Las únicas funciones cuyas gráficas son rectas son las siguientes:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Las únicas funciones cuyas gráficas son rectas son las siguientes:"

Transcripción

1 Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente de la recta. Es un número real cualquiera. Si m > 0 entonces la función es creciente. Si m < 0, la función es decreciente. Siendo más precisos, dados dos puntos cualesquiera de la recta, A ( x0, y0 ) y B ( x, y) y y0 pendiente de la recta es m x x, es decir, el cociente entre el incremento de la 0 función y el incremento de la variable independiente. - Afines, de expresión y mx n. Las gráficas son rectas que no pasan por el origen de coordenadas. m es la pendiente de la recta y tiene exactamente la misma interpretación que en las funciones lineales. n es la ordenada en el origen, el valor de la función para x = 0, el punto de corte de la recta con el eje de ordenadas o eje Y. - Constantes, y k Las gráficas son rectas paralelas al eje X con el valor de y = k Ejercicios resueltos.- Dibuja la gráfica de las siguientes funciones indicando en cada caso la pendiente y la ordenada en el origen., la a) x y 3 La pendiente m 3 y la ordenada en el origen n = 0. Para dibujar su trazado se puede hacer una tabla de valores, representar los puntos de la tabla en el plano y unirlos. Para que los cálculos sean más sencillos damos a x valores múltiplos del denominador, 3. x y - 0

2 Funciones, 3º ESO () b) x y La pendiente m y la ordenada en el origen n =. Tomamos valores de x de forma que la función tenga valores enteros. x -3 7 y 0 - c) y =, La pendiente m = 0 y la ordenada en el origen n =, No hace falta hacer una tabla. Sabemos que es paralela al eje X, a la altura,.- Halla las ecuaciones de las siguientes rectas: a) Pasa por los puntos A(, -) y B(3, -7). ( 7) Pendiente m 3 Para hallar la ordenada en el origen sustituimos la pendiente por su valor y las variables de la fórmula, x e y, por las coordenadas de uno de los puntos. Despejamos n y x n n n Ecuación: y x

3 Funciones, 3º ESO (3) b) Es paralela a la recta y = x + y pasa por el punto P(, -) Si dos rectas son paralelas tienen la misma pendiente (y viceversa), así que nuestra recta es y = x + n. Hallamos n como antes, sustituyendo x e y por las coordenadas del punto P y x n n n La recta es y x c) Pasa por el punto C(-3, ) y su ordenada en el origen es -7. Ahora lo que sabemos es que la recta tiene de ecuación y mx 7 y se trata de calcular la pendiente m. Procedemos igual que en los casos anteriores, sustituyendo x e y por las coordenadas el punto C para despejar después el valor de m. 7 y mx 7 3m 7 m 3 3 La recta es y x El precio de un viaje en tren depende de los kilómetros recorridos. Por un trayecto de 0 km pagamos 6, y si recorre 30 km, cuesta 0. Escribe la ecuación de la recta que relaciona los kilómetros recorridos, x, con el precio del billete, y. Calcula, además, el precio de un billete para un recorrido de 0 km. Tenemos dos puntos de la recta, A(0, 6) y B(30, 0). Procedemos como en el ejercicio a) 0 6 m y x n 6 0 n n La ecuación de la recta es y x 3 El precio del billete para un trayecto de 0 km se obtiene sustituyendo x por 0 en la ecuación de la recta y 0 9, En una heladería, A, venden el helado a el litro y cobran por un envase, sea del tamaño que sea. En otra heladería, B, cobran 0, por un envase y 6 por cada litro de helado. a) Representa la función litros de helado coste para cada heladería y escribe sus ecuaciones. Heladería A. Ecuación del precio ( y ) en función de la cantidad de helado ( x ) y = x + Heladería B. y = 6x + 0, Gráficas

4 Funciones, 3º ESO () b) Analiza cuál de las dos ofertas es más ventajosa según la cantidad de helado que compremos. Cuándo x + = 6x + 0,? Para x = 0,. Este es el valor crítico. Si se compra menos de medio litro es mejor comprar en la heladería B, pero si compramos más de medio litro es conveniente hacerlo en A. FUNCIONES CUADRÁTICAS. PARÁBOLAS Las gráficas de las funciones cuadráticas, de expresión general y = ax + bx + c son curvas llamadas parábolas. Si a > 0 son cóncavas hacia arriba, es decir, tienen forma de U. Si a < 0 la gráfica es cóncava hacia abajo, con forma de U invertida,. Se dibujan a partir de los puntos de corte con el eje X y el vértice, siendo éste el punto más importante. Una vez determinados los puntos de corte y el vértice, se completa una tabla de valores con puntos cercanos al vértice. Ejercicios resueltos Dibuja las gráficas de las siguientes funciones cuadráticas con tablas de siete valores en los que hay que incluir los puntos de corte con el eje X (si los hubiera) y el vértice. a) y = x + x - La gráfica es cóncava hacia arriba (U) porque a = > 0 - Puntos de corte con el eje X. Se iguala la función a cero y se resuelve la ecuación obtenida (siempre se puede b b ac utilizar la fórmula tan bien conocida ) a x x 0 x( x ) 0 x 0, x b - Vértice. La coordenada x del vértice, V x, viene dada por la fórmula V x a En este caso, V x - Completamos la tabla, dando a x los valores anteriores y alguno más, hasta 7, simétricos respecto al vértice. x y

5 Funciones, 3º ESO () b) y = x + 0x - La gráfica es cóncava hacia abajo ( ) porque a = < 0 - Puntos de corte con el eje X. x 0 0x 0 x 0 x 7, x 3 0 Vértice. V x - Completamos la tabla. 0 ( ) ( ) ( ) x y c) y = x - La gráfica es cóncava hacia abajo (U) porque a = 0 - Puntos de corte con el eje X. x 0 x Vértice. V 0 x - Completamos la tabla. no corta al eje X. x y,, 3 3,,

6 Funciones, 3º ESO (6) EJERCICIOS.- Dibuja la gráfica de las siguientes funciones indicando en cada caso la pendiente y la ordenada en el origen. a) x y m n 0 d) 7 x y m n 7 b) y, 8x m,8 n 0 e) y,x 3, 6 m, n 3,6 c) 0 3 y x 3 m n 0

7 .- Halla la ecuación de las siguientes rectas: a) Pasa por el origen de coordenadas y por el punto P(, 3) y x y x b) Su pendiente es - y pasa por el punto A(-3, ) c) Pasa por los puntos P(, -3) y Q(, ) y x 3 3 y x 7 d) Es paralela a y = x y pasa por A(, -) e) Pasa por el punto P(, ) y su ordenada en el origen es - 7 y x Funciones, 3º ESO (7) 3.- Para colaborar con las personas sin techo, una ONG elabora un periódico de reparto callejero. Cada vendedor recibe un fijo de euros al mes y, además, 0 céntimos por ejemplar vendido. a) Escribe la fórmula y representa la gráfica de la función que relaciona el número de periódicos vendidos con el dinero recibido al mes. y = + 0,x b) Cuántos ejemplares tiene que vender un sin techo para cobrar en un mes 8 euros? 30 periódicos.- Dibuja la gráfica de las siguientes funciones cuadráticas a partir del vértice y puntos cercanos al mismo: a) y = x x 3 b) y = x +

8 Funciones, 3º ESO (8) c) y x 6x 9 f) y = x +x 6 d) y x 8x 80 g) y = x x e) y x x 6

13 FUNCIONES LINEALES Y CUADRÁTICAS

13 FUNCIONES LINEALES Y CUADRÁTICAS 3 FUNCINES LINEALES CUADRÁTICAS EJERCICIS PARA ENTRENARSE Definición y caracterización de una función lineal 3.8 Una función viene dada por la siguiente tabla. x 0 3 y 0 3 6 9 Expresa la función mediante

Más detalles

- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta.

- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta. º ESO C MATEMÁTICAS ACADÉMICAS UNIDAD.- FUNCIONES LINEALES CUADRÁTICAS..- FUNCIONES CUA GRÁFICA ES UNA RECTA Funciones lineales Son aquellas cuya fórmula es del tipo y = mx, siendo m 0. - El coeficiente

Más detalles

EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.

EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:. EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PRACTICA Representación de rectas ESTÁ RESUELTO EN EL LIBRO Representa las rectas: a) y = x b) y = x c) y = x d) y = a) b) c) d) Representa las rectas: a) y = 0,8x b) y = x c) y =,6x d) y =

Más detalles

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro) (tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto

Más detalles

OBJETIVO 1 CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA:

OBJETIVO 1 CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA: OBJETIVO CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA: FUNCIÓN LINEAL Una función de proporcionalidad directa o función lineal se expresa de la forma: y = m? x, siendo m un número

Más detalles

FUNCIONES LINEALES Y CUADRÁTICAS

FUNCIONES LINEALES Y CUADRÁTICAS . FUNCIONES LINEALES FUNCIONES LINEALES CUADRÁTICAS Aquéllas cua fórmula es un polinomio de grado. = + 9ºESO Se corresponden con los fenómenos de proporcionalidad; es decir, que la variación de la '' sea

Más detalles

1 Función de proporcionalidad y = mx

1 Función de proporcionalidad y = mx Unidad. Funciones lineales y cuadráticas Función de proporcionalidad y = mx Página. Dibuja sobre unos ejes cartesianos, en papel cuadriculado, dos rectas que pasen por el origen y que tengan pendientes

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

Podemos razonar de dos formas distintas: Resolución 1: Hallamos la pendiente y la ordenada en el origen y utilizamos la forma y = mx + n.

Podemos razonar de dos formas distintas: Resolución 1: Hallamos la pendiente y la ordenada en el origen y utilizamos la forma y = mx + n. . Escribe la ecuación de esta recta: A Y Podemos razonar de dos formas distintas: Resolución : Hallamos la pendiente y la ordenada en el origen y utilizamos la forma y = mx + n. Pendiente: cuando x aumenta,

Más detalles

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad

Más detalles

TEMA 7. FUNCIONES ELEMENTALES

TEMA 7. FUNCIONES ELEMENTALES TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo:

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: 3 + x y = 3 x x + x 3 + x y = 3 x x + x Abierta hacia arriba Abierta hacia abajo Abierta hacia abajo Calcula

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

PÁGINA El precio de un kilogramo de arroz es de 1,5. Representa, como en los ejemplos anteriores, la función peso 8 coste.

PÁGINA El precio de un kilogramo de arroz es de 1,5. Representa, como en los ejemplos anteriores, la función peso 8 coste. Soluciones a las actividades de cada epígrafe PÁGINA 7 1 El precio de un kilogramo de arroz es de 1,5. Representa, como en los ejemplos anteriores, la función peso 8 coste. COSTE ( ) 1 1 1 ARROZ 8 1 5

Más detalles

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta lección aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b)

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b) FUNCIÓN LINEAL Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.

Más detalles

Unidad 6: Funciones reales de variable real.

Unidad 6: Funciones reales de variable real. Funciones reales de variable real 1 Unidad 6: Funciones reales de variable real. 1.- Concepto de función. Expresión analítica de una función. Variables x e y Existe relación entre x e y No hay relación

Más detalles

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3 PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen

Más detalles

Ficha 1. Formas de expresar una función

Ficha 1. Formas de expresar una función Ficha 1. Formas de expresar una función 1. En unas instalaciones deportivas cobran 5 euros por la entrada, que da derecho a la utilización de todas las dependencias salvo las pistas de tenis, por las que

Más detalles

m = 0 constante m > 0 creciente m < 0 decreciente n es la ordenada en el origen (donde la función corta al eje Y, imagen de x=0)

m = 0 constante m > 0 creciente m < 0 decreciente n es la ordenada en el origen (donde la función corta al eje Y, imagen de x=0) 1. FUNCIONES POLINÓMICAS. D(f) = R A. FUNCIONES LINEALES: n = 1 Su gráfica es una recta. D (f) = R. Im (f) = R m = 0 constante m es la pendiente (inclinación) m > 0 creciente y = mx + n m < 0 decreciente

Más detalles

Nombre: Representa las gráficas de ambas funciones en los mismos ejes de coordenadas y haz una interpretación gráfica de la solución del sistema.

Nombre: Representa las gráficas de ambas funciones en los mismos ejes de coordenadas y haz una interpretación gráfica de la solución del sistema. IES ATENEA. 1 er CONTROL. MATEMÁTICAS B. 4º ESO. Nombre: Evaluación: Segunda. Fecha: de febrero de 011 NOTA Ejercicio nº 1.- Calcula la ecuación de la recta que pasa por los puntos A (, 6) y B (,3). 1

Más detalles

( ) ( ) -3. Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir,

( ) ( ) -3. Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir, Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir, f : x y Definida así: f ( x) = ax + bx + c donde a, b c R.(Por un Polinomio de º grado). Su gráfica es una

Más detalles

CASOS DE LA FUNCIÓN AFÍN

CASOS DE LA FUNCIÓN AFÍN CASOS DE LA FUNCIÓN AFÍN Considera que el precio de un artículo es de Bs 80. Conocido el precio unitario (precio por unidad) es posible calcular fácilmente el precio de varios artículos con solo multiplicar

Más detalles

Funciones lineales y cuadráticas

Funciones lineales y cuadráticas 2 CLAVES PARA EMPEZAR a) 2x 8 2 8 2 2x x 3 b) 6x 8 20 6x 20 8 x 2 c) 4x 6 5x 2 4x 5x 2 6 x 2 d) 3 8 7x 3 8 7x x 3 a) c) b) d) VIDA COTIDIANA Si no tenemos en cuenta la cuota fija, una llamada de 25 segundos

Más detalles

Clase. Función cuadrática y ecuación de segundo grado

Clase. Función cuadrática y ecuación de segundo grado Clase Función cuadrática y ecuación de segundo grado Aprendizajes esperados Aplicar los conceptos matemáticos asociados al estudio de la función cuadrática. Graficar una función cuadrática, determinando

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

que asocia a cada número entero su triple menos dos:

que asocia a cada número entero su triple menos dos: Dada la función f que asocia a cada número entero su triple menos dos: a) Escribe la epresión que nos proporciona f 0,, b) Calcula la imagen para ) Dada la siguiente función : ), ) y 0) a) Calcula b) Determina

Más detalles

Funciones constantes, lineales y afines 1.

Funciones constantes, lineales y afines 1. Funciones constantes, lineales y afines 1. 1.- Rectas horizontales y verticales. Ej.1.- A continuación tienes la gráfica de la recta y = 0. Qué puntos de corte tiene con los ejes? Qué posición tiene respecto

Más detalles

Funciones y gráficas. Londres Atenas París Londres Múnich Barcelona. Países Hombres Mujeres

Funciones y gráficas. Londres Atenas París Londres Múnich Barcelona. Países Hombres Mujeres 000 Atenas 96 París Londres Múnich Barcelona 94 94 97 99 Países Hombres Mujeres Londres 0 En enero hubo 00 clientes; en febrero, 50; en marzo, 00; en abril, 50; en mayo, 300; y en junio, 400. El total

Más detalles

TEMA 6: FUNCIONES ELEMENTALES

TEMA 6: FUNCIONES ELEMENTALES MATEMÁTICAS CCSSS I TEMA 6: FUNCIONES ELEMENTALES FUNCIONES II. FUNCIONES POLINÓMICAS Las funciones polinómicas son todas aquellas cuya epresión analítica es la de un polinomio: f a + a + a + + a ( ) o...

Más detalles

Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es:

Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es: Representa las rectas y = x + e y = x y calcula el punto que tienen en común El punto que tienen en común estas dos rectas se obtiene resolviendo el siguiente sistema de ecuaciones: y = x + y = x 3 x =,

Más detalles

Funciones polinómicas, racionales y exponenciales

Funciones polinómicas, racionales y exponenciales 008 _ 06-08.qd 9/7/08 9:07 Página 6 Funciones polinómicas, racionales eponenciales INTRODUCCIÓN Uno de los objetivos de esta unidad es que los alumnos aprendan a hallar la ecuación de una recta dados dos

Más detalles

Funciones algebraicas.

Funciones algebraicas. UNIDAD 9: UTILICEMOS LAS FUNCIONES ALGEBRAICAS. Funciones algebraicas..1 Funciones polinomiales. Estudiaremos las funciones siguientes: constante, lineal, cuadrática y cúbica. Función constante. Las funciones

Más detalles

SESIÓN 10 FUNCIONES Y GRÁFICAS

SESIÓN 10 FUNCIONES Y GRÁFICAS SESIÓN 10 FUNCIONES Y GRÁFICAS I. CONTENIDOS: 1. Funciones. 2. Variables dependientes e independientes. 3. Gráfica de funciones y su aplicación. II. OBJETIVOS: Al término de la Sesión, el alumno: Comprenderá

Más detalles

Qué estudiaremos? Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A. Funciones lineales

Qué estudiaremos? Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A. Funciones lineales Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A Qué estudiaremos? Repasamos las funciones lineales. La función cuadrática. Estudio general

Más detalles

Clase 3 Funciones lineal y cuadrática

Clase 3 Funciones lineal y cuadrática Clase 3 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Función lineal Definición Una relación de la forma f(x) = mx+n, donde m, n R, se llama función lineal

Más detalles

GUIA DE ESTUDIO DE MATEMATICAS IV

GUIA DE ESTUDIO DE MATEMATICAS IV GUIA DE ESTUDIO DE MATEMATICAS IV TURNO MATUTINO ELABORO: ACADEMIA DE MATEMATICAS Propósito: Los alumnos desarrollarán las habilidades para identificar, reconocer, y graficar funciones de distintos tipos,

Más detalles

UNIDAD XVII LA LINEA RECTA. Modulo 4 Ecuación de la recta

UNIDAD XVII LA LINEA RECTA. Modulo 4 Ecuación de la recta UNIDAD XVII LA LINEA RECTA Modulo 4 Ecuación de la recta OBJETIVO Encontrar y determinar la ecuación de una recta, conocidos los puntos de intersección con los ejes coordenados. 4. 1. LINEA RECTA. Lugar

Más detalles

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta

Más detalles

Apuntes de Funciones

Apuntes de Funciones Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación

Más detalles

Bloque 3. Análisis. 2. Tipos de funciones

Bloque 3. Análisis. 2. Tipos de funciones Bloque 3. Análisis 2. Tipos de funciones 1. Función lineal Es una función polinómica de primer grado y tiene una ecuación del tipo: y = mx. Su gráfica es una línea recta que pasa por el origen de coordenadas,

Más detalles

Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento.

Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento. . RECTAS y FUNCIONES AFINES Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento. a) y = c) y = e) y = b) y = d) y = + f) y = a) No es lineal. c)

Más detalles

Álgebra de Funciones

Álgebra de Funciones Funciones polinómicas Álgebra de Funciones Guía 5: Función cuadrática y racional. Profesores: Ximena Cánovas & César Fernández Un polinomio de grado n es una función f: R R tal que : n n1 n 1 f ( x) an

Más detalles

Tema 9: Funciones II. Funciones Elementales.

Tema 9: Funciones II. Funciones Elementales. Tema 9: Funciones II. Funciones Elementales. Finalizamos con este tema el bloque de análisis, estudiando los principales tipos de funciones con sus respectivas características. Veremos también una ligera

Más detalles

EJERCICIOS DE GEOMETRÍA ANALÍTICA 4º ESO A

EJERCICIOS DE GEOMETRÍA ANALÍTICA 4º ESO A EJERCICIOS DE GEOMETRÍA ANALÍTICA 4º ESO A 1. Halla las ecuaciones de la recta r que pasa por los puntos A(1,4) y B(0,-1) en todas sus formas: vectorial, continua, punto-pendiente, explícita y general.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 0 Pág. Página PRACTICA Pendiente de una recta Desde el punto A, nos movemos unidades a la derecha y unidades hacia arriba. Así llegamos al punto B. Cuál es la pendiente de la recta AB? Cuando x avanza,

Más detalles

Una curva del plano correspondiente a la gráfica de una función si y sólo si ninguna recta vertical intercepta a la curva más de una vez

Una curva del plano correspondiente a la gráfica de una función si y sólo si ninguna recta vertical intercepta a la curva más de una vez Función Una función f de un conjunto D a un conjunto E, es una regla de correspondencia que asigna a cada elemento x de D un elemento único y de E. Características de las funciones Dominio de una función:

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES Página 05 REFLEIONA RESUELVE A través de una lupa Mirando un objeto pequeño (un capuchón de bolígrafo, por ejemplo) a través de una lupa situada a 0 cm, este se ve notablemente ampliado.

Más detalles

Ejercicios de funciones

Ejercicios de funciones Matemáticas 4º ESO. Ejercicios Tema 0. Funciones. Pág /6. Sean las funciones: Ejercicios de funciones Calcular:. Dadas las funciones: Calcular: Probar que: Probar que: 3. Dadas las funciones: Calcular:

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con a

Más detalles

FUNCIONES CON DESCARTES. HOJA DE TRABAJO

FUNCIONES CON DESCARTES. HOJA DE TRABAJO FUNCIONES CON DESCARTES. HOJA DE TRABAJO Escena 1 a) Inventa un texto que ilustre de forma clara el gráfico. b) Cuál es la variable independiente y en qué unidad se mide? c) Cuál es la variable dependiente

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL ) a) Determine pendiente, ordenada al origen y abscisa al origen, si es posible. b) Grafique. -) a) y = ( x ) aplicando propiedad distributiva y= x se

Más detalles

Del mismo modo, si el coche empieza a descender por una colina, todavía se puede determinar la pendiente.

Del mismo modo, si el coche empieza a descender por una colina, todavía se puede determinar la pendiente. FUNCIÓN AFÍN. PENDIENTE DE UNA RECTA Suponga que tiene un avión de juguete sobre el despegue, que se eleva 5 pies por cada 6 metros que recorre a lo largo de la horizontal. Cuál sería la pendiente de su

Más detalles

FUNCIÓN. La Respuesta correcta es D

FUNCIÓN. La Respuesta correcta es D FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella

Más detalles

Tema 6 La recta Índice

Tema 6 La recta Índice Tema 6 La recta Índice 1. Ecuación vectorial de la recta... 2 2. Ecuaciones paramétricas de la recta... 2 3. Ecuación continua de la recta... 2 4. Ecuación general de la recta... 3 5. Ecuación en forma

Más detalles

Solución Fácilmente encontrarás que el denominador se anula para x = 2 y x = 3 luego pondremos que: D(y) = R - { 2, 3

Solución Fácilmente encontrarás que el denominador se anula para x = 2 y x = 3 luego pondremos que: D(y) = R - { 2, 3 Dominio de una función Funciones elementales Funciones lineales Interpolación lineal Funciones cuadráticas (tratadas en tema anterior ) Funciones de proporcionalidad inversa Funciones definidas a trozos

Más detalles

Funciones. f : A B. Dominio: Es el conjunto de todos los valores para los cuales está definida la función y se denota Dom(f).

Funciones. f : A B. Dominio: Es el conjunto de todos los valores para los cuales está definida la función y se denota Dom(f). Funciones Definición Sean A y B conjuntos no vacíos. Una función de A en B es una relación que asigna a cada elemento x del conjunto A uno y sólo un elemento y del conjunto B. Se expresa como: Notación:

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 3º ESO. (2ª parte) 1 OPERACIONES CON POLINOMIOS 1.-) Dados los polinomios: P(x) = 3x 2 + 3x - 1, Q(x) = 3x 2 + 2x + 1 y R(x) = -x 3 + 2x 2 +1. Calcular: a) P - Q R

Más detalles

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre

Más detalles

EJERCICIOS DE REFUERZO FUNCIONES 1) Calcula f(0), f(1), f(-1), f(2) y f(-3) de las siguientes funciones: 1

EJERCICIOS DE REFUERZO FUNCIONES 1) Calcula f(0), f(1), f(-1), f(2) y f(-3) de las siguientes funciones: 1 EJERCICIOS DE REFUERZO FUNCIONES 1) Calcula f(0), f(1), f(-1), f() y f(-3) de las siguientes funciones: 1 a) f () b)f () 3 c) f () ) Calcula f(3) f(-1) f(4) y f(-4) 4º ESO B d) f () 3) Cuáles de las siguientes

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Dos pares ordenados seran iguales si cada una de sus componentes son respectivamente iguales, es decir: (a, b) = (c, d) a = c y b = d

Dos pares ordenados seran iguales si cada una de sus componentes son respectivamente iguales, es decir: (a, b) = (c, d) a = c y b = d El Plano Cartesiano EDUCACIÓN MATEMATICA 1/10 El plano cartesiano o sistema de ejes coordenados debe su nombre al matemático francés Rene Descartes, es utilizado principalmente en la Geometría Analítica

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

I.- DESARROLLO DE ESPRESIONES DE LA FORMA (a ± b) n

I.- DESARROLLO DE ESPRESIONES DE LA FORMA (a ± b) n 1 GUIA 1 QUINTO AÑO UNIDAD 0 I.- DESARROLLO DE ESPRESIONES DE LA FORMA (a ± b) n en donde n N y n HALLAR EL DESARROLLO DE: 1.- (X-).- (X+).- (X Y 5XY ).- X X Y 5.- 6XY XY 5 6.- 6X Y 1XY 7.- X 6 8.- X a+1

Más detalles

Matemáticas 3. ax + by + c = 0

Matemáticas 3. ax + by + c = 0 Matemáticas 3 Ecuaciones Lineales Una ecuación lineal es una ecuación de primer grado con 2 incógnitas cuya forma general es: ax + by + c = 0 a, b, c son constantes reales, X, Y" son variables. Toda ecuación

Más detalles

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3 EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

Colegio Universitario Boston

Colegio Universitario Boston Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,

Más detalles

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia.

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4 Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4... 1 1. Sistema de Coordenadas Cartesianas... 2 1.a. Punto medio... 3 1.b. Distancia entre dos puntos...

Más detalles

Propiedad importante: Si una recta pasa por los puntos ( a, 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO

Propiedad importante: Si una recta pasa por los puntos ( a, 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto 0,n Ya sabemos

Más detalles

Funciones cuadráticas

Funciones cuadráticas Funciones cuadráticas Qué es una Función Cuadrática? Es una función cuya regla de correspondencia está dada por un polinomio cuadrático, tal como Es una función cuya regla puede escribirse en la forma

Más detalles

Tema 4: Ecuaciones y sistemas de ecuaciones.

Tema 4: Ecuaciones y sistemas de ecuaciones. Tema : Ecuaciones y sistemas de ecuaciones.. Ecuaciones de º grado Ejemplo Resuelve las siguientes ecuaciones de º grado:. 0 x x a Ecuación de º grado completa con La fórmula es x b b ac a 9 9 0 b c 0

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

Proyecto Guao FUNCIÓN CUADRÁTICA O DE SEGUNDO GRADO.

Proyecto Guao FUNCIÓN CUADRÁTICA O DE SEGUNDO GRADO. FUNCIÓN CUADRÁTICA O DE SEGUNDO GRADO. Las funciones cuadráticas son más que curiosidades algebraicas, son ampliamente usadas en la ciencia, los negocios, y la ingeniería. La parábola con forma de U puede

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en.

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Función Lineal Se llama función lineal a toda función que tiene la forma:. con Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Muchas son

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

TEMA FUNCIONES 4º ESO

TEMA FUNCIONES 4º ESO TEMA FUNCIONES 4º ESO 1) Definiciones: Concepto de función. Dominio y recorrido de una función. Función inyectiva. Gráfica de una función. (pág. 158) 2) Cálculo del dominio de una función 3) Cálculo de

Más detalles

1. a) Hallar la ecuación de una función lineal sabiendo que pasa por el punto P(1,7) b) Ídem para P(-1,3) c) Ídem para P(2,5)

1. a) Hallar la ecuación de una función lineal sabiendo que pasa por el punto P(1,7) b) Ídem para P(-1,3) c) Ídem para P(2,5) FUNCIÓN DE PROPORCIONALIDAD DIRECTA (y=mx):. a) Hallar la ecuación de una función lineal sabiendo que pasa por el punto P(,7) b) Ídem para P(-,) c) Ídem para P(,5). Si se sabe que una función lineal pasa

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES Tema 4 Funciones elementales Matemáticas CCSSI º Bachillerato TEMA 4 FUNCIONES ELEMENTALES FUNCIÓN EJERCICIO : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función.

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II Encuentre la ecuación de la recta que pasa por los siguientes puntos

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I FUNCIONES

CÁLCULO DIFERENCIAL E INTEGRAL I FUNCIONES CÁLCULO DIFERENCIAL E INTEGRAL I FUNCIONES 1. Funciones Una función consta de dos conjuntos, llamados dominio y contradominio, y de una regla de correspondencia que permite asociarle a cada elemento del

Más detalles

Ecuaciones Cuadráticas. Cuadrado

Ecuaciones Cuadráticas. Cuadrado Ecuaciones Cuadráticas Cuadrado 01 J14 Se aumenta la longitud de cada lado de un cuadrado en 12 y se obtiene otro cuadrado con un área nueve veces el área del cuadrado inicial. Cuál es el área del cuadrado

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente:

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente: LA RECTA Recuerda: Una recta es una función de la forma y = mx + n, siendo m y n números reales m es la pendiente de la recta y n es la ordenada en el origen La ordenada en el origen nos indica el punto

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

1 de 1 Manizales, 9 de Agosto de 01 1. (VALE POR UN PUNTO) El costo para producir un par de zapatos es de $5700 y depende de la materia prima y de la mano de obra. Si el costo de la materia prima es el

Más detalles

3.7 Funciones lineales

3.7 Funciones lineales 3.7 Funciones lineales 34. Si la gráfica de una función f de en con regla de correspondencia f(x)= x, se la desplaza dos unidades hacia arriba, dos unidades hacia la izquierda y luego se la refleja con

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas .1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,

Más detalles

MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS

MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS UNIDDA DIDÁCTICA #3 CONTENIDO FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS OBJETIVOS Conocer la definición de la función cuadrática. Estudiar las propiedades de las funciones

Más detalles