Concepto de medida. Clases de medidas. Probabilidad. Medida completa. Completación de un espacio de medida. Medidas regulares y apretadas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Concepto de medida. Clases de medidas. Probabilidad. Medida completa. Completación de un espacio de medida. Medidas regulares y apretadas."

Transcripción

1 2. Función de conjunto. Medida. Probabilidad. Función de conjunto aditiva y σ-aditiva. Propiedades. Concepto de medida. Clases de medidas. Probabilidad. Medida completa. Completación de un espacio de medida. Medidas regulares y apretadas. Extensión de una medida. 1

2 Cap.2 FUNCIÓN DE CONJUNTO. MEDIDA. PROBABILIDAD Definición: Una función de conjunto (f.c.) es una aplicación real y univaluada ϕ sobre una clase de conjuntos C de un espacio Ω. Clases: f.c. no negativa, finita, σ-finita, aditiva, σ-aditiva. Si Ω Cy ϕ es σ-finita sobre Ω, entonces ϕ es σ-finita sobre C. Definición: Una f.c. ϕ sobre un σ-álgebra A es σ-aditiva si para cualquier clase numerable y disjunta de conjuntos {A n } A,es ( ) ϕ A n = n=1 ϕ(a n ) n=1 Toda f.c. σ-aditiva es aditiva. 1-1

3 Propiedades: 1. Toma sólo uno de los valores + ó. 2. Si existe A Acon ϕ(a) < +, entonces ϕ( ) =0 3. Si A B ϕ(b) =ϕ(a)+ϕ(b A) a) Siϕ(A) < + ϕ(b A) =ϕ(b) ϕ(a) b) Siϕ(A) =+ ϕ(a) =ϕ(b) =+ c) Siϕ(B) < + ϕ(a) < + d) ϕ es finita ϕ(ω) < + 4. Es continua. Teorema de Continuidad: Dada una f.c. ϕ definida sobre una σ-álgebra A, setiene: a) Siϕ es σ-aditiva, entonces es continua. b) Siϕ es aditiva y continua ascendente, es σ-aditiva. c) Siϕ es aditiva, finita y continua en, esσ-aditiva. 1-2

4 Corolario: Si ϕ es σ-aditiva sobre A, alcanza sus extremos en A, esto es, existen C y D A, que en general no son únicos, tales que ϕ(c) =ínf ϕ> y ϕ(d) =supϕ Cuando, en particular, ϕ 0, un resultado trivial sería tomar C = y D =Ω Medida. Definición: Dado un espacio medible (Ω, A), se llama medida a toda f.c. µσ-aditiva y no negativa sobre A. Elsistema(Ω, A,µ) se conoce como espacio de medida. Propiedades: 1. Conserva el orden: Si A B, entonces µ(a) µ(b). Si µ(ω) < + µ es finita. 2. Es sub-σ-aditiva: {A n } A,esµ( n A n ) n µ(a n) Ejemplo: Si µ(a 1 ),µ(a 2 ) < + µ(a 1 A 2 )=µ(a 1 )+µ(a 2 ) µ(a 1 A 2 ) 1-3

5 3. Es continua: Si A n A lím n µ(a n )=µ(a) 4. La suma de medidas sobre un mismo σ-álgebra es una medida; y el producto de una medida por un escalar positivo, es una medida. 5. La restricción de una medida a una sub-σ-álgebra de A, es una medida. Clases de medidas. Probabilidad: Es toda medida P sobre (Ω, A) tal que P (Ω) = 1. El sistema (Ω, A,P) se llama espacio de probabilidad. Toda medida finita determina una medida de probabilidad. Medida completa: Una medida µ sobre (Ω, A) escompletasi B A con Aµ-nulo es B A. En consecuencia, B será también µ-nulo. Completación de un espacio de medida: donde (Ω, A,µ) (Ω, A, µ) 1-4

6 A = σ ( A {B A; A Acon µ(a) =0} ) A = {C B; C Ay B A con µ(a) =0} σ álgebra µ sobre A definida por µ(c B) =µ(c) es la única extensión de µ a una medida completa sobre A. Dem. 1. En efecto, µ es una extensión de µ pues C A es C = C µ(c) =µ(c )=µ(c) 2. µ es una medida sobre A. Veamos que es una f.c. univaluada, esto es, si C 1 B 1 = C 2 B 2,conC 1,C 2 Ay B i A i Acon µ(a i )=0parai =1, 2, entonces µ(c 1 B 1 )=µ(c 2 B 2 ), lo que equivale a probar, en definitiva, que µ(c 1 )=µ(c 2 ). En efecto, C 1 =(C 1 C 2 )+(C 1 C 2 ) donde (C 1 C 2 ) C 2 y(c 1 C 2 ) B 2, pues w (C 1 C 2 ) w C 1 C 1 B 1 = C 2 B 2 y w/ C 2 w B 2 1-5

7 Dado que (C 1 C 2 ) B 2 A 2 con µ(a 2 ) = 0, tenemos también que µ(c 1 C 2 )= 0, con lo cual µ(c 1 )=µ(c 1 C 2 )+µ(c 1 C 2 )=µ(c 1 C 2 ) µ(c 2 ) Puesto que lo recíproco, µ(c 2 ) µ(c 1 )también es cierto por simple simetría, queda probado que la función µ está bien definida. La σ-aditividad y no negatividad de dicha función son inmediatas. 3. µ es completa respecto a la σ-álgebra A, pues D (C B) A con µ(c B) =0 es D A Efectivamente, D = D con AyD (C B) (C A) Atal que µ(c A) µ(c)+µ(a) = 0, porque µ(c) =µ(c B) =0. 4. Finalmente, es inmediato, por construcción, que la extensión es única. Se tiene así que si µ es medida completa sobre (Ω, A), entonces µ = µ. En caso contrario, su completación da lugar a (Ω, A, µ). 1-6

8 Medidas sobre espacios de Borel: Sean (Ω, T ) un espacio topológico y (Ω, A,µ)un espacio de medida tal que A B= σ(t ) Primer objetivo: aproximar la medida de cualquier conjunto medible, A A, por la medida de algún conjunto de Borel, B B. Solución: µ debe ser una medida regular. Definición: Una medida µ es regular sobre (Ω, A) si A Ay ɛ>0, existen un conjunto cerrado F Ay un conjunto abierto G Atales que F A G y µ(g F ) <ɛ. Propiedad: Si µ es una medida regular sobre (Ω, A), y A B, entonces A A B B tal que B A y µ(a B) =0 Para que µ sea una medida regular es suficiente que µ sea una medida definida sobre la σ-álgebra de Borel B de un espacio métrico, esto es, B = σ(t (ρ)), y que µ sea finita sobre cada conjunto de Borel acotado. 1-7

9 Segundo objetivo: aproximar la medida de cualquier conjunto de Borel, B B, por la medida de algún compacto, clase más pequeña que B. Solución: µ debe ser una medida apretada. Definición: Una medida finita µ sobre un espacio de Borel (Ω, B), donde B = σ(t (ρ)), es apretada si ɛ >0 existe un compacto K ɛ tal que µ(ω K ɛ ) <ɛ.se dice entonces que (Ω, B,µ) es un espacio de medida apretada. Propiedad: Si µ es una medida finita y apretada sobre (Ω, B), donde B = σ(t (ρ)), entonces B By ɛ>0, existe un compacto D tal que D B y µ(b D) <ɛ Para que µ sea una medida apretada es suficiente que µ sea una medida finita sobre la σ-álgebra de Borel B = σ(t (ρ)) de un espacio métrico, (Ω,ρ), y que éste sea completo y separable. Ejemplo: El espacio de Borel real (R n, B n ). 1-8

10 2.3. Extensión de una medida. (Ω, C,µ 0 ) Ext.inicial (Ω, Q, µ) Ext.final (Ω,σ(Q),µ) Extensión Inicial Definición: Una f.c. µ es una medida sobre un semiálgebra C si 1. µ 0 2. µ( ) =0,y 3. es σ-aditiva, esto es, {A n ; n 1} Cdisjunta con n=1 A n Ces ( ) µ A n = µ(a n ) n=1 Teorema de Extensión Inicial: Si µ 0 es una medida sobre un semiálgebra C, entonces µ 0 puede extenderse, de forma única, a una medida µ sobre Q(C), definida por µ(b) = n=1 n µ 0 (A k ) B = k=1 n A k Q(C) k=1 1-9

11 Extensión Final: Método de Carathéodory. Si µ es una medida σ-finita sobre un álgebra Q, entonces A Ω podemos definir su extensión exterior por { } µ (A) =ínf µ(a n ); {A n } Q con n A n A Propiedades: n 1. µ sobre P(Ω) es una extensión de µ. 2. µ es una medida exterior, es decir, es una f.c. sub-σ-aditiva, conserva el orden y µ ( ) =0. Consecuencia: Toda medida es una medida exterior, pero no al contrario. Objetivo: Considerar los conjuntos en los que µ se comporta como una medida ( condición de Carathéodory ). Definición: Un conjunto A P(Ω) es exteriormente medible (o µ -medible), si T P(Ω) es µ (T )=µ (TA)+µ (TA c ) 1-10

12 Si A µ = {A P(Ω); µ (T )=µ (TA)+µ (TA c ) T P(Ω)} entonces Propiedades: 1. La clase A µ es un σ-álgebra. 2. La restricción de la medida exterior µ a A µ es una medida completa, Teorema de Extensión de Carathéodory: Toda medida σ-finita µ sobre un álgebra Q puede extenderse, de forma única, a una medida σ-finita sobre la σ-álgebra A = σ(q) generada por Q. Q A µ σ(q) A µ Corolario: La completación del espacio (Ω,σ(Q),µ)es(Ω, A µ,µ ). 1-11

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

Extensión de medidas

Extensión de medidas Extensión de medidas Problemas para examen Semianillos de conjuntos 1. Escriba la definición de semianillo de conjuntos. 2. Convenio: el conjunto vacío pertenece a cualquier semianillo. En los siguientes

Más detalles

2. CONSTRUCCIÓN DE MEDIDAS.

2. CONSTRUCCIÓN DE MEDIDAS. 2. CONSTRUCCIÓN DE MEDIDAS. 1. MEDIDAS EXTERIORES. (2,1,1) Definición. Una medida exterior es una aplicación µ : P(X) [0, + ] que cumple: (a) µ ( ) = 0. (b) Monotonía: Si A B, entonces µ (A) µ (B). (c)

Más detalles

1. Medida Exterior. Medida de Lebesgue en R n

1. Medida Exterior. Medida de Lebesgue en R n 1. La integral de Lebesgue surge del desarrollo de la integral de Riemann, ante las dificultades encontradas en las propiedades de paso al ĺımite para calcular la integral de una función definida como

Más detalles

Parte 5: Integración en espacios producto.

Parte 5: Integración en espacios producto. Parte 5: Integración en espacios producto. Definición 1 Sean (X; M, µ) y (Y, N, ν) espacios de medida. Se define la σ álgebra producto M N como la σ álgebra generada por los llamados rectángulos medibles,

Más detalles

Tema 6: Teorema de Representación de Riesz. 10 y 13 de mayo de 2010

Tema 6: Teorema de Representación de Riesz. 10 y 13 de mayo de 2010 Tema 6: Teorema de Representación de Riesz 10 y 13 de mayo de 2010 1 Funcionales lineales positivos 2 Regularidad de medidas de Borel 3 Funcionales lineales continuos Funciones continuas de soporte compacto

Más detalles

x i yi (2M 1) i (3) i

x i yi (2M 1) i (3) i CURSO DE TEORÍA ERGÓDICA 2008 - V 1. El shift de Bernoulli: punto de vista topológico Sea Σ 2 = {0, 1} Z el espacio del shift de dos símbolos. Llamaremos Σ M = {0, 1..., M 1} Z el espacio del shift de

Más detalles

ANÁLISIS FUNCIONAL Notas de curso. M.A. Rodríguez Departamento de Física Teórica II Universidad Complutense de Madrid

ANÁLISIS FUNCIONAL Notas de curso. M.A. Rodríguez Departamento de Física Teórica II Universidad Complutense de Madrid ANÁLISIS FUNCIONAL Notas de curso M.A. Rodríguez Departamento de Física Teórica II Universidad Complutense de Madrid 2 de septiembre de 22 Índice general. La integral de Lebesgue 3.. Introducción............................................

Más detalles

Conjuntos Medibles. Preliminares

Conjuntos Medibles. Preliminares Capítulo 18 Conjuntos Medibles Preliminares En el capítulo anterior vimos que la medida exterior de Lebesgue no resulta σ-aditiva en todo R n. Ahora vamos a construir una familia M de subconjuntos de R

Más detalles

Tema 10: Teorema de Hahn-Banach. 14 y 17 de junio de 2010

Tema 10: Teorema de Hahn-Banach. 14 y 17 de junio de 2010 Tema 10: Teorema de Hahn-Banach 14 y 17 de junio de 2010 1 Versión anaĺıtica Enunciado del teorema Dual topológico Teoremas de extensión Duales de subespacios y cocientes Límites de Banach 2 Separación

Más detalles

1. Propiedades básicas de las medidas

1. Propiedades básicas de las medidas AMARUN www.amarun.net Comisión de Pedagogía - Diego Chamorro Teoría de la medida (Nivel 2). Lección n 2: σ-álgebras y medidas EPN, verano 2009 1. Propiedades básicas de las medidas Marco de trabajo: la

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos 25 de septiembre de 29 2 1 Ejercicios Tema I Ejercicio 1 Demostrar que una clase no vacía A es un álgebra en Ω si y sólo si se verifican las siguientes propiedades: i) Si A A entonces

Más detalles

Esperanza condicionada Apuntes de clase Probabilidad II (grupos 31 y 40) Curso

Esperanza condicionada Apuntes de clase Probabilidad II (grupos 31 y 40) Curso Esperanza condicionada Apuntes de clase Probabilidad II (grupos 31 y 40) Curso 2010-11 Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad y esperanza condicionada: recordatorio

Más detalles

CÁLCULO INTEGRAL. HOJA 1. v(q) = Π n i=1(b i a i ). Definimos también el volumen de un rectángulo cerrado como el volumen de su interior.

CÁLCULO INTEGRAL. HOJA 1. v(q) = Π n i=1(b i a i ). Definimos también el volumen de un rectángulo cerrado como el volumen de su interior. CÁLCULO INTEGRAL. HOJA 1. MEDIDA EXTERIOR DE LEBESGUE. CONJUNTOS MEDIBLES EN R N. MEDIDA DE LEBESGUE. Si Q = (a 1, b 1 )... (a n, b n ) es un rectángulo abierto de R n, definimos el volumen de Q como el

Más detalles

Apuntes de Teoría de la Medida

Apuntes de Teoría de la Medida Apuntes de Teoría de la Medida Badajoz, 27 de mayo de 2016 ab A + B. Fig. pág. 239. Dpto. de Matemáticas Univ. de Extremadura Apuntes de Teoría de la Medida Dpto. de Matemáticas Univ. de Extremadura «Apuntes

Más detalles

Apuntes de Teoría de la Medida

Apuntes de Teoría de la Medida Apuntes de Teoría de la Medida Badajoz, 21 de diciembre de 2016 ab A + B. Fig. pág. 243. Dpto. de Matemáticas Univ. de Extremadura Apuntes de Teoría de la Medida Dpto. de Matemáticas Univ. de Extremadura

Más detalles

CÁLCULO DIFERENCIAL. Víctor Manuel Sánchez de los Reyes. Departamento de Análisis Matemático Universidad Complutense de Madrid

CÁLCULO DIFERENCIAL. Víctor Manuel Sánchez de los Reyes. Departamento de Análisis Matemático Universidad Complutense de Madrid CÁLCULO DIFERENCIAL Víctor Manuel Sánchez de los Reyes Departamento de Análisis Matemático Universidad Complutense de Madrid Índice 1. Conceptos topológicos y métricos 5 1.1. Métricas, normas y productos

Más detalles

Axiomas de recubrimiento

Axiomas de recubrimiento CAPíTULO 8 Axiomas de recubrimiento Dedicaremos este capítulo a un nuevo tipo de propiedades topológicas: aquellas que se refieren a la posibilidad de extraer subrecubrimientos de cardinal finito o numerable

Más detalles

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra.

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra. Capítulo 20 Conjuntos de Borel Hemos demostrado ya que la familia M de los conjuntos medibles contiene a todos los abiertos de R n y, por tanto, a todos los conjuntos que podamos formar a partir de los

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

La Medida de Lebesgue. Problema de la Medida

La Medida de Lebesgue. Problema de la Medida Capítulo 19 La Medida de Lebesgue. Problema de la Medida Hemos demostrado en el capítulo anterior que la medida exterior de Lebesgue es una medida sobre la familia M de los conjuntos medibles. Por definición,

Más detalles

Teoría de la Probabilidad

Teoría de la Probabilidad Teoría de la Probabilidad Departament d Estadística i Investigació Operativa Universitat de València Guillermo Ayala & Francisco Montes 2 Índice general 1. Experimento, Probabilidad y Medida 1 1.1. Experimento,

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

Teoría de Probabilidades Pontificia Universidad Católica de Chile Facultad de Matemática. Ramírez, Alejandro

Teoría de Probabilidades Pontificia Universidad Católica de Chile Facultad de Matemática. Ramírez, Alejandro Teoría de Probabilidades Pontificia Universidad Católica de Chile Facultad de Matemática Ramírez, Alejandro 2 Capítulo 1 Fundamentos 1.1. Preliminares La probabilidad es una area de las matemáticas que

Más detalles

Teorías de la Medida. Colección manuales uex y de la Probabilidad. Agustín García Nogales (E.E.E.S.)

Teorías de la Medida. Colección manuales uex y de la Probabilidad. Agustín García Nogales (E.E.E.S.) Teorías de la Medida y de la Probabilidad Colección manuales uex - 57 (E.E.E.S.) 57 Agustín García Nogales TEORÍAS DE LA MEDIDA Y DE LA PROBABILIDAD MANUALES UEX 57 (E.E.E.S.) Espacio Europeo Educación

Más detalles

Parte III. Medida e Integración en R n

Parte III. Medida e Integración en R n Parte III Medida e Integración en R n Capítulo 17 La Medida Exterior de Lebesgue en R n El cálculo de longitudes, áreas y volúmenes es uno de los asuntos matemáticos con más larga tradición histórica,

Más detalles

Integral de Lebesgue

Integral de Lebesgue Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple

Más detalles

Apuntes sobre la integral de Lebesgue

Apuntes sobre la integral de Lebesgue Apuntes sobre la integral de Lebesgue Miguel Lacruz Martín Universidad de Sevilla 1. Medida de Lebesgue 1.1. Introducción La longitud l(i) de un intervalo I R se define habitualmente como la distancia

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

Práctica 3 Esperanza Condicional

Práctica 3 Esperanza Condicional 1. Generalidades Práctica 3 Esperanza Condicional 1. Sea (X i ) i I una familia de variables aleatorias definidas sobre un mismo espacio medible (Ω, F) y sea Y otra variable aleatoria en este espacio.

Más detalles

Conjuntos Abiertos y Cerrados

Conjuntos Abiertos y Cerrados Conjuntos Abiertos y Cerrados 1. (a) En la prueba de que la intersección de una colección finita de conjuntos abiertos es un conjunto abierto, dónde se uso la hipótesis de que la colección es finita? 2.

Más detalles

Problemas de TOPOLOGÍA Hoja 2

Problemas de TOPOLOGÍA Hoja 2 Problemas de TOPOLOGÍA Hoja 2 1. Sea X un conjunto, (Y, T Y ) un espacio topológico y f : X Y una aplicación. Probar que T = {f 1 (G) : G T Y } es una topología sobre X. Esta topología se llama topología

Más detalles

1. Espacios topológicos compactos.

1. Espacios topológicos compactos. PRACTICO 6. COMPACIDAD. 1. Espacios topológicos compactos. Definición 1 Un cubrimiento de un conjunto X es una familia de subconjuntos de X cuya unión da X. Un cubrimiento de un espacio es abierto si cada

Más detalles

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas Funciones en R n : nociones topológicas 1 Funciones en R n 2 Conceptos métricos y topológicos 3 Límites y continuidad en R 2 Definición Definición Llamaremos función escalar real de n variables reales,

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

Apuntes de Análisis Funcional y Teoría de la Medida. Rafael Payá Albert. Departamento de Análisis Matemático. Universidad de Granada

Apuntes de Análisis Funcional y Teoría de la Medida. Rafael Payá Albert. Departamento de Análisis Matemático. Universidad de Granada Apuntes de Análisis Funcional y Teoría de la Medida Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada Tema 1: Espacios de Medida 11-18 de marzo de 2010 1 Espacios de Medida

Más detalles

Curso intermedio de PROBABILIDAD

Curso intermedio de PROBABILIDAD Curso intermedio de PROBABILIDAD Luis Rincón Departamento de Matemáticas Facultad de Ciencias UNAM Circuito Exterior de CU 04510 México DF Mayo 2005 El presente texto corresponde a la versión electrónica

Más detalles

1. La topología inducida.

1. La topología inducida. PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

Polinomios ortogonalmente aditivos y aplicaciones.

Polinomios ortogonalmente aditivos y aplicaciones. Polinomios ortogonalmente aditivos y aplicaciones. Pablo Linares conjuntamente con A. Ibort y J. G. Llavona. Universidad Complutense Salobreña, 3-5 Abril 2008 1 Polinomios ortogonalmente aditivos. Introducción.

Más detalles

Notas de Medida, Integración y Probabilidad

Notas de Medida, Integración y Probabilidad Notas de Medida, Integración y Probabilidad J. Armando Domínguez, UAS, jadguez@uas.uasnet.mx Víctor Pérez-Abreu, CIMAT, pabreu@cimat.mx Agosto 2009 Contenido Introducción 2 1 Clases de conjuntos 3 1.1

Más detalles

Dilatación unitaria de semigrupos locales de contracciones con parámetro en los racionales diádicos. MSc. Angel Padilla. Cumaná, Marzo 2012

Dilatación unitaria de semigrupos locales de contracciones con parámetro en los racionales diádicos. MSc. Angel Padilla. Cumaná, Marzo 2012 Dilatación unitaria de semigrupos locales de contracciones con parámetro en los racionales diádicos Autor: MSc. Angel Padilla Cumaná, Marzo 2012 2 A continuación se fija algo de la notación que se utilizará

Más detalles

Benemérita Universidad Autónoma de Puebla. Introducción a las funciones de Whitney

Benemérita Universidad Autónoma de Puebla. Introducción a las funciones de Whitney Benemérita Universidad Autónoma de Puebla Facultad de Ciencias Físico Matemáticas Introducción a las funciones de Whitney Tesis presentada como requisito para obtener el título de Licenciada en Matemáticas

Más detalles

Una desigualdad entre normas BMO en espacios casi métricos

Una desigualdad entre normas BMO en espacios casi métricos previos Una desigualdad entre normas BMO en espacios casi métricos María Emilia Castillo Facultad de Ciencias Económicas Universidad Nacional de Tucumán 21 de Septiembre de 2016 Trabajo en conjunto con

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Espacios eucĺıdeos Definición Se dice que un espacio vectorial E es un espacio eucĺıdeo si

Más detalles

F-ESPACIOS. 1.- Introducción

F-ESPACIOS. 1.- Introducción F-ESPACIOS 1.- Introducción Recordemos que un subconjunto A de un espacio topológico X se llama diseminado o raro (nowhere dense en ingés) si A=. Un subconjunto que se pueda escribir como unión numerable

Más detalles

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................

Más detalles

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad.

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad. Tema 1: Repaso de conocimientos previos.... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Outline Relaciones trigonométricas 1 Relaciones trigonométricas 2 3 4 5 6 Outline Relaciones

Más detalles

11.1. Funciones uniformemente continuas

11.1. Funciones uniformemente continuas Lección 11 Continuidad uniforme Completando el análisis de los principales teoremas que conocemos sobre continuidad de funciones reales de variable real, estudiamos ahora la versión general para espacios

Más detalles

Dos expresiones para la esperanza de una variable aleatoria

Dos expresiones para la esperanza de una variable aleatoria Comunicaciones en Estadística Diciembre 2008, Vol. 1, No. 1 Dos expresiones para la esperanza de una variable aleatoria Two Expressions about the Expectation of a andom Variable Andrés Gutiérrez a hugogutierrez@usantotomas.edu.co

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Práctica 2. Diferenciabilidad de campos escalares Ejercicios resueltos

Práctica 2. Diferenciabilidad de campos escalares Ejercicios resueltos Práctica. Diferenciabilidad de campos escalares Ejercicios resueltos 1. Estudiar la continuidad, la diferenciabilidad y la continuidad de las derivadas parciales, de los campos escalares f, g, h : R R

Más detalles

Grado en Ingeniería Informática y Matemáticas. Facultad de Ciencias.

Grado en Ingeniería Informática y Matemáticas. Facultad de Ciencias. Grado en Ingeniería Informática y Matemáticas Facultad de Ciencias. Análisis Matemático II Curso 2014-2015 Departamento de Análisis Matemático 2 Índice general 0.1. Sucesiones de funciones...........................

Más detalles

Ejercicios de Análisis Funcional

Ejercicios de Análisis Funcional Ejercicios de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada ANÁLISIS FUNCIONAL Relación de Ejercicios N o 1 1. Dar un ejemplo de una distancia en un espacio

Más detalles

Ejercicios de Análisis Funcional. Curso

Ejercicios de Análisis Funcional. Curso Ejercicios de Análisis Funcional Curso 2010-2011 1 1 Preliminares de espacios normados Problema 1.1. Demostrar que para 1 < p < la norma. p en R 2 verifica la siguiente propiedad: Si x, y R 2 con x y y

Más detalles

Objetivo del Cálculo de Probabilidades:

Objetivo del Cálculo de Probabilidades: Objetivo del Cálculo de Probabilidades: Establecer y desarrollar modelos matemáticos adaptados al estudio de situaciones que presentan cierto grado de incertidumbre Definición de Estadística (Barnett,

Más detalles

Cursillo intensivo de Elementos de la Teoría Ergódica.

Cursillo intensivo de Elementos de la Teoría Ergódica. Cursillo intensivo de Elementos de la Teoría Ergódica. Eleonora Catsigeras Instituto de Matemática. Facultad de Ingeniería. Universidad de la República. Montevideo. URUGUAY. eleonora@fing.edu.uy Curso

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Conjuntos Medibles. La identidad de Caratheodory

Conjuntos Medibles. La identidad de Caratheodory Capítulo 18 Conjuntos Medibles La identidad de Caratheodory En el capítulo anterior vimos que la medida exterior de Lebesgue no resulta σ-aditiva en todo R n. Ahora vamos a construir una familia M de subconjuntos

Más detalles

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas:

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas: 4 Espacios compactos En este capítulo introducimos los conceptos de espacio y subespacio compacto. Se estudian propiedades de los conjuntos compactos, así como relación entre la compacidad y las funciones

Más detalles

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

Espacios compactos. 7.1 Espacios compactos

Espacios compactos. 7.1 Espacios compactos 58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

Integrales paramétricas

Integrales paramétricas 5 Integrales paramétricas Página 1 de 29 1. uchas de las funciones que se manejan en Análisis atemático no se conocen mediante expresiones elementales, sino que vienen dadas a través de series o integrales.

Más detalles

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS. FUNCIONES MEROMORFAS Definición.. Se dice que una función es meromorfa en un abierto Ω de C si f es holomorfa en Ω excepto

Más detalles

Notas del Primer Capítulo del Libro Análisis Funcional de W. Rudin

Notas del Primer Capítulo del Libro Análisis Funcional de W. Rudin 1 Notas del Primer Capítulo del Libro Análisis Funcional de W. Rudin Alejandra García García Estas notas son el trabajo desarrollado dentro del seminario de Análisis que se ha impartido durante los primeros

Más detalles

Medida de Lebesgue y la Transformación de Fourier

Medida de Lebesgue y la Transformación de Fourier Medida de Lebesgue y la Transformación de Fourier Lebesgue Measure and the Fourier Transform Raquel González Fariña Trabajo de Fin de Grado Departamento de Análisis Matemático Facultad de Ciencias. Sección

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS Escuela de Matemática Postgrado en Matemática. Espacios con métrica indefinida

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS Escuela de Matemática Postgrado en Matemática. Espacios con métrica indefinida UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS Escuela de Matemática Postgrado en Matemática Espacios con métrica indefinida Ramón Bruzual Caracas, Venezuela Octubre 2011 Ramón Bruzual Correo-E:

Más detalles

Variables Aleatorias

Variables Aleatorias Variables Aleatorias Memo Garro Resumen En este artículo introduciremos un tipo específico de funciones definidas sobre la dupla (Ω F. Estas funciones son llamadas variables aleatorias y son de gran importancia

Más detalles

Notas complementarias al curso. Transformada Ondita Teoría y Aplicaciones. Segunda Escuela de Posgrado - Red ProTIC

Notas complementarias al curso. Transformada Ondita Teoría y Aplicaciones. Segunda Escuela de Posgrado - Red ProTIC Notas complementarias al curso Transformada Ondita Teoría y Aplicaciones Segunda Escuela de Posgrado - Red ProTIC María Eugenia Torres Universidad Nacional de Entre Ríos Facultad de Ingeniería Laboratorio

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Probabilidades y la Teoría de Integración

Probabilidades y la Teoría de Integración Capítulo 2 Probabilidades y la Teoría de Integración Contents 2.0.2. σ-álgebras, variables aleatorias y leyes de probabilidad.............. 8 2.0.3. Integrales y esperanzas................................

Más detalles

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................

Más detalles

Acotación y compacidad

Acotación y compacidad Lección 8 Acotación y compacidad Para subconjuntos de un espacio métrico, estudiamos ahora la noción de acotación, que como ocurría con la complitud, no es una noción topológica, pero se conserva en un

Más detalles

Tema 5. Cónicas. Asi, para las identificaciones habituales, (punto proyectivo recta vectorial punto de un plano afín ampliado), RP 2 R3 {0}

Tema 5. Cónicas. Asi, para las identificaciones habituales, (punto proyectivo recta vectorial punto de un plano afín ampliado), RP 2 R3 {0} Tema 5. Cónicas. Introducción. Ejemplos.- El cono C = {(x, y, z) R 3 /x 2 + y 2 = z 2 } está formado por las rectas vectoriales 0 (x 1,x 2, 1) [x 1,x 2, 1] RP 2 con (x 1,x 2, 1) C Π 1 = C 1, circunferencia

Más detalles

Elementos de Teoría de la Medida, Análisis Funcional y Teoría de Distribuciones

Elementos de Teoría de la Medida, Análisis Funcional y Teoría de Distribuciones Elementos de Teoría de la Medida, Análisis Funcional y Teoría de Distribuciones Thelma: Mr. Dodd, how do you occupy your leisure? Dodd: Mrs. Cherie, all the excitement, the romance, the adventure that

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

1. Caracterización de compacidad en espacios métricos

1. Caracterización de compacidad en espacios métricos Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS TEÓRICO-PRÁCTICAS 10: COMPACIDAD II 1. Caracterización de compacidad en espacios métricos

Más detalles

Sobre una definición matemática del caos

Sobre una definición matemática del caos Sobre una definición matemática del caos A. Bonilla A. Bonilla () Sobre una definición matemática del caos 1 / 1 Sobre una definición matemática del caos A. Bonilla Resumen Trataremos de motivar y presentar

Más detalles

Teorema de Compacidad

Teorema de Compacidad Teorema de Compacidad Seminario de Teoría de Modelos - FCEyN - UBA 1 de septiembre de 2011 Teorema 1 (Compacidad). Una L-teoría T es satisfacible si y solo si todo subconjunto finito de T es satisfacible.

Más detalles

Introducción a la topología

Introducción a la topología Introducción a la topología Beatriz Abadie CENTRO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNIVERSIDAD DE LA REPÚBLICA Agosto de 2013 i Índice general Capítulo 1. Elementos de la teoría de conjuntos 1 1.1.

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Topología

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Topología - Fernando Sánchez - - 6 Topología Cálculo I en R 26 10 2015 Elementos de la topología en R. Una topología en un conjunto da un criterio para poder hablar de proximidad entre los elementos de un conjunto.

Más detalles

CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas, Venezuela Julio

Más detalles

1 Denición y ejemplos

1 Denición y ejemplos Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 206 NOTAS TEÓRICO-PRÁCTICAS 5: ESPACIOS MÉTRICOS Denición y ejemplos Comenzaremos estas notas recordando

Más detalles

1. Funciones Medibles

1. Funciones Medibles 1. Medibles Medibles simples... Hasta ahora hemos estudiado la medida de Lebesgue definida sobre los conjuntos de R n y sus propiedades. Vamos a aplicar ahora esta teoría al estudio de las funciones escalares

Más detalles

Topología en R n. Continuidad de funciones de varias variables

Topología en R n. Continuidad de funciones de varias variables . Continuidad de funciones de varias variables María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I (1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Continuidad

Más detalles

INTRODUCCIÓN A LA TEORÍA DESCRIPTIVA DE CONJUNTOS

INTRODUCCIÓN A LA TEORÍA DESCRIPTIVA DE CONJUNTOS INTRODUCCIÓN A LA TEORÍA DESCRIPTIVA DE CONJUNTOS UDAYAN B.DARJI 1. Introducción En este curso estudiaremos objetos definibles como conjuntos borelianos, conjuntos analíticos, y clasificaciones de funciones

Más detalles

Análisis IV. Joaquín M. Ortega Aramburu

Análisis IV. Joaquín M. Ortega Aramburu Análisis IV Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en Julio de 2001 2 Índice General 1 Integral de Riemann 5 1.1 Integración de Riemann............................... 5 1.2 Contenido

Más detalles

1 Continuidad uniforme

1 Continuidad uniforme Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS 6: ESPACIOS MÉTRICOS II: COMPLETITUD 1 Continuidad uniforme Denición. Sean (M, d 1 ) y

Más detalles

Notas de Probabilidades y

Notas de Probabilidades y Notas de Probabilidades y Estadística Capítulos 1 al 12 Víctor J. Yohai vyohai@dm.uba.ar Basadas en apuntes de clase tomados por Alberto Déboli, durante el año 2003 Versión corregida durante 2004 y 2005,

Más detalles

Sucesiones y Suma Finita

Sucesiones y Suma Finita Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión

Más detalles

Tesis de Licenciatura. Teoremas de isomorfismos para clases de operadores

Tesis de Licenciatura. Teoremas de isomorfismos para clases de operadores UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Matemática Tesis de Licenciatura Teoremas de isomorfismos para clases de operadores María Eugenia Di Iorio y Lucero

Más detalles

1. ESPACIOS DE HILBERT Y OPERADORES

1. ESPACIOS DE HILBERT Y OPERADORES 1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación

Más detalles

Espacios Lineales. José D. Edelstein. Universidade de Santiago de Compostela. Santiago de Compostela, febrero de 2011

Espacios Lineales. José D. Edelstein. Universidade de Santiago de Compostela. Santiago de Compostela, febrero de 2011 Espacios Lineales José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, febrero de 2011 Espacios vectoriales. Espacios normados. Espacios de Hilbert. José D.

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

SOBRE UNIFORMIDADES DEFINIDAS POR CUBRIMIENTOS Y COMPLETADO FIBRA A FIBRA HECTOR ANTONIO RICAURTE MONCALEANO

SOBRE UNIFORMIDADES DEFINIDAS POR CUBRIMIENTOS Y COMPLETADO FIBRA A FIBRA HECTOR ANTONIO RICAURTE MONCALEANO SOBRE UNIFORMIDADES DEFINIDAS POR CUBRIMIENTOS Y COMPLETADO FIBRA A FIBRA HECTOR ANTONIO RICAURTE MONCALEANO 830219 UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICAS BOGOTÁ,

Más detalles

Unidad 1: Espacios métricos

Unidad 1: Espacios métricos Unidad 1: Espacios métricos 1.1 Definición y Ejemplos. (1) Explicar que una métrica permite introducir una noción de cercanía entre los elementos de un conjunto. (2) Explicar que sobre un conjunto determinado

Más detalles

Funciones holomorfas Concepto de derivada

Funciones holomorfas Concepto de derivada Lección 3 Funciones holomorfas A partir de ahora entramos de lleno en el estudio del Análisis Complejo, discutiendo el concepto de derivada para funciones complejas de variable compleja. Lo primero que

Más detalles

Cambio de variables en la integral múltiple.

Cambio de variables en la integral múltiple. Cambio de variables en la integral múltiple. En este apartado vamos a generalizar la fórmula g(b) g(a) f(x) dx = b a f(g(t)) g (t) dt al caso de funciones de n variables. Como la región de integración

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles