Econometría II Grado en finanzas y contabilidad

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Econometría II Grado en finanzas y contabilidad"

Transcripción

1 Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos Este documento es un resumen de la documentación elaborada por D. Antoni Espasa

2 Variables aleatorias y procesos estocásticos Se pretende construir un modelo para explicar la estructura y prever la evolución de una variable que se observa a lo largo del tiempo. Los datos se disponen a intervalos regulares (meses, trimestre, años, etc.) Se utiliza la información que proporciona la propia historia de la serie La ley estadística que gobierna el comportamiento de la serie se supone se mantendrá en el futuro. El marco teórico es La Teoría de procesos estocásticos Es el modelo matemático o soporte teórico de una serie temporal Suponemos que el valor observado de una serie en el instante t es una extracción al azar de una variable aleatoria definida en dicho instante. Por tanto, una serie temporal será una muestra de un vector de n variables aleatorias ordenadas en el tiempo. Se llama proceso estocástico al conjunto de las variables

3 Variables aleatorias y procesos estocásticos

4 Procesos estocásticos estacionarios No nos interesan las variables aleatorias independientemente, sino conjuntamente Necesitamos saber la distribución de probabilidad conjunta. Bajo determinadas condiciones, la estructura probabilística del proceso aleatorio {W(t)} 1 está completamente especificada y tendrá una distribución de probabilidad: F (W(t 1 ), W(t 2 ),.W(t n )) La idea es que la distribución conjunta de un elevado número de puntos servirá para describir el comportamiento global del proceso 1 Nomenclatura estándar de un proceso estocástico estacionario

5 Procesos estocásticos estacionarios

6 Procesos estocásticos estacionarios Si el proceso es gaussiano (sigue una distribución normal multivariante), la estacionariedad en sentido estricto coincide con sentido amplio Un proceso gaussiano queda completamente definido por su media, varianza y covarianzas (los momentos de orden superior a dos son cero)

7 Procesos estocásticos estacionarios

8 Procesos estocásticos estacionarios La estacionariedad implica que la covarianza entre dos variables del proceso solo dependen del desfase entre ellas La estacionariedad se obtiene diferenciando la serie y aplicando logaritmos ( caso concreto de la transformación de Box-Cox). A partir de las covarianzas y, más concreto, de las correlaciones se podrá tomar decisiones sobre el tipo de modelo estadístico más adecuado para la serie. Con la imposición de estacionariedad, se ha reducido el número de parámetros: µ, γ 0,γ k, k=1,2,3.. Todavía queda un número elevado de parámetros por γ k

9 Procesos estocásticos estacionarios Dado el alto número de parámetros que se tiene, se necesita una condición más: ERGODICIDAD (consistencia) Para realizar inferencia estadística sobre los parámetros se tiene una serie temporal de T observaciones. Al aumentar el número de observaciones aumentará el número de parámetros desconocidos. La lógica económica indica que las observaciones dependen de las inmediatamente anteriores y que su relación con observaciones lejanas es cada vez más pequeña e incluso inexistente. La condición de ergodicidad: Una condición suficiente es que el lim γ k = 0 cuando k tiende a infinito La correlación serial (entre variables) disminuye a medida que nos alejamos en el tiempo (k tiende a infinito)

10 Proceso ruido blanco Es el modelo más simple de series temporales. Se trata de una serie puramente aleatoria y se representa por a t. Una serie temporal se corresponde con un proceso estocástico ruido blanco cuando: Su esperanza es constante,µ, e igual a cero cov (a t, a t+k )= 0 para todo k 0 Se trata de un proceso en el que todas sus variables son independientes. Ejemplos: los números ganadores de la lotería Cada número es independiente del anterior No hay dependencia entre el pasado y el futuro

11 Proceso ruido blanco La variable tiempo no influye. Al no haber dependencia entre las variables, es totalmente impredecible. Ni siquiera habrá un valor medio que predecir Ruido blanco (white noise) 0,0200 0,0150 0,0100 0,0050 0,0000-0,0050-0,0100-0,0150

12 Proceso ruido blanco El proceso ruido blanco va a tener un papel fundamental en la estimación de modelos de series temporales Un modelo de series temporales adopta la siguiente expresión: W t = f(pasado) + a t = f(w t-1, W t-2,.)+ a t En t-1 la función es conocida Pero a t será desconocida (recuérdese que es una variable aleatoria que no se puede predecir) Sobre la base de la información conocida (pasado de la serie) se puede obtener la predicción de la variable en W t-1 Ŵ (t-1)+1 es la predicción de la variable que se obtiene a partir de la función matemática sobre el pasado. Entonces: W t = Ŵ (t-1)+1 + a t Es decir, la diferencia entre el valor real y la predicción es a t y se denomina innovación o sorpresa

13 Proceso ruido blanco

14 Proceso sendero aleatorio El proceso sendero aleatorio adopta la siguiente expresión: X t = X t-1 + a t siendo a t un proceso con estructura de ruido blanco a t es un shock aleatorio que se incorpora a la serie en cada momento Tiene una raiz unitaria ( coeficiente de X t-1 ), por tanto, la serie muestra un perfil evolutivo. Es no estacionario. La desviación del presente con respecto al periodo inmediatamente anterior es totalmente aleatorio No presenta un crecimiento sistemático Es característico de mercados eficientes: Un elevado número de agentes con información completa Adaptan su comportamiento a la información disponible. Dado un precio (por ej) en t-1, como no hay más información disponible, éste es el precio que toman para futuro En t, ocurren sucesos inesperados, información que incorporan a la disponible y se conforma un nuevo precio que es el que toman de referencia y utilizan a futuro

15 Proceso sendero aleatorio Serie temporal generada por un proceso sendero aleatorio Se parte de X 0 =100 a t se distribuye normal con media cero y desviación típica 0, ,08 100,06 100,04 100,02 100,00 99,98 99,

16 Proceso sendero aleatorio

17 La dependencia temporal en los procesos estocásticos estacionarios Función de autocovarianza En un proceso gaussiano estacionario la media y la varianza son independientes del tiempo y la covarianza entre dos variables va a depender del desfase temporal, k, que halla entre ellas. Cov (W t, W t+k )= γ(k)= γ k,para k= 1, 2, 3,., para todo t γ k = E{ (W t - µ) (W t+k - µ)} La función γ(k), se denomina función de autocovarianzas del proceso. Y tiene las siguientes propiedades γ 0 > 0 ya que es la varianza γ k = γ -k es decir, es igual la covarianza entre una variable y otra que presenta un desfase de k periodos ya sea hacia pasado (hacia atrás) o hacia futuro (hacia futuro). γ k γ 0

18 La dependencia temporal en los procesos estocásticos estacionarios Propiedades: Es simétrica Es semidefinida positiva. Es decir, El determinante de la matriz,г, y de todos sus menores principales son no negativos. SI EL PROCESO NO ES ESTACIONARIO NO ESTÁN DEFINIDAS (la media no es constante)

19 La dependencia temporal en los procesos estocásticos estacionarios

20 La dependencia temporal en los procesos estocásticos estacionarios: Función de autocorrelación Función de autocorrelación. FAC La función de autocovarianzas depende de la unidad de medida empleada. Por ello, es importante buscar una expresión que sea independiente de dicha unidad de medida. De ahí, el concepto de correlación. Cor (W t, W t+k )= ρ(k)= γ k /γ 0,para k= 1, ± 2, ± 3,, para todo t La función ρ(k), se denomina función de autocorelación del proceso. Es una función libre de las unidades de medida de la variable. Mide la dependencia lineal existente entre las variables. La FAC son parámetros fijos de la función de densidad conjunta del vector de variables W 1,,W T y recoge la dependencia de variables distanciadas por k periodos. Tiene las siguientes propiedades: ρ 0 =1 ρ k = ρ -k es decir, es igual la correlación entre una variable y otra que presenta un desfase de k periodos ya sea hacia pasado (hacia atrás) o hacia futuro (hacia futuro). ρ k 1

21 La dependencia temporal en los procesos estocásticos estacionarios: Función de autocorrelación En un proceso estacionario gaussiano toda la dependencia entre las variables viene recogida por la FAC. Las matrices de autocovarianza y de autocorrelaciones tienen las propiedades de ser simétricas, semidefinidas positivas y Toeplitz Hay que estimar: La media Varianza y T-1 covarianzas T-1 correlaciones No obstante, en realidad hay el número de parámetros a estimar es menor, porque estamos suponiendo que el proceso es ergódico, es decir, a medida que nos alejamos del momento t, las covarianzas tienden a cero A partir de un determinado retardo S< T γ k =0 para todo k>s En definitiva se tendrán que estimar S+1 parámetros

22 La dependencia temporal en los procesos estocásticos estacionarios: Función de autocorrelación Dada una serie temporal generada por un proceso estocástico estacionario y ergódico, la media muestral es un estimador consistente de la media poblacional La varianza de la media muestral la aproximaremos por la varianza del proceso (estimada mediante la varianza muestral) dividida entre T (bajo la hipótesis de ruido blanco) La media es asintóticamente normal

23 Estimación de la FAC Estimación de las autocorrelaciones Como consecuencia de que el proceso estocástico se supone ergódico, a partir de un determinado retardo S, las autocorrelaciones serán prácticamente nulas. El correlograma es la secuencia r 1, r 2.. de estimadores de los correspondientes parámetros de la FAC

24 Estimación de FAC s Estos estimadores son funciones, a su vez, de variables aleatorias y, por tanto, son también variables aleatorias. Tendrán una distribución de probabilidad, con esperanza y varianza. r k se distribuye asintóticamente normal y es insesgado. Es decir, esperanza matemática es el parámetro poblacional ρ k Su varianza viene dada por la expresión: Var(r k ) 1/T Σ q k=-q ρ 2 k Sustituyendo los parámetros poblacionales por sus estimadores se obtendrá la fac muestral. La varianza aumenta al aumentar k. Un correlograma está formado por las correlaciones estimadas y sus desviaciones típicas.

25 El correlograma: contrastes de significación Los valores del correlograma oscilarán con valores distintos de cero aunque los correspondientes valores de la FAC sean cero. Es necesario contrastar mediante el estadístico t a partir de un valor del correlograma, si el correspondiente parámetro de la FAC es cero

26 Contraste de la Q Se denomina contraste de Box-Pierce & Ljung-Box Es un estadístico para contrastar la existencia de una correlación superior a la de orden uno. La hipótesis nula es que no hay autocorrelación de orden k. Se distribuye como un chi-cuadrado con un número de grados de libertad igual al número de autocorrelaciones que se contrastan. El estadístico es el siguiente: Q= T (T+2) Σ j=1 k r 2 j / (T-j)

27 El correlograma: contrastes de significación

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Metodología Box-Jenkins Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es un resumen/modificación de la documentación elaborada

Más detalles

Econometría dinámica y financiera

Econometría dinámica y financiera Econometría dinámica y financiera Introducción a la econometría financiera. Modelos ARCH Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Introducción Los modelos que hemos visto son lineales

Más detalles

Técnicas de Predicción Solución Examen Final

Técnicas de Predicción Solución Examen Final Técnicas de Predicción Solución Examen Final Administración y Dirección de Empresas 23 de Junio, 2008 Prof. Antoni Espasa Secciones 3h Nota: Todas las respuestas deben ser adecuadamente razonadas. Respuestas

Más detalles

Muestreo e intervalos de confianza

Muestreo e intervalos de confianza Muestreo e intervalos de confianza Intervalo de confianza para la media (varianza desconocida) Intervalo de confinza para la varianza Grados en Biología y Biología sanitaria M. Marvá. Departamento de Física

Más detalles

Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 2

Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 2 Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 2 2015 Contenido Procesos estacionarios y débilmente estacionarios Algunos procesos estocásticos útiles: Procesos puramente aleatorios (ruido

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

Tema 2: Modelos probabilísticos de series

Tema 2: Modelos probabilísticos de series Tema 2: Modelos probabilísticos de Tema 2: Modelos probabilísticos de 1 2 3 4 5 6 Definición Un proceso estocástico con conjunto de índices T es una colección de variables aleatorias {X t } t T sobre (Ω,

Más detalles

Grado en Finanzas y Contabilidad

Grado en Finanzas y Contabilidad Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 3.1 Colinealidad Exacta 3.2 Los efectos de la multicolinealidad Del

Más detalles

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión

Más detalles

Conceptos básicos de inferencia estadística (IV): Inferencia no paramétrica: Contrastes de aleatoriedad.

Conceptos básicos de inferencia estadística (IV): Inferencia no paramétrica: Contrastes de aleatoriedad. Conceptos básicos de inferencia estadística (IV): Inferencia no paramétrica: Contrastes de aleatoriedad. Tema 1 (IV) Estadística 2 Curso 08/09 Tema 1 (IV) (Estadística 2) Contrastes de aleatoriedad Curso

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Máster en comunicaciones. Clase 2. Modelos predictores.

Máster en comunicaciones. Clase 2. Modelos predictores. Máster en comunicaciones. Clase 2. Modelos predictores. 1. Introducción Uno de los cometidos más importantes de la estadística es la explotación de los datos observados de una o más características de

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO 22/23 FECHA: 9 de Enero de 23 Duración del examen: 3 horas Fecha publicación

Más detalles

Tema 2 M O D E L O S U N I V A R I A N T E S L I N E A L E S.

Tema 2 M O D E L O S U N I V A R I A N T E S L I N E A L E S. Tema 2 1 M O D E L O S U N I V A R I A N T E S L I N E A L E S. Estructura del tema 1) Procesos estocásticos estacionarios. Modelos univariantes: la función de autocorrelación y el correlograma. 2) El

Más detalles

Tema 2 MODELOS UNIVARIANTES LINEALES.

Tema 2 MODELOS UNIVARIANTES LINEALES. Tema 2 MODELOS UNIVARIANTES LINEALES. 1 Estructura del tema 1) Procesos estocásticos estacionarios. Modelos univariantes: la función de autocorrelación y el correlograma. 2) El proceso ruido blanco. 3)

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Modelos multivariantes estacionarios: VAR(p). La dependencia temporal. La causalidad en el sentido de Granger. La estimación de los modelos VAR. Profesora:

Más detalles

Clase 3. Procesos estocásticos en Teoría de la señal.

Clase 3. Procesos estocásticos en Teoría de la señal. 1 Introducción Clase 3. Procesos estocásticos en Teoría de la señal. Como ya se comentó en la clase anterior, el ruido es una señal inherente a cualquier transmisión de telecomunicación. El ruido es una

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

TEMA 2: EL PROCESO DE MUESTREO

TEMA 2: EL PROCESO DE MUESTREO 2.5. Determinación del tamaño de la muestra para la estimación en muestreo aleatorio estratificado TEMA 2: EL PROCESO DE MUESTREO 2.1. Concepto y limitaciones 2.2. Etapas en la selección de la muestra

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Modelo de Curso de nivelación Estadística y Matemática Pruebas de hipótesis, y Modelos ARIMA Programa Técnico en Riesgo, 2017 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Modelos VAR recursivos. Modelos univariantes dinámicos: los modelos de retardos autoregresivos distribuídos (ADL).Multiplicadores de impacto y de largo Profesora:

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

MÉTODOS ESTADÍSTICOS AVANZADOS USADOS EN LOS Sistemas de Información Geográfica. Esperanza Ayuga (2008)

MÉTODOS ESTADÍSTICOS AVANZADOS USADOS EN LOS Sistemas de Información Geográfica. Esperanza Ayuga (2008) Imagen cortesía de la NASA MÉTODOS ESTADÍSTICOS AVANZADOS USADOS EN LOS Sistemas de Información Geográfica (II. Procesos y Modelo Lineal General ) Esperanza Ayuga (2008) Introducción Las técnicas estadísticas

Más detalles

Estimación de Parámetros.

Estimación de Parámetros. Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo no Estacionarias Carlos Capistrán Carmona ITAM Tendencias Una tendencia es un movimiento persistente de largo plazo

Más detalles

ESTIMACION INFERENCIA ESTADISTICA

ESTIMACION INFERENCIA ESTADISTICA P M INFERENCIA ESTADISTICA Desde nuestro punto de vista, el objetivo es expresar, en términos probabilísticos, la incertidumbre de una información relativa a la población obtenida mediante la información

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Duración: horas Fecha: de Julio de Fecha publicación notas: -7- Fecha revisión examen: 8-7-

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992.

Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992. Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Análisis y Diseño de Modelos Econométricos Profesor: MSc. Julio Rito Vargas Avilés. Participantes: Docentes /FAREM-Carazo Encuentro No.4

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

Germán Bassi. 9 de septiembre de X(i) = 1 N 1T X. i=1

Germán Bassi. 9 de septiembre de X(i) = 1 N 1T X. i=1 . Estimación de la Media Germán Bassi 9 de septiembre de 00 Dada la variable aleatoria X, podemos estimar el valor esperado de la misma mediante la siguiente fórmula: µ X = X(i) = T X. Ambas representaciones

Más detalles

Procesos Integrados. Si (Y t ) no es estacionario pero la serie (Z t ) de las primeras diferencias. Z t = Y t = Y t Y t 1,

Procesos Integrados. Si (Y t ) no es estacionario pero la serie (Z t ) de las primeras diferencias. Z t = Y t = Y t Y t 1, Capítulo 5 Procesos Integrados Un proceso no estacionario puede no ser estable en la media, en la varianza o en las autocorrelaciones. Por ejemplo, las series 3, 5-13, 19, 29-31, 35-37, y 39 del Capítulo

Más detalles

Econometria con Series Temporales

Econometria con Series Temporales May 24, 2009 Porque series temporales? Inhabilidad de la economia de producir experimentos controlados para estudiar relaciones causales entre variables. Una alternativa consiste en estudiar estas relaciones

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Procesos autorregresivos

Procesos autorregresivos Capítulo 3 Procesos autorregresivos Los procesos autorregresivos deben su nombre a la regresión y son los primeros procesos estacionarios que se estudiaron. Proceso autorregresivo: Un proceso autorregresivo

Más detalles

Nombre y Apellidos:... EXAMEN ECONOMETRÍA II (Enero 2010)

Nombre y Apellidos:... EXAMEN ECONOMETRÍA II (Enero 2010) Nombre y Apellidos:... NIU:... Grupo:... EXAMEN ECONOMETRÍA II (Enero 2010) Lea cuidadosamente cada pregunta. Marque muy claramente la respuesta de cada pregunta en la hoja de respuestas. Observe que los

Más detalles

Curso de Predicción Económica y Empresarial Edición 2004

Curso de Predicción Económica y Empresarial  Edición 2004 Curso de Predicción Económica y Empresarial www.uam.es/predysim Edición 2004 UNIDAD 3: MODELOS ARIMA La identificación del modelo a partir de la fac y facp Tal y como se ha señalado, para identificar el

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

Juan Carlos Colonia INFERENCIA ESTADÍSTICA

Juan Carlos Colonia INFERENCIA ESTADÍSTICA Juan Carlos Colonia INFERENCIA ESTADÍSTICA PARÁMETROS Y ESTADÍSTICAS Es fundamental entender la diferencia entre parámetros y estadísticos. Los parámetros se refieren a la distribución de la población

Más detalles

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) NOTA IMPORTANTE - Estas notas son complementarias a las notas de clase del primer semestre correspondientes a los temas de Regresión

Más detalles

Tema 4. El Modelo de Regresión Lineal con Series Temporales.

Tema 4. El Modelo de Regresión Lineal con Series Temporales. Tema 4. El Modelo de Regresión Lineal con Series Temporales. En este tema, estudiaremos en detalle la estimación e inferencia del modelo de regresión con datos de series temporales. Dadas las diferencias

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Primavera 15 FECHA: de Junio de 15 Fecha publicación notas: 11 de Junio de 15 Fecha revisión

Más detalles

La econometría : una mirada de pájaro

La econometría : una mirada de pájaro La econometría : una mirada de pájaro Contenido Objetivo Definición de Econometría Modelos determinista y estocástico Metodología de la econometría Propiedades de un modelo econométrico Supuestos de un

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Econometría II. Hoja de Problemas 1

Econometría II. Hoja de Problemas 1 Econometría II. Hoja de Problemas 1 Nota: En todos los contrastes tome como nivel de significación 0.05. 1. SeanZ 1,...,Z T variables aleatorias independientes, cada una de ellas con distribución de Bernouilli

Más detalles

Estadística para la Economía y la Gestión IN 3401

Estadística para la Economía y la Gestión IN 3401 Estadística para la Economía y la Gestión IN 3401 3 de junio de 2010 1 Modelo de Regresión con 2 Variables Método de Mínimos Cuadrados Ordinarios Supuestos detrás del método MCO Errores estándar de los

Más detalles

ANÁLISIS EN EL DOMINIO DEL TIEMPO

ANÁLISIS EN EL DOMINIO DEL TIEMPO Matemáticas y Estadística aplicada POLITÉCNICA ANÁLISIS EN EL DOMINIO DEL TIEMPO Indice de contenidos: INTRODUCCIÓN MODELOS DE SERIES TEMPORALES (Box-Jenkins, 1973): De Procesos estacionarios De Procesos

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS.

LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS. LECTURA 3: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT MANEJO DE TABLAS ESTADISTICAS 1 INTRODUCCION Se dice que una variable aleatoria T tiene una distribución t de

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

TEMA 5: Especificación y Predicción en el MRL

TEMA 5: Especificación y Predicción en el MRL EMA 5: Especificación y Predicción en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) ema 5: Especificación y Predicción Curso

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Tendencias y ciclos en las variables macroeconómicas

Tendencias y ciclos en las variables macroeconómicas . Tendencias y ciclos en las variables macroeconómicas Rafael Doménech Temas de Análisis Macroeconómico. Tema 2 1/30 Introducción Necesitamos una estimación que permita extraer el comportamiento tendencial

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Procesos Estocásticos Estacionarios

Procesos Estocásticos Estacionarios Capítulo 2 Procesos Estocásticos Estacionarios Las series temporales se pueden clasificar en dos tipos: Series con valores estables alrededor de un nivel constante (capítulos 2-4). Series con tendencias,

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE

Más detalles

Errores de especificación

Errores de especificación CAPíTULO 5 Errores de especificación Estrictamente hablando, un error de especificación es el incumplimiento de cualquiera de los supuestos básicos del modelo lineal general. En un sentido más laxo, esta

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

1 CÁLCULO DE PROBABILIDADES

1 CÁLCULO DE PROBABILIDADES 1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 11 Estimadores puntuales y de intervalo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de los estimadores puntuales y de intervalo.

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

BLOQUE 3 TEMA 11 ESTIMACIÓN DE PARÁMETROS. ERRORES DE ESTIMACIÓN

BLOQUE 3 TEMA 11 ESTIMACIÓN DE PARÁMETROS. ERRORES DE ESTIMACIÓN BLOQUE 3 TEMA 11 ESTIMACIÓN DE PARÁMETROS. ERRORES DE ESTIMACIÓN Aproximación intutitiva a la inferencia estadística La Estadística es la ciencia que se ocupa de la ordenación y análisis de datos procedentes

Más detalles

Análisis de Series de Tiempo

Análisis de Series de Tiempo CURSO REGIONAL SOBRE HOJA DE BALANCE DE ALIMENTOS, SERIES DE TIEMPO Y ANÁLISIS DE POLÍTICA MSc. Sandra Hernández sandra.hernandezro@gmail.com Sede Subregional de la CEPAL en México Ciudad de México, del

Más detalles

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA GUÍA DOCENTE 2012-2013 ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1. Denominación de la asignatura: ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA Titulación GRADO EN FINANZAS Y CONTABILIDAD Código 5592

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media

Más detalles

CALIFICACION: - P C: precio medio de los productos sustitutivos existentes en el mercado en euros.

CALIFICACION: - P C: precio medio de los productos sustitutivos existentes en el mercado en euros. 6 + 10 + 3 = 19 CALIFICACION: Ventasgdt Una empresa que produce una marca de detergente líquido desea contar con un modelo para planificar su producción, estimar las necesidades de materias primas y de

Más detalles

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid.

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. SEÑALES ALEATORIAS Y RUIDO. Marcos Martín Fernández E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. CONTENIDOS INDICE. DE FIGURAS VII 1. PROBABILIDAD. 1 2. VARIABLES ALEATORIAS.

Más detalles

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE ESCUELA UNIVERSITARIA DE ENFERMERIA DE TERUEL 1 er CURSO DE GRADO DE ENFERMERIA Estadística en Ciencias de la Salud 7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE PROFESOR Dr. Santiago

Más detalles

Ejercicios de Procesos Estocásticos

Ejercicios de Procesos Estocásticos Ejercicios de Procesos Estocásticos Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros Ejemplo Considerar

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

7. REGRESIÓN POR MÍNIMOS CUADRADOS: REGRESIÓN POLINOMIAL. Jorge Eduardo Ortiz Triviño

7. REGRESIÓN POR MÍNIMOS CUADRADOS: REGRESIÓN POLINOMIAL. Jorge Eduardo Ortiz Triviño 7. REGRESIÓN POR MÍNIMOS CUADRADOS: REGRESIÓN POLINOMIAL Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co/jeortizt/ Introducción Los datos frecuentemente son dados para valores

Más detalles

Cuál es el campo de estudio de la prueba de hipótesis?

Cuál es el campo de estudio de la prueba de hipótesis? ESTIMACIÓN Establecer generalizaciones acerca de una población a partir de una muestra es el campo de estudio de la inferencia estadística. La inferencia estadística se divide en estimación y prueba de

Más detalles

Análisis de series temporales: Modelos ARIMA

Análisis de series temporales: Modelos ARIMA Análisis de series temporales: Modelos ARIMA ISBN: 978-84-692-384- María Pilar González Casimiro 4-9 Análisis de Series Temporales: Modelos ARIMA Pilar González Casimiro Departamento de Economía Aplicada

Más detalles

Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11

Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como

Más detalles

El Movimiento Browniano en la modelización del par EUR/USD

El Movimiento Browniano en la modelización del par EUR/USD MÁSTER UNIVERSITARIO EN DIRECCIÓN FINANCIERA Y FISCAL TESINA FIN DE MÁSTER El Movimiento Browniano en la modelización del par EUR/USD Autor: José Vicente González Cervera Directores: Dr. Juan Carlos Cortés

Más detalles

Tema 7 Intervalos de confianza Hugo S. Salinas

Tema 7 Intervalos de confianza Hugo S. Salinas Intervalos de confianza Hugo S. Salinas 1 Introducción Hemos definido la inferencia estadística como un proceso que usa información proveniente de la muestra para generalizar y tomar decisiones acerca

Más detalles

Tema 1. Introducción: el modelo econométrico

Tema 1. Introducción: el modelo econométrico 1. Introducción. a. Qué es la econometría? b. Metodología en Econometría Gujarati, Econometría (2004) páginas 1 a 11 c. Terminología y notación d. Clasificación de los modelos econométricos 1 1. Introducción

Más detalles

ANALISIS ESTADISTICO MINISTERIO DE ECONOMIA Y FINANZAS

ANALISIS ESTADISTICO MINISTERIO DE ECONOMIA Y FINANZAS ANALISIS ESTADISTICO MINISTERIO DE ECONOMIA Y FINANZAS NOV 2015 PLAN DE ESTUDIO 1. ESTADISTICA DESCRIPTIVA 1. MEDIDAS DE TENDENCIA CENTRAL PRIMER MOMENTO 2. OTRAS MEDIDAS DE TENDENCIA CENTRAL 3. MEDIDAS

Más detalles

Contrastes de hipótesis. 1: Ideas generales

Contrastes de hipótesis. 1: Ideas generales Contrastes de hipótesis 1: Ideas generales 1 Inferencia Estadística paramétrica población Muestra de individuos Técnicas de muestreo X 1 X 2 X 3.. X n Inferencia Estadística: métodos y procedimientos que

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 10 Estadísticos muestrales y sus aplicaciones Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las propiedades de los estadísticos muestrales.

Más detalles

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados

Más detalles