PARALELISMO RECTA RECTA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PARALELISMO RECTA RECTA"

Transcripción

1 ARALELISMO RECTA RECTA Do ect lel en el ecio on tmbien lel en oyeccione. Si do ect on lel en el ecio u oyeccione eticle tmbien lo ón, í como u oyeccione oizontle o tece oyeccione. Tmbién eán lel l el btid obe lguno de lo lno de oyección. ' '' ' '' ' ' V R 'V ' S H H '' '' ' ' '' '' ' ' Tz un ect S lel R o el unto ' ' ' Simlemente tenemo que tz o l oyección oizontl del unto un ect lel l oyección oizontl de l ect y un ect lel l oyección eticl de l ect o l oyección eticl del unto. ' ' ' A l izquied emo un co con el que emo de tene cuiddo, y que l te que no eneñn de l ect y el unto no e encuentn en el mimo cudnte con lo que el lelimo e muet de fom inetid l ejecicio nteio. No obtnte ete igue exctmente l mim ut. lelimo de lo ldo de l eccione en im o oliedo ecciondo o lno. SECCIÓN LANA Cundo no encontmo con un im o oliedo que tiene como be o c ouet un olígono que contiene ldo lelo y ete im o oliedo e ecciondo o un lno, lo ldo de l ección conen el lelimo que tienen lo ldo oueto o be contenid en lno lo que etenece lo ldo de l ección. Obeemo lguno co. ' ' ARALELISMO RECTA-RECTA

2 ' ' '' '' Do lno lelo en el ecio tienen tmbien u tz lel en culquie de u oyeccione. Si do lno on lelo en el ecio u tz eticle tmbien lo ón, í como u tz oizontle '' ' o tece oyeccione o ' '' tz en un lno de efil uxili. En oc ocione lo lno oblícuo neceitn e eeentdo en ª oyección. De culquie modo en et ilutcione e muet demot que el lelimo e cumle en t l oyeccione. Tz un lno, que conteng l unto A y lelo l lno ddo ' ' ARALELISMO LANO-LANO 1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 1º- Tzmo un ect oizontl R, lel l lno. ello tzmo un oizontl o ' y un lel o. Hllmo l tz de l ect. en ete co '. º- o V' mo un lel ', et eá l tz eticl del lno bucdo. º- o l inteección de ' con LT tzmo un lel. El lno contiene l unto A, ue etá contenido en un ect R eteneciente él. Como emo en l ilutción l izquied, ete ejecicio e uede eole de l mim fom conteniendo el unto ddo en un ect fontl. el eultdo eá el mimo. ARALELISMO RECTA-LANO ' ' R ' ' ' S ' Un ect e lel un lno cundo el lno contiene, o uede contene, un ect que e lel l ime. Tz un lno, que conteng l ect y lelo l ect ' ' 1 ' ' ' ' ' ' 1º- Elegimo un unto A obe l ect y mo o él un ect lel S. º- Contenemo l do ect que e cotn en A en un lno. El lno tzdo contiene un ect lel S y o lo tnto e lelo ell. ARALELISMO: LANO-LANO / RECTA-LANO

3 ERENDICULARIDAD RECTA-LANO Un ect eendicul un lno tiene u oyección eticl eendicul l tz eticl del lno y u oyección oizontl eendicul l tz oizontl del lno. que l eendiculidd en el ecio e cuml l eendiculidd ente tz del lno y oyeccione de l ect e debe de d en mbo lno de oyección. Tz un ect R, eendicul l lno, o un unto A exteio. ' ' ' ' ' El oblem no tiene ningun comlicción. ' ' Se tt de ce o el unto (en mb oyeccione) un ect eendicul l tz del lno. Tz un ect R, eendicul l lno o un unto A exteio él. ' Si bien ete co no eent comliccione i que neceitmo ' et tención y que el unto no e encuent en el ime cudnte y eí un eo tz l eendiculidd con l oyeccione cmbid. Del mimo modo, unque má extño todí, odín eenteno l tz ocult de un lno. ' ' Tz un ect R, eendicul l lno o un unto A eteneciente él. ' ' Ete oblem tmoco tiene ningun comlicción. Se tt de ocede igul que en el nteio, con l únic difeenci de que et ez el unto e encuent contenido en el lno. ' ' ' ' Ete oblem tiene eecil imotnci y que en multitud de ocione no encontemo con ejecicio que no iden contui un im o un iámide ecto (eje o it eendicule l be) ti de un olígono contenido en un lno Tz un ect R que e o A y e eendicul l lno. Detemin u tz y u iibilidd. ' ' ' '' ' 1º- L oyeccione de l ect ' º- detemin l tz de ' eán, como ieme, l ect neceitmo u tece ' ' '' eendicule l tz del 1 oyección que obtenemo, en '' lno, í que odemo tz ete co ti del btimiento l oyeccione de l ect. eo de un lno de efil que contiene ' et no qued definid i no lo l ect y l unto A. Un ez cemo con do unto, lo detemind l tz en ª ' emo con u do tz como oyección odemo llel no ide el enuncido. oyeccione eticl y oizontl. Obeemo lguno co de im o iámide cuy be etán oyd en lno ditinto lo de oyección. Se tt de olígono (l be) contenido en lno de cuyo étice ten ect (it) eendicule l lno obe el cul e oyn lo oliedo. A l deec emo un cubo oydo obe un lno oyectnte eticl. Vemo como tod l it que ten de l be, obe el lno cumlen l eendiculidd con l tz del lno A l deec emo un im de be tingul oydo obe un lno oyectnte oizontl Tmbién odemo eci como tod l it que ten de l be tingul, contenid en el lno, cumlen l eendiculidd con l tz del lno ERENDICULARIDAD RECTA-LANO 1

4 ERENDICULARIDAD RECTA-LANO Tz un lno eendicul l ect R y que conteng l unto Addo. ' ' ' 1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' 1º- mo o el unto un ect oizontl S, cuy oyección oizontl e eendicul l oyección oizontl de l ect R. º- Deteminmo l tz eticl de S y o ell tzmo l tqz del lno, ', eendicul l oyeccion eticl de R. º. o l inteección de ' con LT tzmo l tz oizontl, eendicul l oyeccion oizontl de l ect R. Como odemo e l izquied ete oblem tmbién e uede eole emlendo como ect uxili un fontl Tz un lno eendicul l ect R y que conteng l unto Addo. El oblem e el mimo y lo o egui tmbién. Et ez emo lledo cbo el mimo ocedimiento eo cndo o el unto un ect fontl. L eculiidd del ejecicio eide en el lelimo de mb oyeccione de l ect dd, eto ooc que l tz del lno etén lined, lo cul e oco fecuente. ' ' ' ' 1 ' ' ' ' ' ' ' ' Tz un lno eendicul l ect R y que conteng l unto A ddo. No eguimo encontndo con el mimo enuncido, eo ete co tene un ienci muco má comlicd. eo en elidd el método e exctmente igul que en lo do nteioe co. ' 1 ' ' ' ' ' ' ' ' ' ' ' ERENDICULARIDAD RECTA-LANO

5 En el item diédico, l contio de lo que ucede con el lelimo, do ect o do lno eendicule, u tz ( lo lno) o u oyeccione ( l ect) no gudn elción eecil ente í. Si en diédico l oyeccione omónim de do ect on eendicule, et ect no tienen o que e eendicule en el ecio; y i l tz omónim de do lno on eendicule, tmoco ignific que mbo lno en eendicule. ERENDICULARIDAD RECTA-RECTA Genelmente l oyeccione eticl y oizontl de do ect eendicule en el ecio eán oblicu. Sólmente i un de l do ect e lel uno de lo lno de oyección e obeá en oyeccione l eendiculidd en dic oyección. ' ' ' A l izquied emo un ect oizontl S que e eendicul o el unto A un ect oblícu R. L eendiculidd e obe en l oyección ' ' ' oizontl. A l deec emo un ect fontl eendicul o el unto A un ect oblicu R. L eendiculidd e obe en l oyección eticl de l ect. Si l ect no cumlen ningun lelimo con eecto ningún lno de oyección l eendiculidd y no e obe diectmente en oyeccione. Tz o el unto A un ect S eendicul l ect R dd. ' ' 1 ' ' ' i' ' ' ' i' ' ' ' i i 1º- Contenemo el unto A ddo en un lno, eendicul l ect R dd. º- Hllmo l inteección, i-i', de l ect R con el lno. º- L ect definid o el unto A ddo y l inteección I e eendicul l ect R y o el unto A ddo. ERENDICULARIDAD LANO- LANO Un lno e eendicul oto i contiene o uede contene un ect eendicul l oto A' lno. o un unto A, eteneciente un lno, o o A' exteio él, ueden tze infinito lno eendicule A Tz o l ect R un lno eendicul l lno ddo. ' ' ' ' 1º- Elegimo un unto eteneciente ' 1 ' l ect A. A ti de el tzmo un ect S eendicul l lno ' ' ' ' '. º- L ect S y R definen el lno con u tz (te de ell l meno). contiene S y R. S e eendicul y o ello tmbién. o un unto A ddo tz un lno T eendicul lo lno y ddo. ' ' ' 1º- Hllmo l ect inteección ente lo lno y ddo. º- Tzmo el lno T que contiene l unto A eendicul l ect inteección ente y. ' ' ' T' T e eendicul l ect inteección ente y, que etenece mbo lno, o lo tnto T e eendicul y. T ERENDICULARIDAD RECTA-RECTA / LANO LANO

ABATIMIENTO DE UN PLANO OBLÍCUO SOBRE EL PH o EL PV DE PROYECCIÓN

ABATIMIENTO DE UN PLANO OBLÍCUO SOBRE EL PH o EL PV DE PROYECCIÓN Un btimiento de un plno conite en ce gi el plno entono un ect, que e un de l do tz del plno, que ejece de cnel o eje de gio (big) t celo coincidi con uno de lo do plno de poyección. E un opeción impotnte

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

POSICIONES DEL PUNTO:

POSICIONES DEL PUNTO: OSCONES DEL UNTO: 1 elementos diédico A) UNTOS EN LOS CUADANTES (segundo cudnte) V (pime cudnte) A B C (tece cudnte) D V (cuto cudnte) - unto situdo en el pime cudnte (A): Cot +, lejmiento + - unto situdo

Más detalles

Sistema diédrico Ortogonal: Introducción

Sistema diédrico Ortogonal: Introducción El item diédio e un método gáfio que e eng de eeent oe un lno figu o ueo de do o te dimenione. Se tt de un onjunto de egl o iniio lido do lno eendiule oe lo que e oyetn lo ojeto (unto, et, u o ueo). Ete

Más detalles

FUNDAMENTOS. Sistema diédrico Ortogonal: Introducción

FUNDAMENTOS. Sistema diédrico Ortogonal: Introducción El item diédio e un método gáfio que e eng de eeent oe un lno figu o ueo de do o te dimenione. Se tt de un onjunto de egl o iniio lido do lno eendiule oe lo que e oyetn lo ojeto (unto, et, u o ueo). Ete

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

2 Representar el plano que definen las rectas r y s que se cortan en A. 4 Hallar el punto A del plano de cota 16 y alejamiento 10

2 Representar el plano que definen las rectas r y s que se cortan en A. 4 Hallar el punto A del plano de cota 16 y alejamiento 10 1 Repesent el plno que definen l ect R y el punto. 2 Repesent el plno que definen ls ects y s que se cotn en A 3 Hll ls tzs del plno que definen ls ects y s 4 Hll el punto A del plno de cot 16 y lejmiento

Más detalles

ELEMENTOS DE GEOMETRÍA DEL ESPACIO CURSO 2015

ELEMENTOS DE GEOMETRÍA DEL ESPACIO CURSO 2015 ELEMENTS DE GEMETRÍ DEL ESPCI CURS 2015 Pof.Segio Weinege 6to MD.Mt IV PSICINES RELTIVS DE DS RECTS: 1) PRLELS: // y coplne y = Ф o = 2) SECNTES(SE CRTN): y ecnte ={P} P 3) SE CRUZN (N CPLNRES) y e cuzn

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integción 7 Integles imois Hst quí, l efeinos l integl definid en un intevlo cedo Œ; b, el cul tiene un longitud finit b f / considemos que f es un función continu Es deci, l integl

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

ELECTRICIDAD Y MAGNETISMO. Electromagnetismo

ELECTRICIDAD Y MAGNETISMO. Electromagnetismo ELECTCDAD Y MAGNETSMO. Eectomgnetimo ) Ccu fue eectomoti inducid en un epi po un p de io peo de gn ongitud, po o que cicu un coiente igu peo con entido contio. b ) En un emiepcio > exite un cmpo mgnético,

Más detalles

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES 6 Unidd. Podcto ecl ectoil mito. Apliccione en el epcio. UNIDAD.PRODUCTO ESCALAR VECTORIAL Y MIXTO. APLICACIONES. Podcto ecl de do ectoe libe.. Definición.. Intepetción geométic.. Epeión nlític. Podcto

Más detalles

DEPARTAME TO DE ARTES PLÁSTICAS

DEPARTAME TO DE ARTES PLÁSTICAS DEARTAME TO DE ARTES LÁSTICAS I.E.S. OBRA DO CARAMIÑAL - ROF. JOSÉ MA UEL BOO FEIJOO GEOMETRIA DESCRITIVA ROYECCIO ES SUS CLASES. SISTEMAS DE RERESE TACIÓ. AMBITO DE UTILIZACIÓ DE CADA U O DE ELLOS. GEOMETRÍA

Más detalles

UNIDAD. Tangencias y enlaces

UNIDAD. Tangencias y enlaces UNIDD ngenci y enlce ÍNDICE DE CNENIDS 1. CNCES ÁSICS SRE NGENCIS Y ENLCES................................. 80 1.1. Relcione ente ect y cicunfeenci. opiedde................................... 80 1.2. Luge

Más detalles

TEMA 13: EL ESPACIO MÉTRICO

TEMA 13: EL ESPACIO MÉTRICO TEMA 3: EL ESACIO MÉTRICO. DISTANCIA ENTRE DOS UNTOS. ÁNGULO ENTRE DOS RECTAS 3. VECTOR NORMAL CARACTERÍSTICO O ASOCIADO AL LANO 4. ANGULO ENTRE DOS LANOS 5. ANGULO ENTRE RECTA Y LANO 6. DISTANCIA DE UN

Más detalles

Modelo 4 de sobrantes de 2005 - Opción A

Modelo 4 de sobrantes de 2005 - Opción A Modelo de onte de - Opción A Ejecicio. 8 Se f : R R l función definid po f () () [ punto] Clcul lo punto de cote de l gáfic de f con lo eje coodendo. () [ punto] Hll l íntot de l gáfic de f. (c) [ punto]

Más detalles

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y E F G I J H M K M L N N Q P R S Ejecicio 1. Medi con un egl estos segmentos y not, encim de cd uno de ellos, el esultdo en milímetos. T Ejecicio 2. on l yud del compás, tz: +, pti del punto M, -, pti del

Más detalles

PROBLEMAS RESUELTOS DE CINÉTICA DE UNA PARTÍCULA

PROBLEMAS RESUELTOS DE CINÉTICA DE UNA PARTÍCULA UIERSIDD IOL DEL LLO ULTD DE IGEIERÍ ELÉTRI Y ELETRÓI ESUEL PROESIOL DE IGEIERÍ ELÉTRI URSO : MEÁI DE SÓLIDOS I PROESOR : In. JORGE MOTÑO PISIL PROBLEM º 1 PROBLEMS RESUELTOS DE IÉTI DE U PRTÍUL El vón

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Cálculo Diferencial e Integral - Plano cartesiano. Funciones. Farith J. Briceño N.

Cálculo Diferencial e Integral - Plano cartesiano. Funciones. Farith J. Briceño N. Cálculo Difeencial e Integal - Plano catesiano. Funciones. Fait J. Biceño N. Objetivos a cubi Código : MAT-CDI. Plano catesiano. Distancia ente dos untos. Punto medio de un segmento. De nición de luga

Más detalles

Cinemática y Dinámica

Cinemática y Dinámica Cinemátic y inámic Cinemátic del cuepo ígido Objetio: El lumno nlizá y eoleá ejecicio de moimiento plno de cuepo ígido, y de lguno mecnimo donde no inteengn l cu que modificn dicho moimiento. Intoducción

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES Unidd. Podcto ecl ectoil mito. Apliccione en el epcio. UNIDAD.PRODUCTO ESCALAR VECTORIAL Y MIXTO. APLICACIONES. Podcto ecl de do ectoe libe.. Definición.. Intepetción geométic.. Epeión nlític. Podcto ectoil

Más detalles

TEMA 6: LA RECTA EN EL PLANO

TEMA 6: LA RECTA EN EL PLANO TEMA 6: LA RECTA EN EL PLANO. ECUACIONES DE LA RECTA Una ecta está fomada o infinitos untos del lano. Halla una ecuación de una ecta es enconta una condición que cumlan todos esos untos y sólo ellos. La

Más detalles

Ejercicios RESUELTOS BLOQUE 1

Ejercicios RESUELTOS BLOQUE 1 Deptento Cienci. Fíic Ejecicio ESUELOS LOQUE 1 Coleio Áo CUSO: CH Cuetión 6 U ) Enuncie l ece Ley de Keple y deuétel p el co de óbit cicule. b) plique dich Ley p clcul l del Sol uponiendo que l óbit de

Más detalles

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO SCCIÓN ADVRSA Y RACIONAMINTO D CRDITO Biliofí Básic: Wlsh (003 º d.) Monety Theoy nd Policy. MIT ess. Citulo 7. SCCIÓN ADVRSA Cundo hy ieso de insolvenci l fijción del tio de inteés dee conteml tl osiilidd

Más detalles

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar:

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar: Ceno Concedo Pl Mde Mol nº 86- MADRID TEMA GEOMETRÍA RECTAS Y PLANOS P empe. Ddo lo puno A() B(8) hll ) L coodend de lo vecoe fijo AB BA b) Do puno C D le que CD e equipolene AB. c) El eemo F de un veco

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades.

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Integles y licciones. 4. Integles imois: definición y oieddes. Hst este momento hemos clculdo integles definids de funciones con ngo finito en intevlos

Más detalles

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: SEMESTRE 1 TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA RESEÑA HISTÓRICA HISTORIA DE LA TRIGONOMETRÍA. L histoi de l tigonometí

Más detalles

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB Cuso: FISICA II CB 3U Ley de Coulomb (1736-186). Si ls cgs se ten o epelen signific que hy un fuez ente ells. LEY DE COULOMB L fuez ejecid po un cg puntul sobe ot Está diigid lo lgo de l líne que los une.

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 L trnformd de Lplce 6.4.3 Segund propiedd de trlción Et propiedd permitirá reolver ecucione diferencile donde prezcn funcione dicontinu. Pr entenderl e conveniente introducir un función con

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

PROBLEMAS DE CINEMÁTICA

PROBLEMAS DE CINEMÁTICA E.T.S. INGENIEROS GÓNOOS NDENTOS ÍSIOS DE INGENIERÍ PROES DE INEÁTI Equo oente: ntono J. beo no Henánez Puhe fono e emonte 1 INEÁTI Pobem 1 (1) Dee o to e un toe uy tu e h 1 m e nz h b un e fomno un ánuo

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

I.E.S. Mediterráneo de Málaga Septiembre 2015 Juan Carlos Alonso Gianonatti OPCIÓN DE EXAMEN Nº 1

I.E.S. Mediterráneo de Málaga Septiembre 2015 Juan Carlos Alonso Gianonatti OPCIÓN DE EXAMEN Nº 1 I.E.S. editeáneo de álg Septiembe Jn Clos lonso Ginontti OCIÓN DE EXEN Nº Considee el sigiente sistem de ecciones dependiendo del pámeto [7 UNTOS] Clcle los loes de p qe el sistem teng solción. b [ UNTOS]

Más detalles

Fuerza de una masa de fluido en movimiento

Fuerza de una masa de fluido en movimiento Fuez de un ms de fluido en movimiento e un ms m de fluido en movimiento que choc cont un supeficie, pependicul l diección del movimiento del fluido. P obtene l fuez que est ms de fluido ejece sobe l supeficie,

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

TEMA IV: DISTANCIA ENTRE ELEMENTOS

TEMA IV: DISTANCIA ENTRE ELEMENTOS TEMA IV: DISTANCIA ENTRE ELEMENTOS 4.1.D Ditancia ente do punto Teniendo en cuenta la elacione mética que e etablecen ente la poyeccione otogonale obe un plano de un egmento AB e puede obtene la ditancia

Más detalles

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS ANGENCIAS ENRE RECAS Y CIRCUNFERENCIAS 1 RECA Y CIRCUNFERENCIA ANGENES. Una ecta y una cicunfeencia on tangente cuano tienen un único punto en común, llamao punto e tangencia. Ente una ecta y una cicunfeencia

Más detalles

UNIDAD Nº 5: GEOMETRÍA ANALÍTICA PLANA

UNIDAD Nº 5: GEOMETRÍA ANALÍTICA PLANA I.E.S. Ciudad de Ajona Depatamento de Matemática. º BAC UNIDAD Nº 5: GEOMETRÍA ANALÍTICA PLANA. VECTORES. DEFINICIÓN Y OPERACIONES Definición: Un ecto fijo AB e un egmento oientado ue tiene u oigen en

Más detalles

CAPÍTULO 11: ÁREAS Y VOLÚMENES (I)

CAPÍTULO 11: ÁREAS Y VOLÚMENES (I) CAPÍTULO 11: ÁREA Y VOLÚMENE (I) Dante Gueeo-Canduví Piua, 015 FACULTAD DE INGENIERÍA Áea Deatamental de Ingenieía Industial y de istemas CAPÍTULO 11: ÁREA Y VOLÚMENE (I) Esta oba está bajo una licencia

Más detalles

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto.

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto. TRIGONOMETRÍA INTRODUCCIÓN En un sentido ásio, se puede fim que l Tigonometí es el estudio de ls eliones numéis ente los ángulos ldos del tiángulo. Peo su desollo l h llevdo tene un ojetivo más mplio,

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

A) TRAZADO DE RECTAS TANGENTES

A) TRAZADO DE RECTAS TANGENTES ecta tangente a una cicunfeencia que paan po un punto (pc). a) El punto etá en la cicunfeencia. (1 olución) A) TAZAD DE ECTAS TANGENTES ecta tangente a do cicunfeencia de ditinto adio (cc). a) Tangente

Más detalles

TEMA 7: PROPIEDADES MÉTRICAS

TEMA 7: PROPIEDADES MÉTRICAS Depatamento e Matemática º Bachilleato TEMA 7: PROPIEDADES MÉTRICAS 1- HAZ DE PLANOS PARALELOS Too lo plano paalelo a un plano Ax + By + Cz + D tenán el mimo vecto nomal que el e : n A, Po lo tanto, too

Más detalles

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA.

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA. Págin 1 de 5 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FISICA I/11 PRACTICA Nro. 8 MASA INERCIAL

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

Como la ecuación de la superficie no contiene a la variable z, concluimos que la superficie es simétrica respecto al plano xy.

Como la ecuación de la superficie no contiene a la variable z, concluimos que la superficie es simétrica respecto al plano xy. 5 ESTUDIO DEL CILINDRO PARABÓLICO 1 - Estudio de la Simetría a) Simetría resecto a los lanos coordenados Simetría resecto al lano Como la ecuación de la suerficie no contiene a la variable, concluimos

Más detalles

Unidad 3 Sistemas de Ecuaciones Lineales

Unidad 3 Sistemas de Ecuaciones Lineales Unidd 3 Sistems de Ecuciones Lineles Popedéutico 8 D. Ruth M. Aguil Ponce Fcultd de Ciencis Deptmento de Electónic Popedéutico 8 Fcultd de Ciencis Popedéutico 8 Fcultd de Ciencis Sistem de Ecuciones Lineles

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

Planta Primera. Vivenda. 63,70m² 73,99m² 6,27m²

Planta Primera. Vivenda. 63,70m² 73,99m² 6,27m² 1 10º 2º 3º Primera 63,70m² 73,99m² 6,27m² 92,94m² Primera 10º 60,47m² 70,39m² 9,19m² 87,65m² Primera 1 66,80m² 78,63m² 8,06m² 95,72m² Primera 2º 51,36m² 60,38m² 7,10m² 78,14m² Primera 3º 51,36m² 60,20m²

Más detalles

Autoevaluación. Bloque II. Geometría. BACHILLERATO Matemáticas II. Página 200

Autoevaluación. Bloque II. Geometría. BACHILLERATO Matemáticas II. Página 200 Boque II. Geometía Autoevauación Página Detemina todo o vectoe de móduo que on otogonae a o vectoe u(,, ) y v (,, ). Lo vectoe pependicuae a o do vectoe a a vez on popocionae a poducto vectoia de ambo.

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO SSTEMA ÉRCO Paalelismo, pependiculaidad y distancias Vedadeas magnitudes lineales Objetivos y oientaciones metodológicas TEMA 9 Esta unidad temática es fundamental y, a la vez, su explicación se puede

Más detalles

BLOQUE 2: MOVIMIENTO RELATIVO

BLOQUE 2: MOVIMIENTO RELATIVO LOQUE 2: MOVIMIENTO RELTIVO Sistems e efeenci en tslción Sistems e efeenci en otción LOQUE 2: Moimiento eltio El moimiento e un ptícul epene el S.R. elegio. sí, os obseoes (S.R. ifeentes) no tienen po

Más detalles

PRODUCTO TENSORIAL DE ESPACIOS VECTORIALES

PRODUCTO TENSORIAL DE ESPACIOS VECTORIALES PRODUCTO TENSORIL DE ESPCIOS ECTORILES Poduco Teol El Fuo Poduco Teol 3 Poedde del Poduco Teol 4 Ále Teol de u Eco ecol 5 El Fuo Ále Teol Poduco Teol: Codeemo lo eco vecole oe el cueo comuvo K e χ l ceoí

Más detalles

PROPORCIONALIDAD Y SEMEJANZA. ESCALAS

PROPORCIONALIDAD Y SEMEJANZA. ESCALAS PROPORCIONLIDD Y SEMEJNZ. ESCLS OJETIVOS Identific l ccteític métic de l emejnz (iguldd de ángulo y popocionlidd en l mgni - tude) en figu y cuepo geomético. Intepet l zón de emejnz o fcto de ecl en témino

Más detalles

Tema # 5 fisica MAQUINAS SIMPLES Introducción.- 1. La Palanca.- Elementos de una palanca.- a) Punto de apoyo (A). b) Resistencia (R).

Tema # 5 fisica MAQUINAS SIMPLES Introducción.- 1. La Palanca.- Elementos de una palanca.- a) Punto de apoyo (A). b) Resistencia (R). Tema # 5 fisica MAQUINAS SIMLES Intoducción.- Las maquinas simles son disositivos mecánicos utilizados aa multilica fuezas, en la antigüedad fue utilizado, o el científico Aquímides. Estas máquinas ueden

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un

Más detalles

Unidad 12: Posiciones y Métrica en el espacio.

Unidad 12: Posiciones y Métrica en el espacio. Unidad 12: Poicione y Mética en el epacio. 1) Poicione elativa en el epacio: a) De un punto con ecta y plano: a1) Un punto A petenece a una ecta i cumple u ecuacione geneale, en cao contaio e dice que

Más detalles

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes. 826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El

Más detalles

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS UNIVRSIDAD NACIONAL DL CALLAO FACULTAD D INGNIRÍA LÉCTRICA Y LCTRÓNICA SCULA PROFSIONAL D INGNIRÍA LÉCTRICA CURSO: TORÍA D CAMPOS LCTROMAGNÉTICOS PROFSOR: Ing. JORG MONTAÑO PISFIL PROBLMAS RSULTOS SOBR

Más detalles

ECUACIÓN DE BERNOULLI

ECUACIÓN DE BERNOULLI ECUACIÓN DE BERNOULLI 1. RESUMEN Ete lbortorio trt obre l comprobción de l ecución de Bernoulli. Aquí e intent comprobr l relción que exite entre l velocidd (cbez dinámic), l cbez (cbez etátic) y l cbez

Más detalles

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes.

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes. ROBLMA D GNRADOR NCRÓNCO. Aigntur : Converión lectromecánic de l nergí. ech : Agoto200. Autor : Ricrdo Lel Reye. 1. Un generdor incrónico de 6 polo conectdo en etrell, de 480 (), 60 (Hz), 1 (Ω/fe), 60

Más detalles

FÍSICA I CAPÍTULO 6: CINEMÁTICA III

FÍSICA I CAPÍTULO 6: CINEMÁTICA III FÍSICA I CAPÍTULO 6: CINEMÁTICA III ROTACIÓN DE CUERPOS RÍGIDOS Retomndo el moimiento cicul de un punto: L Figu epeent l dieccione de lo ectoe elocidd y celeción en io punto p un ptícul que e muee en un

Más detalles

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular 1- Tz, po el punto, l ect pependicul l ect con egl y compás 2- Tz, po el punto, l ect pependicul l ect 3- Tz, po el punto, l ect plel l ect 4- Tz l meditiz del segmento 5- Tz, un ángulo igul l ángulo ddo

Más detalles

Buda predicó el S ut ra de la P ro f un da Bo n dad de lo s padres y la D if icult ad en R et rib uirla T r a d u cci ó n a l es p a ñ o l d e l a v er s i ó n ch i n a d e K u m a r a j i v a Plegaria

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

Sistema diédrico ortogonal (II)

Sistema diédrico ortogonal (II) 08 Sitem iéico otogonl (II) Too lo item e epeentción e lo que e ocup l geometí ecipti e n en métoo y teoem que peentn l fom geométic e figu e o o te imenione oe un opote plno, enomino plno el cuo. Eto

Más detalles

Capítulo. Cinemática del Sólido Rígido

Capítulo. Cinemática del Sólido Rígido Cpítulo 1 Cinemátic del Sólido Rígido Contenido Intoducción Tslción Rotción lededo de un Eje Fijo. elocidd Rotción lededo de un Eje Fijo: celeción Rotción lededo de un Eje Fijo: Sección epesentti Ecución

Más detalles

edebé orientadas a las enseñanzas académicas 3ESO Matemáticas Bloque I: Números y álgebra. Funciones edebé proyecto global interactivo

edebé orientadas a las enseñanzas académicas 3ESO Matemáticas Bloque I: Números y álgebra. Funciones edebé proyecto global interactivo 3SO edebé Mtemátic oientd l eneñnz cdémic loque I: Númeo y álgeb. uncione edebé poyecto globl intectivo n 9 GOMTRÍ Rect y ángulo Lo elemento geomético en el te Mucho ecultoe (hillid, Oteiz, lde...) hn

Más detalles

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO DOCENTE EL SABINO DEPARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II PROFESORA CARMEN ADRIANA CONCEPCIÓN 1. Un potón (q potón

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO 5.- Geometí Afín Eulíde en el Epio tidimenionl.- (MODELO DE PRUEBA) Detemin p que lo punto A( ) B( ) C(5 - ) D( ) en oplnio. P el vlo de otenido

Más detalles

Titulación de ácido fuerte-base fuerte

Titulación de ácido fuerte-base fuerte Químic Anlític (9123) urv de titulcción y cp. buffer SUBTEMA 3 1 Titulción de ácido fuertebe fuerte En olución cuo, lo ácido y l be fuerte e encuentrn totlmente diocido. Por lo tnto, el ph lo lrgo de l

Más detalles

9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO.

9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO. REPASO Y APOYO OBJETIVO 1 9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO. ESTUDIAR LAS POSICIONES RELATIVAS RECTA ecta G A A y B A B A ACTIVIDADES 1 Dibuja un punto P y taza cuato ecta que

Más detalles

DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso) EXAMEN: 16 de FEBRERO de 2006

DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso) EXAMEN: 16 de FEBRERO de 2006 DISEÑO MECÁNICO (Ingenieí Indutil, 4º cuo) EXMEN: 16 de ERERO de 006 El elemento mecánico que peent meno dución de un máquin e un odmiento de bol del tipo 6004. Detemin como e coneguií un myo vid útil

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

ò ò ò a a a ( razones de simetría) Circulación del campo eléctrico (Campo central conservativo) r 4pe En efecto: b

ò ò ò a a a ( razones de simetría) Circulación del campo eléctrico (Campo central conservativo) r 4pe En efecto: b Tem 3..-- ottencii eécttiico 3.1.- Cicución de cmpo eéctico 1 Q = e (Cmpo cent consevtivo) n efecto: Q e d Q d é 1ù d= = = - = ê ë úû Q æ1 1ö Q =- - =-( -) = ç çè ø Q e d d L cicución de cmpo ente dos

Más detalles

6. PROCESOS DE TRANSFERENCIA DE MASA EXTERNA E INTERNA EN AGREGADOS

6. PROCESOS DE TRANSFERENCIA DE MASA EXTERNA E INTERNA EN AGREGADOS 6. PROESOS DE TRNSFERENI DE MS EXTERN E INTERN EN GREGDOS 6. INTRODUIÓN En un ite heteoéneo exite á de un fe, o ejelo un fe líquid o eo y ot fe ólid, eventulente fod o edo. Si l ección e d dento del edo,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos I.E.S. CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE EXTREMDUR JUNIO 9 (RESUELTOS po ntonio Menguino) MTEMÁTICS II Tiempo máimo: ho minutos El lumno elegiá un de ls dos opciones popuests. Cd un de

Más detalles

1. SUPERFICIE PRISMÁTICA Y PRISMA

1. SUPERFICIE PRISMÁTICA Y PRISMA 1. SUPERFICIE PRISMÁTICA Y PRISMA. SUPERFICIE PIRAMIDAL Y PIRÁMIDE. CUERPOS REDONDOS. 4. SÓLIDOS DE REVOLUCIÓN Objetivos: Detemin áes de supeficies. Detemin volúmenes de sólidos. 1 1. SUPERFICIE PRISMÁTICA

Más detalles

Integrando con Pit agoras

Integrando con Pit agoras Integando con Pit agoa M. en C. Ren e Ben ³tez L oez Deatamento de Matem atica UAM-I Recibido: 0 de etiembe de 004. Acetado: 8 de febeo de 005. Intocci on Lo libo uuale de c alculo integal, tatan lo cao

Más detalles

Si dos rectas coplanares no se cortan diremos que son paralelas.

Si dos rectas coplanares no se cortan diremos que son paralelas. - 1 - pítulo I: plelismo y pependiculidd Definición de ects plels Si dos ects coplnes no se cotn diemos que son plels xiom de Euclides Si dos ects coplnes ( y ) son cotds po un tece () fomndo ángulos colteles

Más detalles

Si solo tenemos en cuenta las relaciones existentes entre los puntos del espacio y los vectores de V

Si solo tenemos en cuenta las relaciones existentes entre los puntos del espacio y los vectores de V IES Pae Poea (Guaix) UNIDAD 0 GEOMETRÍA MÉTRICA Si olo tenemo en cuenta la elacione exitente ente lo punto el epacio y lo ectoe e V, la geometía etingiá u etuio a la poicione elatia e punto, ecta y plano

Más detalles

Si sólo tenemos en cuenta las relaciones existentes entre los puntos del espacio y los vectores de V

Si sólo tenemos en cuenta las relaciones existentes entre los puntos del espacio y los vectores de V IES Pae Poea (Guaix) Matemática II UNIDAD 0 GEOMETRÍA MÉTRICA Si ólo tenemo en cuenta la elacione exitente ente lo punto el epacio y lo ectoe e V, la geometía etingiá u etuio a la poicione elatia e punto,

Más detalles

81 BAC CNyS GEOMETRÍA ANALÍTICA PLANA ÍNDICE 1. PRESENTACIÓN DEL TEMA 2. PUNTOS Y VECTORES EN EL PLANO 3. ECUACIONES DE LA RECTA 4.

81 BAC CNyS GEOMETRÍA ANALÍTICA PLANA ÍNDICE 1. PRESENTACIÓN DEL TEMA 2. PUNTOS Y VECTORES EN EL PLANO 3. ECUACIONES DE LA RECTA 4. GEOMETRÍ NLÍTIC LN 81 C CNyS ÍNDICE 1. RESENTCIÓN DEL TEM 2. UNTOS Y VECTORES EN EL LNO 3. ECUCIONES DE L RECT 4. HZ DE RECTS 5. RLELISMO Y ERENDICULRIDD 6. OSICIONES RELTIVS DE DOS RECTS 7. NGULO QUE

Más detalles

Algunas consideraciones sobre la energía almacenada en una distribución de cargas

Algunas consideraciones sobre la energía almacenada en una distribución de cargas D. Ing Guillemo Sntigo Físic II A/B - Segundo Cutimeste 6 Alguns consideciones sobe l enegí lmcend en un distibución de cgs Distibución discet de cgs Un distibución culquie de cgs eléctics tiene un ciet

Más detalles

EL CUERPO DE LAS FRACCIONES DE UN DOMINIO DE INTEGRIDAD

EL CUERPO DE LAS FRACCIONES DE UN DOMINIO DE INTEGRIDAD EL CUERPO DE L FRCCIONE DE UN DOMINIO DE INTEGRIDD CRLO CHINE EL CUERPO DE L FRCCIONE DE UN DOMINIO DE INTEGRIDD Ddo un nillo intero ; L L donde e un conunto L e l ley ditiv y e L l ley ultiplictiv no

Más detalles

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES IES Jun Gcí Vldemo Deptmento de Mtemátics º Bchilleto de CCSS. SUMA Y RESTA DE FUNCIONES Dds g unciones eles de vile el se deine l unción sum g como: g g con Dom g Dom Dom g Es deci, l unción g hce coesponde

Más detalles

Así, si la medida del arco AB es r, entonces:

Así, si la medida del arco AB es r, entonces: INSTITUTO EDUAIONAL ARAGUA MARAAY VMOL GUIA DE MATEMATIA, s. TRIGONOMETRÍA Nº Medid de Ángulos: (Siste Rdián y Sexgesil) B O α A Not: En est guí cundo se define l edid del ángulo centl α se lá indistintente

Más detalles

CAMPO GRAVITATORIO FCA 08 ANDALUCÍA

CAMPO GRAVITATORIO FCA 08 ANDALUCÍA CAMPO GRAVIAORIO FCA 08 ANDALUCÍA. L atélite metelógic n un medi paa btene infmación be el etad del tiemp atmféic. Un de et atélite, de 50 kg, gia aleded de la iea a una altua de 000 km en una óbita cicula.

Más detalles