Potencia de un Punto

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Potencia de un Punto"

Transcripción

1 otencia de un unto Si es un punto cualquiera en el plano de una circunferencia dada, y una línea por interseca a la circunferencia en y, el producto de los segmentos y es constante. Esta propiedad característica de una circunferencia nos lleva a la formulación de la efinición: La otencia de un unto con respecto a una circunferencia, es el producto de sus distancias a cualquier par de puntos en la circunferencia que sean colineales con él. omo vemos, tenemos dos posibles casos para, éste puede ser interior o exterior a la circunferencia: = =

2 En ambos casos, si O y R son el centro y el radio de la circunferencia, respectivamente, tenemos que ambas potencias son iguales a: Si es exterior: Si es interior: O R = R O. =. continuación veremos de dónde salen estos hechos. rimero demostraremos la relación cuando es un punto exterior a la circunferencia. Notemos que los triángulos y son semejantes, ya que comparten el ángulo en y los ángulos y son iguales por abrir el mismo arco. Entonces: = =. O R T

3 omo caso particular, tenemos cuando una de las rectas que pasan por es tangente a la circunferencia. onsiderando la figura de arriba, tenemos lo siguiente: odríamos considerar un argumento similar a la demostración anterior, sin embargo, podemos suponer que la tangente T funciona como una secante que toca a la circunferencia dos veces en un mismo punto T. plicando potencia de un punto con respecto a, tenemos: T T = = T ero T = O R. or lo tanto: principio. = T = O R, como teníamos al onsideremos ahora el caso en que es interior a la circunferencia. on un argumento similar podemos notar que los triángulos y son semejantes. or lo tanto: = =. M R O N onsideremos un diámetro MN que pase por ; entonces aplicando potencia con respecto a tenemos que = M N= ( R+ O)( R O) = R O. on esto terminamos la demostración. Este teorema es de gran importancia en la resolución de problemas, sobre todo en aquellos donde se involucran circunferencias y cuadriláteros cíclicos. Qué pasa cuando está sobre la circunferencia?

4 Test para uadriláteros íclicos Sea un cuadrilátero, tal que sus diagonales se intersectan en. Entonces es cíclico si y sólo si =. emostración. omo =, entonces: =, y como los ángulos y son el mismo, tenemos que los triángulos y son semejantes. or lo tanto: =, o bien = ; esto implica que el cuadrilátero es cíclico. nálogamente, si el cuadrilátero es cíclico, podemos proceder igual que en las demostraciones anteriores. Sea un cuadrilátero, tal que sus lados opuestos y se cortan en. Entonces es cíclico si y sólo si =. emostración. omo =, tenemos que =, y como los triángulos y comparten el ángulo en, entonces son semejantes. or lo tanto, los ángulos y son iguales. Esto implica que es cíclico. Si,, y son concíclicos, procedemos como al inicio de la sección.

5 Ejes Radicales El Eje Radical de dos circunferencias es el lugar geométrico de los puntos cuyas potencias con respecto a las dos circunferencias son iguales. Este lugar geométrico es una recta perpendicular a la línea de los centros. O O = y ' ' ' ' = ' ' ' ' emostración. onsideremos primero dos circunferencias no concéntricas cuyos centros son O y O, y cuyos radios son r y r, respectivamente. or, un punto que tiene la misma potencia con respecto a estas circunferencias, dibujamos M perpendicular a la línea de los centros OO. O M O

6 Entonces O r = O' r'. Restando M a ambos lados obtenemos: ( O M ) r = ( O' M ) r' OM r = O' M r' y puesto que OM + MO = OO, tenemos que: OM O' M = ( OM+ MO')( OM MO') = OO'( OM O' M) = r r' r r' OM O' M=. OO ' or lo tanto, sólo hay un punto M que satisface dicha relación. O N M O Si N es un punto cualquiera semejante, tenemos que OM - MO = ON - NO ; esto es: (ON + NM) MO = ON (NM + MO ); y entonces MN = 0, es decir, M coincide con N. or lo tanto, si un punto tiene potencias iguales con respecto a las dos circunferencias de centros O y O, está en una perpendicular a la línea de sus centros. Inversamente, se puede demostrar, invirtiendo los primeros pasos de la discusión anterior que, si está en la perpendicular a OO por M, sus potencias con respecto a estas circunferencias son iguales. Si los centros de dos circunferencias de radios desiguales se aproximan, el punto M se aproxima al punto al infinito en OO y la línea M tiende a la línea al infinito. sí que el eje radical de dos circunferencias concéntricas desiguales se define como la línea al infinito. El eje radical de dos circunferencias iguales

7 concéntricas, se dejará indefinido, y cualquier enunciado acerca del eje radical no es aplicable a tales circunferencias. ómo localizar el Eje Radical de dos ircunferencias Si dos circunferencias no se cortan, una forma de encontrar su eje radical es trazar dos circunferencias secantes a ambas y unir los puntos de intersección de las cuerdas comunes. O trazar directamente una perpendicular a la línea de los centros. Si dos circunferencias son secantes, su eje radical es la recta que pasa por sus puntos de intersección.

8 Si dos circunferencias son tangentes, su eje radical es la tangente por el punto común. Teorema Los ejes radicales de tres circunferencias tomadas por pares son concurrentes. emostración. 1 3 onsideremos primero tres circunferencias 1, y 3 cuyos centros no son colineales, y sea la intersección del eje radical de 1 y con el de y 3. Entonces tendrá potencias iguales con respecto a las tres circunferencias, y entonces el eje radical de 1 y 3 también pasará por. Si los centros de las tres circunferencias son colineales, los ejes radicales son paralelos y distintos, o dos de ellos coinciden y la línea común es paralela al tercero, o los tres coinciden. En cada uno de estos casos especiales, las líneas son concurrentes en un punto al infinito.

9 El punto de concurrencia de los tres ejes radicales de tres circunferencias tomadas en pares, es llamado su entro Radical. lgunas propiedades del Eje Radical omo los puntos del eje radical tienen igual potencia respecto a las dos circunferencias, para cualquier punto del eje radical, si desde este punto trazamos las tangentes a las dos circunferencias, las longitudes de los segmentos tangentes serán las mismas. Esto posibilitará la resolución de algunos problemas de tangencias. omo consecuencia de lo anterior, el eje radical de dos circunferencias, será el lugar geométrico de los centros de las circunferencias ortogonales a dichas circunferencias. Nota: os circunferencias son ortogonales si, al cortarse, sus radios trazados a los puntos en común son perpendiculares. T O O T T = T ropiedades del entro Radical omo es la intersección de tres ejes radicales, las longitudes de los seis segmentos tangentes a las tres circunferencias serán iguales.

10 Será centro de una circunferencia ortogonal a las tres. O 1 O O 3 istancia entre el ircuncentro y el Incentro de un Triángulo (Teorema de Euler) La distancia d entre el circuncentro y el incentro de un triángulo está dada por: d R Rr =, donde R y r son el circunradio e inradio del triángulo, respectivamente. emostración. onsideremos un triángulo con circuncentro O e incentro I. Sean R y r el circunradio e inradio, respectivamente. Sean y Q las intersecciones de I y I con el circuncírculo, respectivamente.

11 Q r I O plicando potencia de un punto con respecto a I obtenemos: I I= R OI = R d r r ero seni = I I = seni. demás, notamos que: Q + Q + Q I= = = = I. Es decir, el triángulo I es isósceles, por lo que I =. hora, en el triángulo aplicamos la Ley de Senos: R I RsenI seni = = =. Entonces, podemos concluir: r R d = I I= (Rsen I) = Rr. seni or lo que d R Rr =.

12 Ejemplos Ejemplo 1. Si dos circunferencias se intersectan, la cuerda en común biseca las tangentes en común a dichas circunferencias. emostración. Sean y Q los puntos donde se cortan las circunferencias, sean,, y los puntos de tangencia, como muestra la figura; y sean M y N los puntos de intersección de la cuerda Q con y, respectivamente. M Q N Entonces, aplicando potencia de un punto por un lado obtenemos que: M = M MQ= M. or lo tanto M = M. nálogamente obtenemos que N = N. Ejemplo. Sean y dos círculos que se intersectan en dos puntos distintos y Q. Una recta que pasa por intersecta a en y a en (ambos distintos de ). Sean Y el punto medio de, X la intersección de QY con y Z la intersección de QY con. rueba que Y también es el punto medio de XZ. emostración. plicando potencia de un punto en obtenemos XY YQ= Y Y. (1) plicando potencia de un punto en obtenemos Y Y= YZ YQ. ()

13 X Y Z Q Multiplicando (1) y () miembro a miembro obtenemos: XY YQ Y Y= Y Y YZ YQ. Y como Y = Y, tenemos que XY = YZ. Y entonces Y es punto medio de XZ. Ejemplo 3. Sea un punto en una semicircunferencia de diámetro y sea el punto medio del arco. enotemos por E a la proyección del punto sobre y por F a la intersección de E con la semicircunferencia. robar que F biseca al segmento E. emostración. M F E O Sea O el centro de la semicircunferencia y M el punto de intersección de F con E. Es claro que O es perpendicular a. demás, como E es perpendicular a E y el ángulo es recto, ya que es diámetro, entonces se tiene que E y son paralelas. En consecuencia, O es perpendicular a E. Es decir, E es tangente a la semicircunferencia.

14 or lo tanto, podemos aplicar potencia de un punto: M MF M = ( )( ). demás, como el triángulo ME es rectángulo en E y el ángulo F es recto, tenemos que EF es altura, por lo cual: ME MF M = ( )( ). Esto implica que M = ME, por lo cual M es punto medio de E. roblemas 1. Sea un trapecio, con paralela a y tal que el ángulo es recto. os circunferencias de diámetros y se cortan en los puntos y Q. La recta Q corta al lado en M. emuestra que M es punto medio de.. Sea un triángulo tal que = Si Z es un punto sobre tal que Z =, demuestra que el circuncírculo del triángulo Z es tangente al lado en. 3. Supóngase que y son dos cuerdas perpendiculares de un círculo, y sea E su punto de intersección. Supóngase que E =, E = 6 y E = 3. Encontrar el diámetro del círculo. 4. onsidere un triángulo rectángulo con = 3, = 4 y = 5. iseque el ángulo y llame O al punto de intersección de ésta bisectriz con el cateto. espués trace el círculo con centro O y radio O. Si Q es el diámetro que coincide con la bisectriz, muestre que Q 1+ 5 es la razón áurea 5. Si es un triángulo equilátero e inscrito en un círculo,, los puntos medios de los lados y respectivamente y es la intersección del segmento con el círculo (con en el arco menor ), demuestre que ' ' 1+ 5 =. ' 6. onsidere tres círculos que se intersectan dos a dos definiendo los puntos,, F E,, E, F como se muestra en la figura. emuestre que = 1. F E.

15 F E 7. Sea una curva cerrada en el plano tal que para cada cuatro puntos,, y de la curva, si denota la intersección de las rectas y, entonces =. ruebe que es una circunferencia. 8. Sean 1, y 3 tres circunferencias de distintos radios y tangentes exteriormente entre sí. Sean, y los puntos de tangencia de 1 con, con 3 y 3 con 1 respectivamente. enotemos por a la intersección de la recta con la recta que une los centros de 1 y. Sea T un punto de 3 tal que T sea tangente a 3. rueba que T =. 9. En un cuadrilátero inscrito en una circunferencia llamemos al punto de intersección de las diagonales y, y sea M el punto medio de. La circunferencia que pasa por y que es tangente a en M corta a y a en los puntos Q y R, respectivamente. Se toma un punto S sobre el segmento de tal manera que S = Q. or S se traza una paralela a que corta a en un punto T. rueba que T = R. 10. os circunferencias que se cortan en M y N tienen una tangente común que es tangente a una circunferencia en y a la otra en Q. emuestra que los triángulos MN y MNQ tienen la misma área. 11. Sean,,,, vértices consecutivos de un heptágono regular, sean L y M las tangentes desde a la circunferencia de centro y radio. Sea N la intersección de y. emuestra que los puntos L, M y N son colineales. 1. Sea un punto en el interior de una circunferencia, tal que existen tres cuerdas que pasan por de igual longitud. rueba que es el centro del círculo.

16 13. uál es el lugar geométrico de los puntos tales que su potencia con respecto a una circunferencia dada es constante? 14. uál es el lugar geométrico de un punto cuya suma de potencias con respecto a dos circunferencias es constante? onsidere dos circunferencias concéntricas así como dos no concéntricas. 15. ara un punto en el interior de ángulo xoy, encontrar un punto sobre Ox y un punto sobre Oy tal que esté sobre y el producto es mínimo. 16. ado un plano π y dos puntos y en diferentes lados de él, construye una esfera que contenga a y a y que su intersección con π sea un círculo del menor radio posible. 17. En un triángulo sean O, H y R el circuncentro, ortocentro y circunradio, respectivamente. emuestra que la longitud del segmento OH está dada por OH = R (1 8coscoscos ). 18. Sea un triángulo y sean,, puntos sobre los lados,,, respectivamente. enotemos por M el punto de intersección de los circuncírculos de y distinto de, y por N el punto de intersección de los circuncírculos de y distinto de. e manera similar, uno define los puntos, Q y R, S, respectivamente. robar que: (a) l menos una de las siguientes situaciones ocurre: (i) Las tripletas de rectas (, M, N), (,, Q), (, R, S) son concurrentes en,, y, respectivamente. (ii) M y N son paralelas a, o y Q son paralelas a, o R y S son paralelas a. (b) En el caso donde (i) ocurre, los puntos,, son colineales. 19. onsidera los puntos,,,, no tres de ellos colineales. Las rectas y se cortan en E, y y se cortan en F. rueba que los círculos con diámetros, y EF pasan por un punto común, o dos de ellos no tienen ningún punto en común. 0. Sean 1 y dos círculos concéntricos, con en el interior de 1. esde un punto sobre 1 dibuja la tangente a ( se encuentra sobre ). Sea el segundo punto de intersección de con 1, y sea el punto medio de. Una recta que pasa por intersecta a en E y F de tal forma que las

17 mediatrices de E y F se intersecten en un punto M sobre. Encuentra la razón M M. 1. Sea un triángulo acutángulo. Los puntos M y N son tomados sobre los lados y, respectivamente. Los círculos con diámetros N y M se cortan en los puntos y Q. emuestre que, Q y el ortocentro H son colineales.. Sea un cuadrilátero convexo inscrito en un semicírculo s de diámetro. Las rectas y se cortan en E y las rectas y en F. La recta EF corta al semicírculo s en G y a la recta en H. rueba que E es el punto medio del segmento GH si y sólo si G es el punto medio del segmento FH. 3. Sea un triángulo y sean y E puntos sobre los lados y, respectivamente, tales que E es paralela a. Sea cualquier otro punto interior al triángulo E y sean F y G las intersecciones de E con las rectas y, respectivamente. Sea Q el segundo punto de intersección de los circuncírculos de los triángulos G y FE. emuestra que los puntos, y Q se encuentran sobre una misma recta. 4. Sean,, y cuatro puntos distintos sobre una recta, en ese orden. Los círculos con diámetros y se cortan en X y en Y. La recta XY corta a en Z. Sea un punto sobre XY distinto de Z. La recta corta al círculo con diámetro en y M, y la recta corta al círculo con diámetro en y en N. emuestra que las rectas M, N y XY son concurrentes. 5. onsidera una semicircunferencia de centro O y diámetro. Una recta intersecta a en M y a la semicircunferencia en y de tal forma que M < M y M < M. Los circuncírculos de los triángulos O y O se cortan por segunda vez en K. Muestra que MK y KO son perpendiculares. 6. Sea un triángulo isósceles con =. Si y son puntos sobre tales que = y y Q son las intersecciones del circuncírculo de con y, respectivamente, demuestra que Q pasa por el punto medio de. 7. Sean, E, F las alturas del triángulo. Sea X la intersección de EF con, Y la intersección de E con, y Z la intersección de F con. emostrar que X, Y y Z son colineales. Más aún, si G y O son el gravicentro y circuncentro de, respectivamente, entonces la recta que contiene a X, Y y Z es paralela a OG. 8. En el triángulo los puntos, Q y R están en, y, respectivamente, y las líneas, Q y R son concurrentes. emostrar que el centro radical de

18 las circunferencias que tienen estas líneas como diámetros es el ortocentro del triángulo.

Geometría Moderna II

Geometría Moderna II Ma. Guadalupe Lucio Gómez Maqueo Facultad de Ciencias, UNAM Geometría Moderna II Estas notas se desarrollaron para cubrir los temas del programa de Geometría Moderna II que se imparte en la Facultad de

Más detalles

Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas

Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas duardo Sarabia 27 de enero de 2011 Puntos, rectas y circunferencias notables en el triángulo.

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

Líneas paralelas. Se llaman líneas paralelas las que se hallan en un mismo plano y no se intersectan por mas que se prolonguen.

Líneas paralelas. Se llaman líneas paralelas las que se hallan en un mismo plano y no se intersectan por mas que se prolonguen. 1.1 ngulos entre paralelas. apítulo 1. onceptos ásicos de Geometría Líneas paralelas. Se llaman líneas paralelas las que se hallan en un mismo plano y no se intersectan por mas que se prolonguen. Si una

Más detalles

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta. CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

IV Torneo Matemático Triangular Aragón La Rioja Navarra Tudela, 11 de marzo de 2017

IV Torneo Matemático Triangular Aragón La Rioja Navarra Tudela, 11 de marzo de 2017 IV Torneo Matemático Triangular Tudela, 11 de marzo de 017 lgunos usos de simetrías y reflexiones con la bisectriz como referencia IV Torneo Triangular 017 Índice Resultados conocidos Definiciones básicas

Más detalles

Potencia de un Punto

Potencia de un Punto 1 Potencia de un Punto Luis F. Cáceres Ph.D UPR-Mayagüez Propiedad 1. Las cuerdas AB y CD se cortan en P, entonces P A P B = P C P D. Demostración. El P AC = BCD pues abren el mismo arco y AP C = BP D

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

Figuras planas. Definiciones

Figuras planas. Definiciones Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan

Más detalles

Clasificación de polígonos según sus lados

Clasificación de polígonos según sus lados POLÍGONOS Polígonos Un polígono es la región del plano limitada por tres o más segmentos. Elementos de un polígono Lados Son los segmentos que lo limitan. Vértices Son los puntos donde concurren dos lados.

Más detalles

Potencia y eje radical Carmela Acevedo

Potencia y eje radical Carmela Acevedo Potencia y eje radical Carmela Acevedo Potencia Definición: La potencia de un punto P respecto a una circunferencia Γ es el producto P A P B, donde A y B son los puntos de corte de una recta secante a

Más detalles

FIGURAS GEOMETRICAS PLANAS

FIGURAS GEOMETRICAS PLANAS UNIDAD 9 FIGURAS GEOMETRICAS PLANAS Objetivo General Al terminar esta Unidad entenderás y aplicaras los conceptos generales de las figuras geométricas planas, y resolverás ejercicios y problemas con figuras

Más detalles

Algunas maneras de usar la potencia

Algunas maneras de usar la potencia lgunas maneras de usar la potencia José ntonio Gómez Ortega Revista Tzaloa, año 1, número 4 Hay en las matemáticas trucos que resaltan por la variedad de situaciones en las que se aplican. ara estas notas

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS

EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS 1. TANGENCIAS EN LAS CIRCUNFERENCIAS Decimos que dos elementos geométricos son tangentes cuando tienen un punto en común. Las tangencias

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

1.1. Puntos y rectas notables en el triángulo. Sean A, B y C los vértices de un triángulo de lados opuestos a, b y c, respectivamente.

1.1. Puntos y rectas notables en el triángulo. Sean A, B y C los vértices de un triángulo de lados opuestos a, b y c, respectivamente. apítulo 1 Rectas notables 1.1. Puntos y rectas notables en el triángulo ltura, mediana y bisectriz Sean, y los vértices de un triángulo de lados opuestos a, b y c, respectivamente. H a c h b a H c H b

Más detalles

TEMA 6: GEOMETRÍA EN EL PLANO

TEMA 6: GEOMETRÍA EN EL PLANO TEMA 6: GEOMETRÍA EN EL PLANO Definiciones/Clasificaciones Fórmulas y teoremas Dem. Def. y Clasificación de polígonos: Regular o irregular Cóncavo o convexo Por número de lados: o Triángulos: clasificación

Más detalles

1. En la siguiente figura, asocie un término del lado izquierdo con los nombres del lado derecho.

1. En la siguiente figura, asocie un término del lado izquierdo con los nombres del lado derecho. TALLER # 3 DE GEOMETRÍA: CIRCUNFERENCIAS Y POLIGONOS PROFESOR: MANUEL J. SALAZAR JIMENEZ 1. En la siguiente figura, asocie un término del lado izquierdo con los nombres del lado derecho. a) OE 1. Radio

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

Los elementos básicos de la Geometría Plana son el punto, la línea, y el plano.

Los elementos básicos de la Geometría Plana son el punto, la línea, y el plano. GEOMETRÍA PLANA Dibujo Geométrico La geometría es la parte de las matemáticas que estudia las propiedades y las medidas de las figuras planas y tridimensionales en el espacio. La palabra procede de dos

Más detalles

TRIÁNGULOS Y CUADRILÁTEROS.

TRIÁNGULOS Y CUADRILÁTEROS. TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

- 1 - RECTAS Y ÁNGULOS. Tipos de ángulos Los ángulos se clasifican según su apertura: -Agudos: menores de 90º. Rectas

- 1 - RECTAS Y ÁNGULOS. Tipos de ángulos Los ángulos se clasifican según su apertura: -Agudos: menores de 90º. Rectas Alonso Fernández Galián Geometría plana elemental Rectas RECTAS Y ÁNGULOS Una recta es una línea que no está curvada, y que no tiene principio ni final. Tipos de ángulos Los ángulos se clasifican según

Más detalles

CIRCUNFERENCIA INTRODUCCION

CIRCUNFERENCIA INTRODUCCION CIRCUNFERENCIA INTRODUCCION Definición Sea O punto del plano ( P ) y r un real positivo, entonces se denomina circunferencia de centro O y radio r ( C ( O, r ) ), al conjunto formado por y sólo por los

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

Preguntas Propuestas

Preguntas Propuestas reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de

Más detalles

CURSO DE GEOMETRÍA 2º EMT

CURSO DE GEOMETRÍA 2º EMT CURSO DE GEOMETRÍA 2º EMT UNIDAD 0 REPASO 1º CIRCUNFERENCIA Y ANGULOS INSCRIPTOS Ángulos en la circunferencia 1. La circunferencia. 1.1. Elementos de una circunferencia Definición 1. Se llama circunferencia

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

2.-GEOMETRÍA PLANA O EUCLIDIANA

2.-GEOMETRÍA PLANA O EUCLIDIANA 2.-GEOMETRÍA PLANA O EUCLIDIANA 2.1.-Triángulos. Definición, clasificación y notación. Puntos notables, ortocentro, circuncentro, baricentro e incentro. Propiedades de las medianas. Los Triángulos son

Más detalles

GEOMETRÍA LLANA: CONCEPTOS BÁSICOS (1ESO)

GEOMETRÍA LLANA: CONCEPTOS BÁSICOS (1ESO) GEOMETRÍA LLANA: CONCEPTOS BÁSICOS (1ESO) PUNTOS, RECTOS Y PLANES 1.- Punto: Intersección de dos rectos. No tiene dimensiones (ni largo, ni ancho, ni alto). 2.- Recta: Conjunto de puntos con una sola dimensión.

Más detalles

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios.

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios. ÁNGULOS Dadas dos semirrectas de origen común (Ox, Oy), no opuestas ni coincidentes, llamaremos ángulo convexo de vértice O, a la intersección del semiplano de borde la recta sostén de Ox, que contiene

Más detalles

B5 Lugares geométricos

B5 Lugares geométricos Geometría plana B5 Lugares geométricos Lugar geométrico Se llama así a la figura que forman todos los puntos que tienen una misma propiedad. Los lugares geométricos pueden ser del plano o del espacio,

Más detalles

TANGENCIAS. En general, las tangencias tienen por objeto unir circunferencias y rectas mediante otras circunferencias y

TANGENCIAS. En general, las tangencias tienen por objeto unir circunferencias y rectas mediante otras circunferencias y Apuntes TANGENCIAS. Problemas de tangencias: rectas tangentes a circunferencias y circunferencias entre sí, conociendo el radio. Aplicación del eje y centro radical en problemas de tangencias: recta y

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

Elementos de Geometría

Elementos de Geometría Elementos de Geometría Manuel Maia 19 de marzo de 2012 1 Puntos, Rectas, Planos y Ángulos Hay cuatro términos o conceptos que aceptaremos sin definición: conjunto, punto recta y plano. Estos se llaman

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Geometría. CAPÍTULO V Cuadriláteros. 01. Se tiene un trapecio ABCD en el cual BC // AD, m ABC = 150º, m BCD = 120º, BC = 12u, CD = 18u.

Geometría. CAPÍTULO V Cuadriláteros. 01. Se tiene un trapecio ABCD en el cual BC // AD, m ABC = 150º, m BCD = 120º, BC = 12u, CD = 18u. Geometría ÍUL V uadriláteros 01. Se tiene un trapecio en el cual //, m = 150º, m = 120º, = 12u, = 18u. alcular: 04. el gráfico, : romboide =, + = 18u. alcular: ) 45u ) 46u ) 47u ) 48u ) 49u 02. el gráfico

Más detalles

PRIMERA EVALUACIÓN DE DIBUJO TÉCNICO I

PRIMERA EVALUACIÓN DE DIBUJO TÉCNICO I PRIMERA EVALUACIÓN DE DIBUJO TÉCNICO I 1. UD: TRAZADOS FUNDAMENTALES EN EL PLANO 1.1. Tipos de línea- 21 1.1.1. Línea recta 1.1.2. Línea curva 1.1.3. Línea quebrada 1.1.4. Semirrecta 1.2. Segmento 1.2.1.

Más detalles

LOS POLIGONOS. 1. Definiciones.

LOS POLIGONOS. 1. Definiciones. LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

16 PROPORCIONALIDAD INVERSA.-POTENCIA

16 PROPORCIONALIDAD INVERSA.-POTENCIA 16 PROPORCIONALIDAD INVERSA.-POTENCIA 16.1 Características generales. Consideramos que una variable x puede adquirir los valores a, b, c, d,.. y otra variable y los valores a, b, c, d, x e y son inversamente

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Tutorial MT-a1. Matemática Tutorial Nivel Avanzado. Circunferencia y círculo II

Tutorial MT-a1. Matemática Tutorial Nivel Avanzado. Circunferencia y círculo II 134567890134567890 M ate m ática Tutorial MT-a1 Matemática 006 Tutorial Nivel vanzado ircunferencia y círculo II Matemática 006 Tutorial ircunferencia y círculo Marco Teórico 1. lementos de la circunferencia

Más detalles

Liceo Experimental Bilingüe José Figueres Ferrer. Departamento de Matemática. Prof. Pamela Granados Vargas. Geometría - Undécimo Año

Liceo Experimental Bilingüe José Figueres Ferrer. Departamento de Matemática. Prof. Pamela Granados Vargas. Geometría - Undécimo Año Liceo Experimental ilingüe José Figueres Ferrer epartamento de Matemática rof. amela Granados Vargas Geometría - Undécimo ño Unidad 1: írculo y ircunferencia Estudiante Sección írculo y ircunferencia Undécimo

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

TRIÁNGULOS. APM Página 1

TRIÁNGULOS. APM Página 1 TRIÁNGULOS 1. Definición de triángulo. 2. Propiedades de los triángulos. 3. Construcción de triángulos. 3.1. Conociendo los tres lados. 3.2. Conociendo dos lados y el ángulo que forman. 3.3. Conociendo

Más detalles

Geometría en Olimpiadas de Matemáticas

Geometría en Olimpiadas de Matemáticas Geometría en Olimpiadas de Matemáticas por Jesús Jerónimo astro Universidad utónoma de Guerrero Facultad de Matemáticas 2010 2 Geometría en Olimpiadas de Matemáticas Jesús Jerónimo astro Jesús Jerónimo

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

1.3.-Trazados geométricos básicos.

1.3.-Trazados geométricos básicos. 1.3.-Trazados geométricos básicos. 1.3.1.-Notaciones Los elementos básicos del dibujo técnico son el punto, la recta y el plano. El punto no tiene dimensión, podemos considerarlo como una posición del

Más detalles

PREPARACIÓN DE OLIMPIADAS RSME BLOQUE GEOMETRÍA I

PREPARACIÓN DE OLIMPIADAS RSME BLOQUE GEOMETRÍA I PREPARACIÓN DE OLIMPIADAS RSME BLOQUE GEOMETRÍA I Almería, 3 de noviembre de 2017 David Crespo Casteleiro Índice de la sesión 1. Porqué hay que prepararse para unas Olimpiadas? 2. Resultados de gran utilidad.

Más detalles

8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES

8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES 8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES 8.1. TANGENCIAS Se dice que dos figuras planas son tangentes cuando tienen un solo punto en común, al que se conoce como punto de tangencia. Las tangencias pueden

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

Preguntas propuestas. Semestral. Aptitud Académica Cultura General Matemática Ciencias Naturales

Preguntas propuestas. Semestral. Aptitud Académica Cultura General Matemática Ciencias Naturales reguntas propuestas 1 Semestral UI 0 1 5 ptitud cadémica ultura General atemática iencias aturales IVEL ÁSIO riángulo ) 70º ) 60º E) 40º 1. el gráfico, calcule. 4. ado el gráfico, calcule a si m+n=10º.

Más detalles

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos Ángulos Ejercicios: 1) Si un triángulo tiene 2 ángulos que miden 25 y 75 Cuánto mide el tercer ángulo? 2) Cuánto suman los ángulos internos de un cuadrilátero cualquiera? Teorema: 1) La suma de los ángulos

Más detalles

Polígonos. Triángulos

Polígonos. Triángulos CLAVES PARA EMPEZAR Cada hora equivale a una abertura de 360 o : 12 30 o A las 12 h: ángulo 0 o A las 11 h y a la 1 h: ángulo 30 o A las 9 h y a las 3 h: ángulo 90 o A las 7 h y a las 5 h: ángulo 150 o

Más detalles

Triángulos IES BELLAVISTA

Triángulos IES BELLAVISTA Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados

Más detalles

Una recta y una circunferencia, o dos circunferencias, son exteriores si no tienen ningún punto común, y secantes si tienen dos puntos comunes.

Una recta y una circunferencia, o dos circunferencias, son exteriores si no tienen ningún punto común, y secantes si tienen dos puntos comunes. Geometría plana B19 Tangencias Tangencias y enlaces Conceptos básicos Una recta y una circunferencia, o dos circunferencias, son tangentes entre sí, si tienen un único punto común, llamado punto de tangencia.

Más detalles

UNIDAD 5. Ángulos en la circunferencia Relaciones métricas de la circunferencia Teorema de Euclides

UNIDAD 5. Ángulos en la circunferencia Relaciones métricas de la circunferencia Teorema de Euclides Matemática UNI 5. Ángulos en la circunferencia Relaciones métricas de la circunferencia Teorema de Euclides 2 Medio GUÍ N 1 ÁNGULS EN L IRUNFERENI Recordemos algunas definiciones básicas necesarias para

Más detalles

Cuadriláteros I. b. Rombo. Definición: = 360º. Clasificación general: c. Cuadrado > 180º. I. Paralelogramo. d. Romboide

Cuadriláteros I. b. Rombo. Definición: = 360º. Clasificación general: c. Cuadrado > 180º. I. Paralelogramo. d. Romboide uadriláteros I efinición: b. Rombo + + + = 360º lasificación general: c. uadrado > 180º ONVEXO NO ONVEXO I. aralelogramo d. Romboide b a a b lasificación de los paralelogramos a. Rectángulo 3 ÑO II. Trapecio

Más detalles

Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad.

Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Capítulo II. Lugar geométrico. Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Ejemplo: la mediatriz de un segmento es el conjunto

Más detalles

DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.

DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula. DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2009 2010 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

El polígono es una porción del plano limitado por una línea poligonal cerrada.

El polígono es una porción del plano limitado por una línea poligonal cerrada. UNIDAD 12: GEOMETRÍA PLANA 12.1. Los polígonos: Elementos El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

Introducción. Este trabajo será realizado con los siguientes fines :

Introducción. Este trabajo será realizado con los siguientes fines : Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro

Más detalles

Unidad Didáctica 8. Dibujo Geométrico

Unidad Didáctica 8. Dibujo Geométrico Unidad Didáctica 8 Dibujo Geométrico 1.- Tazados Geométricos Básicos Trazados Rectas Paralelas Rectas paralelas. Las que no llegan nunca a cortarse, o se cortan en el infinito. Con Escuadra y Cartabón:

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

CIRCUNFERENCIA Y CÍRCULO

CIRCUNFERENCIA Y CÍRCULO CIRCUNFERENCIA Y CÍRCULO 1. Circunferencia y círculo. Elementos. 2. Posiciones relativas de una recta y una circunferencia. 3. Posiciones relativas de dos circunferencias. 4. Ángulos centrales. 5. Ángulos

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

Lámina 1: Rectas paralelas horizontales, verticales, inclinadas y cruzadas.

Lámina 1: Rectas paralelas horizontales, verticales, inclinadas y cruzadas. Lámina 1: Rectas paralelas horizontales, verticales, inclinadas y cruzadas. Lámina 2: Realiza los siguientes patrones Traza un segmento de 50 mm por el punto R paralelo a la recta r. Divide el segmento

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

22. CURVAS CÓNICAS-ELIPSE

22. CURVAS CÓNICAS-ELIPSE 22. CURVAS CÓNICAS-ELIPSE 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor

Más detalles

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS 1. LA ESCUADRA Y EL CARTABÓN. Observando tu escuadra y tu cartabón describe su forma y sus ángulos.

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

Además del centro y el radio, distinguen: 1. Cuerda: segmento que une dos puntos cualquiera de la circunferencia. EF

Además del centro y el radio, distinguen: 1. Cuerda: segmento que une dos puntos cualquiera de la circunferencia. EF 23 1.5 ircunferencia efinición ado un punto y una distancia r, la circunferencia de centro y radio r, es el conjunto de puntos del plano y solo ellos, que están a la distancia r del punto. La circunferencia

Más detalles

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 10 POLÍGONOS REGULARES R 3 120º. x 60º. AB = R y BC = R 2, siendo R radio de dicha circunferencia. RPTA.

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 10 POLÍGONOS REGULARES R 3 120º. x 60º. AB = R y BC = R 2, siendo R radio de dicha circunferencia. RPTA. SEMN 10 POLÍGONOS EGULES 1. En una circunferencia se traza una cuerda de medida µ que sub tiene un arco de 10º. alcule la longitud de la cuerda que subtiene un arco de 0º. 3 ) µ ) 3 µ ) µ D) 4 µ E) µ 10º

Más detalles

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180 CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS

Más detalles

SISTEMASS DE REPRESENTACIÓNN Geometría Básica

SISTEMASS DE REPRESENTACIÓNN Geometría Básica SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

Unidad 7 Figuras planas. Polígonos

Unidad 7 Figuras planas. Polígonos Polígonos 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono.- Halla la medida de los ángulos interiores de: a) Un octógono regular.

Más detalles

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas?

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas? ACADEMIA SABATINA RECTAS Y PUNTOS DEL TRIÁNGULO ACTIVIDADES 1. Materiales: triángulos de papel, regla y compás. a. Toma un triángulo cualquiera, escoge uno de sus vértices y haz un doblez de tal modo que

Más detalles

DEPARTAMENTO DE DIBUJO. Asignatura: DIBUJO TÉCNICO II (2º Bachillerato) Prácticas: TRAZADOS GEOMÉTRICOS

DEPARTAMENTO DE DIBUJO. Asignatura: DIBUJO TÉCNICO II (2º Bachillerato) Prácticas: TRAZADOS GEOMÉTRICOS EPRTMENTO E IUJO URSO 2017-2018 Profesor: Manuel Martínez Vela signatura: IUJO TÉNIO II (2º achillerato) Prácticas: TRZOS GEOMÉTRIOS I.E.S. PRE MNJÓN GRN / pto. de IUJO Profesor: MNUEL MRTÍNEZ VEL IUJO

Más detalles

Perpendicularidad y paralelismo (1)

Perpendicularidad y paralelismo (1) Halla la mediatriz del segmento AB. Traza la recta perpendicular a la recta r por el punto A. Traza la perpendicular a la recta r desde el punto A. Cuál es la distancia del punto A a la recta r? Dibuja

Más detalles

18. TANGENCIAS Características generales Rectas tangentes a una circunferencia desde un punto exterior.

18. TANGENCIAS Características generales Rectas tangentes a una circunferencia desde un punto exterior. 18. TANGENCIAS 18.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.

Más detalles

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO.

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO. 1. INCENTRO Y ORTOCENTRO ❶ Sitúate en el ortocentro como punto de partida. ❷ Recorre la altura hasta el lado más alejado. ❸ Desplázate por el perímetro hasta el vértice más próximo. ❹ Dirígete al incentro.

Más detalles

PERÍMETROS ÁREAS - VOLÚMENES

PERÍMETROS ÁREAS - VOLÚMENES ERÍMETROS ÁREAS - VOLÚMENES 1.- OLÍGONOS olígono: arte del plano limitada por una línea poligonal cerrada. Lado: Segmento que une dos vértices consecutivos. En un polígono el número de lados y el número

Más detalles

Indice....1 Recta Punto Semirrecta Segmento Posición relativa de dos rectas en el plano Ángulo.-...

Indice....1 Recta Punto Semirrecta Segmento Posición relativa de dos rectas en el plano Ángulo.-... Geometría plana1 2017.odt Departamento de Matemáticas IES Isaac Díaz Pardo. Sada Geometría del plano Curso 1º Nombre: Nº : - 1- Indice....1 Recta.-...2 Punto.-...2 Semirrecta.-...2 Segmento.-...2 Posición

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.

Más detalles