problema de Flujo de costo mínimo Maestro Ing.

Más detalles

Programación Lineal y Optimización Tercer Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Tercer Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Tercer Examen Parcial Respuesta: : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1 (30 puntos) La compañía Xeroch vende copiadoras. Uno de los factores de

Más detalles

Tema 1 Introducción. José R. Berrendero. Departamento de Matemáticas Universidad Autónoma de Madrid

Tema 1 Introducción. José R. Berrendero. Departamento de Matemáticas Universidad Autónoma de Madrid Tema 1 Introducción José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Información de contacto José Ramón Berrendero Díaz Correo electrónico: joser.berrendero@uam.es Teléfono:

Más detalles

Habilidad para lograr aprendizajes efectivos en matemática

Habilidad para lograr aprendizajes efectivos en matemática Curso: Habilidad para lograr aprendizajes efectivos en matemática Titulo: Programación lineal: Ejercicio Unidad: 2 Ejercicio Grandes tiendas encargan a un fabricante de Indonesia pantalones y chaquetas

Más detalles

Gestión y Organización de Almacenes. Certificado de Profesionalidad

Gestión y Organización de Almacenes. Certificado de Profesionalidad Gestión y Organización de Almacenes Certificado de Profesionalidad Logística Concepto y descripción Logística Apróximación del producto al mercado Los centros de producción, las fábricas, se ubican en

Más detalles

Sacar el máximo provecho de la localización para la empresa

Sacar el máximo provecho de la localización para la empresa LOCALIZACIÓN DE LAS INSTALACIONES Objetivos de la estrategia de la localización Sacar el máximo provecho de la localización para la empresa Decisiones de la localización industrial Se centra en el coste:

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles

REDES LOGÍSTICAS. Contenidos

REDES LOGÍSTICAS. Contenidos REDES LOGÍSTICAS Contenidos 1. Introducción 2. Qué son las redes logísticas? 3. Niveles de gestión de la red logística 4. Importancia de rediseñar la red logística 5. Pasos para rediseñar una red logística

Más detalles

1era sesion. Introducción a almacenes

1era sesion. Introducción a almacenes 1era sesion Introducción a almacenes Gerencia de la cadena de Suministro (SCM) Se refiere la integración eficiente de proveedores, plantas, almacenes y puntos de distribución para que los productos o

Más detalles

COMPLETACION: Escriba la respuesta correcta. PARTE PRACTICA: Desarrolle en forma clara y ordenada cada uno de los siguientes ejercicios.

COMPLETACION: Escriba la respuesta correcta. PARTE PRACTICA: Desarrolle en forma clara y ordenada cada uno de los siguientes ejercicios. Funciones EXAMEN II PARCIAL /7/4 COMPLETACION: Escriba la respuesta correcta. Valor % c/u ) La pendiente de la ecuación x 5y es: ) El vértice de la función x es: x x ) El punto faltante de la función es

Más detalles

TEMA 4 LA ENERGÍA ELÉCTRICA TECNOLOGÍA 1º ESO. Samuel Escudero Melendo

TEMA 4 LA ENERGÍA ELÉCTRICA TECNOLOGÍA 1º ESO. Samuel Escudero Melendo TEMA 4 LA ENERGÍA ELÉCTRICA TECNOLOGÍA 1º ESO Samuel Escudero Melendo QUÉ ES LA ELECTRICIDAD? QUÉ VEREMOS? GENERACIÓN Y TRANSPORTE DE LA ELECTRICIDAD ALTERNADOR LÍNEAS DE TRANSPORTE ESTACIONES DE TRANSFORMACIÓN

Más detalles