Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A"

Transcripción

1 . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. Sisema compaible deermiado. Sisema de ramer.

2 . Resolver Solució. l sisema lo defie dos marices mari de coeficiees mari ampliada. ; rg ' ; rg ' ' Rago de rg a parir de meor aerior se obiee dos meores orlados de orde rg por coclusió rg Rago de Pariedo del meor aparece cuaro meores orlados de orde res de los cuales dos so los aeriores que so ulos los oros dos so que por ser ambié ulos idica que el rg. por lo ao el rg. rg rg S..D. co u grado de ideermiació l rago de u sisema idica el úmero de ecuacioes liealmee idepediees. Grados de ideermiació ó grados de liberad de u sisema es la diferecia ere el úmero de icógias del sisema el rago del sisema. ( ) Idica el úmero de parámeros ecesarios para resolver el sisema Sisema equivalee (S ) es el formado úicamee por las ecuacioes liealmee idepediees. Para escoger la ecuacioes liealmee idepediees del sisema se seleccioa las ecuacioes que coiee a los érmios del maor meor disio de cero que eisa e la mari de coeficiees. ' S Tomado como parámero cualquier variable e ese caso si se oma como parámero la variable el sisema queda más secillo. Ordeado ' S resolviedo por ramer

3 R ' S. Resolver Solució * ; Rg* Rg * Rago de Rg Teiedo e cuea que Rg Rg * ese o puede ser meor que dos por las dimesioes de * Rg* Rg Grado de ideermiació rg Sisema ompaible Ideermiado co u grado de ideermiació. l sisema se resuelve e fució de variables que se cosidera cosaes para a coiuació cambiarla por u parámero. Tomado la como cosae Susiuedo la seguda e la primera - ; haciedo se obiee el cojuo solució R. Resolver Solució * ; Rg* ; *; Rg

4 Rago Rg Para comprobar si la mari de coeficiees iee rago res solo se esudia los meores orlados del deermiae aerior que so { } ) ( Rg Rago de * Rg * omo Rg Rg * Rg Rg Rg * ; Sisema ompaible Deermiado. Ha que seleccioar las ecuacioes liealmee idepediees omado como referecia el meor de orde que defie el rago del sisema. ' S éodo de ramer Los deermiaes se resuelve por Sarrus.. Resolver Solució * ; Rg* Rg * Rago de Rg Rg Rg ) (

5 Rago de * Tomado como referecia el meor de orde que deermio el rago de la mari buscamos sus meores orlados. ( ) Rg Rg* Grado de ideermiació Rg Rg * Sisema compaible ideermiado co u grado de ideermiació. Para resolver el sisema habrá que seleccioar las ecuacioes liealmee idepediees e ese caso dos a que el rago del sisema es dos luego habrá que omar ua variable como cosae epresar las oras e fució de esa por úlimo cambiarla por u parámero. Las ecuacioes liealmee idepediees se puede obeer del meor que defiió el rago del sisema. ese caso dicho meor esá formado por coeficiees de las dos primeras ecuacioes por lo ao el sisema equivalee será el formado por la primera seguda ecuació. S ' Tomado la como cosae ( ) Susiuedo por se obiee el compoee solució R

6 . Resolver Solució * ; Rg* Rg * Rago de rg. rg. rg Rago de Teiedo e cuea que rg rg. Orlado el meor aparece dos meores de orde uo de ellos es el deermiae de la mari de coeficiees que es ulo el oro es por lo ao rg rg rg. Sisema INOPTIBL. Resolver s s Solució Dadas la dimesioes del sisema e ese caso se recomieda aplicar el méodo de Gauss. Sisema compaible deermiado l sisema equivalee es { s s s

7 . Resolver Solució rg ' rg ' ' rago de rg. rg rago de Pueso que es ua submari de solo queda por esudiar si puede eer rago. Si el deermiae de es disio de cero el rago de será cuaro sí es cero será. ( ) rg ' rg rg. Sisema compaible deermiado Sisema equivalee(s ) formado por la ecuacioes que coiee a los coeficiees del meor de orde res disio de cero e ese caso la ª ª ª. ' S Se resuelve mediae el méodo de ramer

8 . Resolver Solució rg ' rg ' ' Rago de { }. rg '. rg rg Teiedo e cuea las dimesioes de que es ua submari de rg rg. Sisema compaible deermiado La solució se obiee por el méodo de ramer. operado de la misma forma co los oros res deermiaes se obiee el mismo resulado susiuedo el valor de los deermiaes dode correspode se obiee la solució

9 . Resolver Solució rg ' rg ' ' Rago de. rg '. rg Para saber si iee rago se esudia el deermiae de la mari que por ser de orde se reduce a orde haciedo ceros e la cuara columa uiliado como pivoe el érmio a. ( ) rg de rg Rago de Pueso que rg rg. Para esudiar si la mari ampliada iee rago se orla el meor de orde res disio de cero. De los dos meores orlados uo es el deermiae de la mari de coeficiees que es cero el oro es el formado por la ª ªª ª columa. ( ) rg ' rg rg. Sisema compaible ideermiado. Sisema equivalee(s ) formado por la ecuacioes que coiee a los coeficiees del meor de orde res disio de cero e ese caso la ª ª ª. sisema de res ecuacioes cuaro icógias para resolverlo se rasforma ua variable(cualquiera) e parámero( ). de resolviedo por el méodo de ramer e fució de Solució R

10 . Resolver Solució rg ' rg ' ' Rago de rg Rago de De los meores orlados al meor de orde res que defie el rago de el úico que queda por esudiar es rg ' rg rg. Sisema compaible ideermiado. Sisema equivalee. Para resolver el sisema se rasforma la e u parámero se resuelve e fució de el mediae el méodo de ramer. ( ) R Solució RR. Resolver Solució rg ' rg ' Rago de. rg. rg Rago de Por dimesioes rg. Rg rg. Sisema compaible ideermiado. Para resolver el sisema se rasforma ua variable e parámero se resuelve e fució de él.

11 Resolviedo por ramer ( ) R Solució. Resolver Solució rg ' rg ' Rago de. rg Orlado ese meor se obiee rg Rago de la mari ampliada omado como referecia el meor solo queda por esudiar el meor orlado rg ' rg rg. Sisema compaible ideermiado co dos grados de ideermiació Sisema equivalee para resolverlo se coviere dos variables e parámero( µ) se resuelve e fució de ellos. µ µ µ µ µ µ µ µ µ R Solució µ µ µ

SISTEMAS, MATRICES Y DETERMINANTES

SISTEMAS, MATRICES Y DETERMINANTES .- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8 Méodos Numéricos - cap. 7. Ecuacioes Difereciales PVI /8 Ecuacioes Difereciales Ordiarias (EDO Ua Ecuació Diferecial es aquella ecuació que coiee difereciales o derivadas de ua o más fucioes. Ua Ecuació

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices... Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO DECRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació a u

Más detalles

ACELERACIÓN UNIVERSIDAD DE CARABOBO FACULTAS DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA DPTO. DISEÑO MECÁNICO Y AUTOMATIZACIÓN

ACELERACIÓN UNIVERSIDAD DE CARABOBO FACULTAS DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA DPTO. DISEÑO MECÁNICO Y AUTOMATIZACIÓN FCULTS DE INGENIERÍ PÁGIN: 5-1 de 16 INTRODUCCIÓN El esudio de las aceleracioes e los mecaismos ariculados coplaares se puede abordar ya sea por méodos aalíicos o por méodos gráficos. Ese capíulo se deermiará

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO CRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació e la maemáica

Más detalles

Regresión Lineal Simple

Regresión Lineal Simple REGRESIÓN LINEAL Regresió Lieal Simple Plaeamieo El comporamieo de ua magiud ecoómica puede ser explicada a ravés de ora F( Si se cosidera que la relació puede ser de ipo lieal, la formalizació vedría

Más detalles

Qué es la Cinética Química?

Qué es la Cinética Química? Tema 4. La velocidad de Cambio Químico I. Velocidad de reacció.. Ecuació de velocidad y orde de reacció. 3. álisis de los daos ciéicos: ecuacioes iegradas de ciéicas secillas. 4. Ciéicas complejas.. Velocidad

Más detalles

ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Enrique úñez Rincón 1

ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Enrique úñez Rincón 1 ALEPH SUB CERO SERIE DE DIVULGACIÓ ℵ 0 008 II ℵ 0 ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Erique úñez Ricó Los maemáicos, e lugar de simplemee uilizar u méodo que parece fucioar, quiere

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMS DE ECUCIONES LINELES Tem : SISTEMS DE ECUCIONES LINELES. Ídice:. Epresió mricil de u sisem de ecucioes lieles.. Méodos de resolució... Resolució por el méodo de l mri ivers... Méodo de Guss...

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

MATRICES 1. CONCEPTO DE MATRIZ

MATRICES 1. CONCEPTO DE MATRIZ MTRICES 1. CONCEPTO DE MTRIZ Ua mariz defiida sobre u cuero comuaivo K es ua ordeació recagular de elemeos a K e filas y columas, e la que cada elemeo a de la mariz esá siuado e la fila i y e la columa

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n =

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n = Hoa Problemas Aálisis II /9 85.- Sea la fució oliómica: N R Demosrar que: i ii iii iv Solució: Cosideremos la ideidad: R N. Derivado e ambos miembros reseco de mulilicado desués or se obiee: - Derivado

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

Tema 2: Sistemas. 2.1 Introducción

Tema 2: Sistemas. 2.1 Introducción Tema : Sisemas Tema : Sisemas. Iroducció U sisema respode co uas deermiadas señales a la acció de oras. x() sisema y ( ) = T x( ) Ejemplo Tiempo coiuo: sisema mecáico () dy b d y() T{ } { } d y() dy()

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

MS-1 Modelos de supervivencia Página 1 de 20

MS-1 Modelos de supervivencia Página 1 de 20 CURSO: - TEMA : Pricipales modelos de moralidad. Modelizació esocásica. Ley de De Moivre. Leyes de Dormoy y de Sag. Leyes de Gomperz y de Makeham. Oros modelos de moralidad. Esudiaremos aquí disios modelos

Más detalles

Supertriangular Subtriangular Diagonal Unidad

Supertriangular Subtriangular Diagonal Unidad MT. EMPRESRILES TE RESOLVEMOS LS PRIMERS DUDS L eorí de mrices es l que v porr l form operiv de resolver u iumerle cidd de ejercicios de Álger. Por odo lo que supoe eso, os vmos proporcior los coocimieos

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013 El Marge de Riesgo México Por: Pedro Aguilar B. paguilar@csf.gob.mx paguilar@ifiium.com.mx Sepiembre 2013 Coeido 1. Aspecos Geerales sobre Marge de Riesgo 2. La Problemáica 3. Plaeamieo de ua Posible Solució

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3 Pruebas de Acceso a Eseñazas Uiverarias Oiciales de Grado Maeria: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá coesar a ua de las dos opcioes propuesas A ób. Se podrá uilizar cualquier

Más detalles

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden PRÁCTICA 1 Sisemas elécricos de rimer y segudo orde Objeivo: Deermiar la resisecia iera de u geerador. Realizar medicioes de la cosae de iemo de circuios de rimer orde asabajas y de los arámeros de diseño

Más detalles

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos Méodos y écicas de iegració El siguiee ema sugerido para raar e clases es el méodo de iegració por pares veamos de dode surge y alguos ejemplos propuesos ( º ) Méodo de Iegració por pares:. dv u. v u =

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

Cinética Química. Objetivos. la velocidad de las reacciones químicas. los factores de los cuales depende la velocidad

Cinética Química. Objetivos. la velocidad de las reacciones químicas. los factores de los cuales depende la velocidad Ciéica Química Objeivos Esudiar la velocidad de las reaccioes químicas los facores de los cuales depede la velocidad los mecaismos a ravés de los cuales ocurre las reaccioes que se esudia plicacioes Síesis

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

6. Intervalos de confianza

6. Intervalos de confianza 6. Iervalos de cofiaa Curso 0-0 Esadísica Coceo de iervalo de cofiaa Se ha realiado ua ecuesa a 400 ersoas elegidas al aar ara esimar la roorció de voaes de u arido olíico.? Resulado Ecuesa Sí 0 ooros

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma CAPÍULO RES ANÁLISIS DE FOURIER IEMPO CONINUO Iroducció La represeació de la señal de erada a u sisema (eediedo como sisema u cojuo de elemeos o bloques fucioales coecados para alcazar u objeivo deseado)

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

Circuitos Eléctricos II Series de Fourier

Circuitos Eléctricos II Series de Fourier Circuios Elécricos II Series de Fourier Coeido. Fucioes Periódicas. Serie rigoomérica de Fourier 3. Compoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. Cálculo de los coeficiees

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO CAPÍTULO DOS SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO. Iroducció E ese capíulo se iroduce y discue varias propiedades básicas de los sisemas. Dos de ellas, la liealidad y la ivariabilidad e el iempo,

Más detalles

También podemos clasificar las ondas según el medio donde se propaguen:

También podemos clasificar las ondas según el medio donde se propaguen: FísicaGua MOVIMIENTO ONDULATORIO CONCEPTO DE ONDA: Ua oda es ua propagació de ua perurbació que se produce e u lugar deermiado e u momeo dado, ésa se rasmie e ua o arias direccioes e el espacio, se eiede

Más detalles

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012 Tema 2: Aálisis gráfico y esadísico de relacioes Uiversidad Compluese de Madrid Febrero de 202 Aálisis gráfico y descripivo de ua variable (I) Daos de series emporales: Rea per c pia EEUU Cosumo per c

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre: IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA Tema Cálculo de primiivas Maemáicas II º Bachillerao TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es ua primiiva de f() si F () = f() Ejemplos: fució:

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad Uiversidad Carlos III de Madrid 3.4 Sisemas LIT SLIT: Sisemas Lieales e Ivariaes co el Tiempo Liealidad Supogamos que la señal se puede expresar como ua combiació lieal de señales más simples ( x i ()

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

NORMA DE CARACTER GENERAL N

NORMA DE CARACTER GENERAL N NORMA DE CARACTER GENERAL N REF.: MODIFICA EL TÍTULO III DEL LIBRO IV, SOBRE VALORIZACIÓN DE LAS INVERSIONES DEL FONDO DE PENSIONES Y DEL ENCAJE, DEL COMPENDIO DE NORMAS DEL SISTEMA DE PENSIONES. Saiago,

Más detalles

CAPITULO 2. La importancia básica de pronóstico es de ser un eslabón que se une a la etapa de Planificación y Control de un sistema.

CAPITULO 2. La importancia básica de pronóstico es de ser un eslabón que se une a la etapa de Planificación y Control de un sistema. CAPITULO PRONOSTICOS Hacer u proósico, es hacer u proceso de esimació de u acoecimieo fuuro, a parir de ua iformació de ipo hisórica, ormalmee de ipo maemáica, y/o de ipo referecial de apreciacioes, esimacioes

Más detalles

Cómo medir la precisión de los pronósticos?

Cómo medir la precisión de los pronósticos? Cómo medir la precisió de los proósicos? Por Tomás Gálvez Maríez Presidee y Direcor de CELOGIS Educaio Parer de ENAE Busiess School A la fecha de la publicació de ese documeo used podrá ecorar, e la mayoría

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid 2013

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid 2013 Tema 2: Aálisis gráfico esadísico de relacioes Uiversidad Compluese de Madrid 2013 Aálisis gráfico descripivo de ua variable (I) Daos de series emporales: Evolució aual de la rea el Cosumo per cápia e

Más detalles

ECUACIONES DIFERENCIALES PARCIALES

ECUACIONES DIFERENCIALES PARCIALES TEMA 4 ECUACIONES DIFERENCIAES PARCIAES 4 INTRODUCCIÓN E ese ema se verá procedimieos para resolver ecuacioes e derivadas parciales que surge co frecuecia e prolemas dode aparece viracioes, poeciales y

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES UNIVERSIDAD AUTÓNOMA CHAPINGO PREPARATORIA AGRÍCOLA ÁREA DE MATEMÁTICAS CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES f : R R ( ) h p AUTOR Vícor Rafael Valdovios Chávez Ooño de AUTOR Vícor Rafael Valdovios

Más detalles

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN PLANEACIÓN Y CONTROL E LA PROUCCIÓN GRUPO: 0 M. I. Silvia Herádez García M. I. Susaa Casy Téllez Balleseros TEMARIO: I. Iroducció. II. Programació y corol de la producció. III. Balaceo de líea. IV. Sisemas

Más detalles

CONTROL DE ASISTENCIA A EXAMEN

CONTROL DE ASISTENCIA A EXAMEN Uiversidad de Las Palmas de Gra Caaria Escuela Técica Superior de Igeieros de Telecomuicació Teoría de la Señal - Eame Covocaoria Ordiaria: 3 de febrero de 2009 CONTROL DE ASISTENCIA A EXAMEN La firma

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

Fourier. Series de Fourier

Fourier. Series de Fourier Series de Fourier. Fucioes Periódicas oeido. Serie rigoomérica de Fourier 3. ompoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. álculo de los coeficiees de la Serie de Fourier

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

Volumen I TEORÍA DE POLINOMIOS

Volumen I TEORÍA DE POLINOMIOS Volume I ÁLGEBRA CAÍTULO TEORÍA DE ARENDIZAJES ESERADOS: Ideifica las epresioes maemáicas, sus variables y cosaes. Efecúa operacioes co poliomios. Ideifica los poliomios especiales. EXRESIONES MATEMÁTICAS

Más detalles

LECCIÓN N 9 CÁLCULO CINETOSTÁTICO DE MECANISMOS PLANOS 9.1 FUERZAS DE INERCIA DE LOS ESLABONES DE LOS MECANISMOS PLANOS

LECCIÓN N 9 CÁLCULO CINETOSTÁTICO DE MECANISMOS PLANOS 9.1 FUERZAS DE INERCIA DE LOS ESLABONES DE LOS MECANISMOS PLANOS LEIÓN N 9 ÁLULO INETOSTÁTIO DE MEANISMOS PLANOS 9. UERZAS DE INERIA DE LOS ESLAONES DE LOS MEANISMOS PLANOS omo se sabe del curso de mecáica, e el caso más geeral odas las fuerzas de iercia del eslabó

Más detalles

1. Discutir según los valores del parámetro k el sistema

1. Discutir según los valores del parámetro k el sistema . Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Resolución numérica de problemas de valor inicial (versión preliminar)

Resolución numérica de problemas de valor inicial (versión preliminar) (versió prelimiar) Cocepos iiciales.- Sea la ecuació diferecial de primer orde co las codició iicial x = f(,x) x( 0 ) = x 0 Para resolverla uméricamee será ecesario previamee comprobar si hay solució y

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

Para las comparaciones hay que tener en cuenta dos aspectos importantes:

Para las comparaciones hay que tener en cuenta dos aspectos importantes: Esadísica Descriiva: Números Ídices Faculad Ciecias Ecoómicas y Emresariales Dearameo de Ecoomía Alicada Profesor: Saiago de la Fuee Ferádez NÚMEROS ÍNDCES Los úmeros ídices so ua medida esadísica que

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción CAPÍTULO UNO SEÑALES Y SISTEMAS. Iroducció Los cocepos de señales y sisemas surge e ua gra variedad de campos y las ideas y écicas asociadas co esos cocepos juega u papel imporae e áreas a diversas de

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER.

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER. EJERCICIOS DE FORMAS DE ONDA DESARROLLOS EN SERIE DE FOURIER. EJERCICIO. Hallar el valor eficaz,, e las foras e oa repreaas e la figura. RESOLUCIÓN: Los valores eficaces e las res foras e oa so iguales.

Más detalles

José Morón SEÑALES Y SISTEMAS

José Morón SEÑALES Y SISTEMAS SEÑALES Y SISTEMAS José Moró SEÑALES Y SISTEMAS Uiversidad Rafael Urdaea Auoridades Recorales Dr. Jesús Esparza Bracho, Recor Ig. Maulio Rodríguez, Vicerrecor Académico Ig. Salvador Code, Secreario Lic.

Más detalles

México. Benítez, Alberto La forma triangular de la matriz de Leontief Economía: Teoria y práctica, núm. 30, enero-junio, 2009, pp.

México. Benítez, Alberto La forma triangular de la matriz de Leontief Economía: Teoria y práctica, núm. 30, enero-junio, 2009, pp. Ecoomía: Teoria y prácica ISSN: 088-8250 eyp@xaum.uam.mx Uiversidad Auóoma Meropoliaa Uidad Izapalapa México Beíez, Albero La forma riagular de la mariz de Leoief Ecoomía: Teoria y prácica, úm. 30, eero-juio,

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles