EJERCICIOS RESUELTOS DE: Ecuaciones Diferenciales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS RESUELTOS DE: Ecuaciones Diferenciales"

Transcripción

1 EJEROS RESUETOS DE: Euaions Difrnials AADEMA DE MATEMÁTAS ESUEA DE NGENERÍA EN OMPUTAÓN Y EETRÓNA UNVERSDAD DE A SAE BAJO

2 EUAONES DERENAES APTUO - Slionar nr las siguins uaions las qu son linals, sablr la variabl dndin rsolvrlas a d d, b ϑ ϑ ρ ρ ρ θ ρ, d d inal s No d d d, d d d sn i i os, sn i - d di f inal s No df d g d d, h inal s No d s ds s os i inal s No d d d

3 j sn rsn sn r d sn g r dr θ θ θ θ θ θ, k d d ln, l inal s No ' m inal s No d d d n d d d d d d, φ φ φ φ φ φ φ φ φ o inal s No d d os o g os os, os ' q, d d r arg arg g ar d g ar d,

4 s 5 d d No s inal sn d [ os s g] d,s g s g - D las uaions qu qudn dl roblma rsolvr las qu rnn al io Brnoulli d d υ f i l o s d df 5 υ d d υ ' υ 5 d 5 d d υ 5 υ 5 os sn os d d - Rsolvr las uaions h m qu son las qu qudan dl roblma s s s ds s os d d d h m sn sn d Rsolvr: on la ondiión ara

5 a ' d d d d d d d d μ uión: b E ERsn Esn X f Ri X d Esn Ri di Ri Esn d di Esn Ri d di d os μ dond,r,e son onsans, on la ondiión i ara uión: R Rsn R E i os Rsolvr a os z,mlando sn os z z dz d z d d z z d d z d d z z d d sn d d

6 d z z d b d z z d d d z ' d dz z z d d v v d d v v d d d d d v v d d d v v d dv v v v d d dv v v v sol a sn 8 sol b sol sol d APTUO 8, mlando mlando z v -Un muhaho s muv n una lina ra d modo qu su vloidad d n a su disania rso d un uno fijo d la ra si r 5 uando hallar la uaión d movimino 5 -halla l imo nsario ara qu una anidad d dinro aumn al dobl al 5% or año inrs omuso oninuo sugrnia: d d} 5 dond s la suma al abo d años años -l radio s dsomon a una vloidad roorional a la anidad rsn Si la ora miad d la anidad original dsaar n años hallar l ornaj d rdida d años %

7 5- n un ulivo d lvadura la anidad d frmno aivo r a una vloidad roorional a la anidad rsn Si s dulia la anidad n hora uanas vs ud srars qu s nga la anidad original dsaar n años hallar l ornaj d rdida n años 7vs -si uando la mraura d air s s nfría una susania dsd hasa n minuos hallar la mraura dus d minuos 5 7- Un anqu onindl d salmura obnida disolvindo kg d sal n agua s inrodu n l anqu a una vloidad d dlmin agua qu onin kg d sal or daliro la mzla onsrvada homogna mdian agiaión sal a una vloidad d dlmin halla la anidad d sal n l anqu al abo d una hora sugrnia d d 7 8- Hallar l imo qu s nsia ara vaiar un anqu d sion uadrada d m dm d rofundidad, a ravz d un agujroirular d dm d radio raiando n l fondo suongas, omo n l roblma, v 8 h dm sol 7 min sg - Una ard d ladrillo k in un ssor d m Si l arámro inrior sa a l rior a, hallar la mraura n la ard omo una funion d la disania dl arámro rior la rdida d alor or dia a ravz d un mro uadrado T al - Un hombr su mbaraión san lb Si la furza jrida rmando n la dirion dl movimino s d lb si la rsisnia n lb al movimino s l dobl d la vloidad issg, hallar la vloidad 5 sg dsués d qu la mbaraión haa mzado a movrs 7, issg msg - Hallar l imo qu s nsia ara vaiar un anqu ilíndrio d radio 8dm alura dm a ravés d un orifiio rdondo d radio dm siuado n l fondo dl anqu, sabindo qu or un orifiio d s io sal l agua a una vloidad aroimada v 8 h dm, dond h s la alura dl agua n l anqu, sg S ud asimilar l volumn d agua qu sal or sgundo a un ilindro d radio alura v Por lo ano, l volumn qu sal al abo d d sgundos s dm Π 8 h d 8 h d Π

8 Dsignando or dh la orrsondin aída d nivl d agua n l anqu, l volumn d agua qu sal ambién s ud dar or Π ugo Π 8 h d Πdh dh dh d dond d 8 h h ngrando Enr, h, h d dh, h 8 h 8 sg hmin 5- Sgún la l d Nwon d nfriamino, la vloidad a qu s nfría una susania al air libr s roorional a la difrnia nr la mraura d la susania la dl air Si la mraura dl air s la susania s nfría d a 7 n 5 minuos uándo srá la mraura d la susania? T s la mraura d la susania a minuos dt d k T dt T kd 7 5 dt k d, T n n 7-5k n 7 5k n 7 5 dt k T d 5n7 n n7 k, 5k 5n7, 5min 5 - Bajo iras ondiions la anidad onsan Q aloríassgundo d alor qu asa a ravés d una ard sá dada or dt Q ka d Dond k s la onduividad dl marial, A m s la surfii d una ara s la ard rndiular a la dirión dl flujo T s la mraura a m d sa ara, d forma qu T disminu uando aumna Hallar l numro d alorías or hora dl alor qu asa a ravés d m d la ard d una habiaión frigorífia d 5 m d ssor k,5, si la mraura d la ara inrior s d -5 Sa la disania a qu sá d la ara rior un uno inrior d la ard 5 5 Q Q 8kA 8,5 al dt d, 8 5, Q ka ka 5 5 sg 75

9 APTUO d d d d d d

10 K K K d d d d d d d d - d d d d d d d d,, - - Y - Y -

11 - Y 5-7 Y 5 u, 7 dvd u dud 7 dvd 5-5, d d d d d d 8 d d

12 d d d d d d d d d d d d ln ln ln - Y Drivando rso P d d -ƒ d - X - -, - - Y ln ln

13 X ln ln, - Y Drivamos rso a, d - d d, d d d ngrando d D ½ - - X -5, -5

14 APTUO nvsigar las soluions singulars los lugars Gomérios raños - a soluión s la siguin: Para saar la rimiiva n s aso s susiu n la Euaión d lairau Por lo qu l rsulado s l siguin: a uión Singular s la siguin: En s aso ara odr saar la rimiiva s hizo l siguin rodimino * k k k k k k v d dv d dv v d dv d dv d dv k d dv d dv v k k

15 a soluión singular s la siguin: d d d d Prim, SS, Rsolvindo d d

16 Prim SS, d d d - d - uion Prim, l rroso, ninguna

17 7- uion Prim, s s, l rroso, l d h, 8-P 8,, P 8

18 f - f - f : X - -

GUÍA Nº 04. son constantes, estamos en presencia de una EDO lineal de segundo orden, que será homogénea si 0 y no homogénea en caso contrario.

GUÍA Nº 04. son constantes, estamos en presencia de una EDO lineal de segundo orden, que será homogénea si 0 y no homogénea en caso contrario. Dirión d Formaión Gnral Programa d Mamáia Cálulo II GUÍA Nº 04 Euaions Difrnials Linals d Sgundo Ordn Rordamos qu una EDO linal d ordn n n gnral pud sribirs omo: n n d d d an a... a a0 g n n n d d d Si

Más detalles

EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES. x y = 1. π 2 3. sen x cos xdx (Septiembre Ex. Or.)

EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES. x y = 1. π 2 3. sen x cos xdx (Septiembre Ex. Or.) TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mail: imozas@l.und.s hp://lfonica.n/wb/imm EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES.- Razon y obnga qu la ingral ulriana (p) (gamma d p) para p

Más detalles

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior Unidad : Euaions Difrnials Linals d Ordn Surior Ta.a : Método d Cofiints Indtrinados En sta sión studiaros uno d los dos étodos ara rsolvr EDL No- Hooénas d ordn aor o iual a dos. Ezaros on las EDLNH d

Más detalles

La ecuación diferencial ordinaria lineal de primer y segundo orden

La ecuación diferencial ordinaria lineal de primer y segundo orden La uaión ifrnial orinaria linal rimr sguno orn José Graro Dionisio Romro Jiménz Aamia Mamáias l Daramno Ingniría n Comuniaions Elrónia Esula Surior Ingniría Mánia Eléria IPN Méxio Rsumn. En s rabajo s

Más detalles

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Cálculo Vectorial Tarea 5

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Cálculo Vectorial Tarea 5 Integrales Múltiples álulo Vetorial Tarea 5 1. Evalúe las siguientes integrales: 1.1 0 1 4 ( 1 8 dd 1. 1 0 sin 1. 0 0 (Res. 57 ( 1 dd (Res. 0/ (1 os (Res. dd 1 1 1.4 os( sen( 0 (Res. dd 7 9. Utilie una

Más detalles

Tema 2: Modelos de concentración de contaminantes atmosféricos. 2.1 Modelos de celda fija z. c = Σ c i f. c e = b + q L / u H

Tema 2: Modelos de concentración de contaminantes atmosféricos. 2.1 Modelos de celda fija z. c = Σ c i f. c e = b + q L / u H Tma : Modlos d onnraión d onaminans amosférios. Modlos d lda fija saionaria no saionaria. Modlos d disprsión: modlo gaussiano para onaminans qu no raionan.3 Inorporaión d inéia d primr ordn n l modlo gaussiano.

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

2.6 SOLUCION DE SISTEMAS DE ECUACIONES DIFERENCIALES CON COEFICIENTES CONSTANTES MEDIANTE EL METODO DE LOS OPERADORES

2.6 SOLUCION DE SISTEMAS DE ECUACIONES DIFERENCIALES CON COEFICIENTES CONSTANTES MEDIANTE EL METODO DE LOS OPERADORES Euaions difrnials Profsor Bogar Ménd /7 6 SOLUCION E SISTEMAS E ECUACIONES IFERENCIALES CON COEFICIENTES CONSTANTES MEIANTE EL METOO E LOS OPERAORES En sa sión aprndrmos a rsolvr sismas d uaions difrnials

Más detalles

7.6 SEÑOREAJE E HIPERINFLACIÓN

7.6 SEÑOREAJE E HIPERINFLACIÓN Ecuacions qu componn l modlo: a) Equilibrio n l mrcado d dinro: M P aπ () = +, dond π π. b) Expcaivas adapaivas: c M P d + + c) Crcimino monario: i + b + b b i i= 0 () π π = ( π π ) π = ( ) π. M (3) +

Más detalles

Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la dirección y magnitud de la corriente en el alambre horizontal entre a y e.

Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la dirección y magnitud de la corriente en el alambre horizontal entre a y e. 0.1. Ciruito. Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la direión y magnitud de la orriente en el alambre horizontal entre a y e. b R 2R d ε 4R 3R 2ε a e Soluión: Dibujemos las orrientes Figura

Más detalles

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1 En los problmas complt la tabla siguint para cada función. d d DIVISION DE INGENIERIA ELECTRONICA.. Rumbo al amn d rcupración a Part: CALCULO INTEGRAL Ejrcicios Difrncials Dfinición. Faus6 Supóngas qu

Más detalles

2. Definición de Cadena de Markov Propiedad Markoviana y estacionariedad. 3. Matriz de Probabilidades de transición y Diagrama de estados.

2. Definición de Cadena de Markov Propiedad Markoviana y estacionariedad. 3. Matriz de Probabilidades de transición y Diagrama de estados. SESIÓN a CAENAS E ARKOV INTROUCCIÓN Noción d rocso Esocásico finición E asociados a un sisma finición d Cadna d arov roidad aroviana y sacionaridad 3 ariz d robabilidads d ransición y iagrama d sados 4

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

GUÍA PARA EL EXAMEN A TÍTULO DE SUFICIENCIA DE ECUACIONES DIFERENCIALES MAYO 2010, ACADEMIA DE MATEMÁTICAS IE, ICA, ISISA

GUÍA PARA EL EXAMEN A TÍTULO DE SUFICIENCIA DE ECUACIONES DIFERENCIALES MAYO 2010, ACADEMIA DE MATEMÁTICAS IE, ICA, ISISA GUÍA PARA EL EXAMEN A TÍTULO DE SUFICIENCIA DE ECUACIONES DIFERENCIALES MAYO 00, ACADEMIA DE MATEMÁTICAS IE, ICA, ISISA I. ECUACIONES DIFERENCIALES DE PRIMER ORDEN VARIABLES SEPARABLES Para a ión proporiona

Más detalles

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS:

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: TEMAS: - Demostrar la euaión de la tensión de torsión, su apliaión y diseño de miembros sometidos a tensiones de torsión 5.1. Teoría de torsión simple 5..

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO

ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO ORDEN. RESOLUCIÓN REDUCIÉNDOLA A UNA ECUACIÓN DIFERENCIAL ORDINARIA DE PRIMER ORDEN Miguel Angel Nastri, Osar Sardella miguelangelnastri@ahoo.om.ar, osarsardella@ahoo.om.ar

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones Raccions Rrsibls Raccions Parallas o Compiias Raccions Conscuias Raccions n Cadna Ramificada. Explosions Mcanismos d Racción Raccions Rrsibls Para la racción A _ B dond ano la racción dirca como la inrsa

Más detalles

Vector de Poynting. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA CAMPOS Y ONDAS

Vector de Poynting. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA CAMPOS Y ONDAS Vector de Poynting Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA H J E S P µ ε d dv dv t 2 2 2 2 ( E H) S+ ( E J) = H + E SC Vector de Poynting Onda Plana Progresiva,

Más detalles

Universidad Nacional de Ingeniería P.A Facultad de Ingeniería Mecánica 21/07/15 DACIBAHCC EXAMEN SUSTITUTORIO DE METODOS NUMERICOS (MB536)

Universidad Nacional de Ingeniería P.A Facultad de Ingeniería Mecánica 21/07/15 DACIBAHCC EXAMEN SUSTITUTORIO DE METODOS NUMERICOS (MB536) Unirsidad aional d Ingniría P.A. 05- Faultad d Ingniría Mánia /07/5 Probla EXAME SUSTITUTORIO DE METODOS UMERICOS (MB536) SOLO SE PERMITE EL USO DE UA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMETE

Más detalles

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior. Tema 2.1 : Definiciones y Terminología

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior. Tema 2.1 : Definiciones y Terminología 7 Unidad : Euaions Dirnials inals d Ordn Surior Tma. : Diniions Trminología a Euaión Dirnial inal d o rdn No Homogéna tin la orma: a d d d d a a g uaión EDN H a Euaión Dirnial inal d o rdn Homogéna Asoiada

Más detalles

DEFINICIONES DEFINICIONES

DEFINICIONES DEFINICIONES DEFINICIONES Líneas de corriente: línea imaginaria, tangente en cada punto al ector elocidad de la partícula que en un instante determinado pasa por dicho punto. Las líneas de corriente son las enolentes

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas Ecacions difrncials Ejrcicios d Ecacions Difrncials Homogénas Rdcibls a Homogénas. arsolvr: ' r b Drminar para q valors d r in solcions d la forma la cación ''' '' ' 0 Solción a Hacmos l cambio: ' ' Rmplaando

Más detalles

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular. Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO 5 Apliaiones de ED de segundo orden 5.. Vibraiones amoriguadas libres Coninuando el desarrollo del esudio de las vibraiones, supongamos que se agrega ahora un disposiivo meánio (amoriguador) al

Más detalles

SISTEMAS ABIERTOS. José Agüera Soriano

SISTEMAS ABIERTOS. José Agüera Soriano SISTEMAS ABIERTOS José Agüera Soriano 0 José Agüera Soriano 0 SISTEMAS ABIERTOS ECUACIONES FUNDAMENTALES DE UN FLUJO VELOCIDAD DEL SONIDO EN UN GAS PROCESOS DE DERRAME ESTRANGULACIÓN DE UN FLUJO TRANSPORTE

Más detalles

PROBLEMAS DEL TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA

PROBLEMAS DEL TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA ROBLEMAS DEL TEOREMA UNDAMENTAL DE LAS INTEGRALES DE LÍNEA. Indpndncia dl camino n una ingal d lína. alcula l abajo llvado a cabo po l campo d ua al llva un objo dsd A hasa B siguindo a un camino compuso

Más detalles

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2

Más detalles

Matemáticas III Andalucía-Tech. Integrales múltiples

Matemáticas III Andalucía-Tech. Integrales múltiples Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

La relación que existe entre un cambio de elevación h, en un líquido y un cambio en la presión, Δp, p h [Kg/m 2 ]

La relación que existe entre un cambio de elevación h, en un líquido y un cambio en la presión, Δp, p h [Kg/m 2 ] II.3. DESRROLLO DE L RELCION PRESION-ELEVCION es: La relaión que existe entre un ambio de elevaión h, en un líquido un ambio en la resión, Δ, h [Kg/m ].3. Donde γ es el eso eseífio del líquido, esta viene

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

flujo irreversible de energía que se aleja de la fuente transportada por dichas ondas.

flujo irreversible de energía que se aleja de la fuente transportada por dichas ondas. Radiación Qué es radiación? ONDAS ELECTROMAGNÉTICAS Se genera una OEM debido a configuraciones de cargas aceleradas y corrientes variables. ONDAS ACÚSTICAS Se genera una onda acústica propagativa debido

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

FÍSICA II. Guía De Problemas Nº4:

FÍSICA II. Guía De Problemas Nº4: Univrsidad Nacional dl Nordst Facultad d Ingniría Dpartanto d Físico-Quíica/Cátdra Física II FÍSIC II Guía D roblas Nº4: rir rincipio d la Trodináica 1 ROBLEMS RESUELTOS 1- S dsa calcular l trabajo ralizado

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas

Más detalles

7.1. CAMPOS VECTORIALES EN DEFINICIONES

7.1. CAMPOS VECTORIALES EN DEFINICIONES 7 n 7.. AMPO VETOIALE EN 7.. 7.. DEFINIIONE 7.. 7.. POPIEDADE 7.. 7.4. AMPO VETOIALE 7.4. ONEVATIVO 7.5. INTEGALE DE LÍNEA 7.6. TEOEMA DE GEEN 7.7. INTEGAL DE LÍNEA PAA EL ÁEA DE UNA EGIÓN PLANA 7.8. INTEGALE

Más detalles

TOBERAS Y DIFUSORES. José Agüera Soriano

TOBERAS Y DIFUSORES. José Agüera Soriano TOBERAS Y DIFUSORES José Agüera Soriano 0 José Agüera Soriano 0 VELOCIDAD DEL SONIDO EN UN GAS κ s d d s a κ s d d s olumen eseífio κ s oefiiente de omresibilidad isoentróio d d s a K K gas erfeto a R

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 5. Divergencia y rotacional. Ingeniero de Telecomunicación

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 5. Divergencia y rotacional. Ingeniero de Telecomunicación I. Fundamentos matemá 5. Divergencia y rotacional Gabriel Cano Gómez, G 2009/10 Dpto. Física F Aplicada III (U. Sevilla Campos Electromagné Ingeniero de Telecomunicación I. Fundamentos matemá 1. Coordenadas

Más detalles

Coordenadas Generalizadas en el Espacio

Coordenadas Generalizadas en el Espacio Capítulo 3 Coordenadas Generalizadas en el Espacio Las coordenadas cartesianas usuales en R 3 pueden verse también como un sistema de tres familias de superficies en el espacio, de modo que cada punto

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

PROBLEMAS DE FLUIDOS ( )

PROBLEMAS DE FLUIDOS ( ) ROBLEMA DE FLUIDO (-) riniio de Arquímedes FLUIDO. Un sólido metálio se susende de un dinamómetro y se mide su eso, que resulta ser de.5 N. eguidamente se somete a las siguientes oeraiones:. El sólido

Más detalles

Momentos de Inercia de cuerpos sólidos: EJE. Varilla delgada. Disco. Disco. Cilíndro. Esfera. Anillo I = MR

Momentos de Inercia de cuerpos sólidos: EJE. Varilla delgada. Disco. Disco. Cilíndro. Esfera. Anillo I = MR 91 Momentos de Ineria de uerpos sólidos: EJE Varilla delgada 1 I = ML 1 Diso 1 I = M Diso 1 I = M 4 ilíndro 1 I = M Esfera I = M 5 Anillo I = M 9 Observaión: Los momentos de ineria on respeto a ejes paralelos

Más detalles

BI_UII Más ejemplos de construcción de una segunda solución a partir de otra ya conocida (secc ) 469

BI_UII Más ejemplos de construcción de una segunda solución a partir de otra ya conocida (secc ) 469 BI_UII Más jmplos d onstruión d una sgunda soluión a partir d otra a onoida (s..6.) 69 Apéndi BI_UII Más jmplos d onstruión d una sgunda soluión a partir d otra a onoida. (s..6.) Ejmplo BI. Sindo soluión

Más detalles

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar:

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar: Pensamiento lgebraio Temas que debe dominar: GUÍ DE PR LOS SPIRNTES L MME-06 Definiión, operaiones y propiedades de: Números Naturales Números Enteros Números raionales Números irraionales Números omplejos

Más detalles

MODELADO CON ECUACIONES DIFERENCIALES PROBLEMAS RESUELTOS

MODELADO CON ECUACIONES DIFERENCIALES PROBLEMAS RESUELTOS UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR UNIDAD DE ESTUDIOS BÁSICOS DEPARTAMENTO DE CIENCIAS ASIGNATURA: MATEMÁTICAS IV Prof. José Gregorio Páez Veraciera Úlima acualización: 0-09-007 MODELADO CON ECUACIONES

Más detalles

Ecuaciones de Máxwell y ondas electromagnéticas

Ecuaciones de Máxwell y ondas electromagnéticas Zero Order of Magnitude ZOoM)-PID 13-28 Euaiones de Máxwell y ondas eletromagnétias 1. Estímese la intensidad y la potenia total de un láser neesario para elevar una pequeña esfera de plástio de 15 µm

Más detalles

Contactores TeSys. Referencias 5. Bobinas en corriente alterna para contactores tri o tetrapolares TeSys d

Contactores TeSys. Referencias 5. Bobinas en corriente alterna para contactores tri o tetrapolares TeSys d Referencias 5 537496 Para contactores a LC1 D09...D38 y LC1 DT0 DT40 Llamada (cos ϕ = 0,75) 70 VA. Mantenimiento (cos ϕ = 0,3) 50 Hz: 7 VA, 60 Hz: 7,5 VA. Campo de funcionamiento (θ y 60 C): 50 Hz: 0,8

Más detalles

Tema 5. Geometría de masas 1.

Tema 5. Geometría de masas 1. Tema 5. Geometría de masas. Profesorado Grupo A: María Tirado Miranda Grupo B: Jorge Portí Durán Grupo : Artur cmitt Tema 5. Geometría de masas. Material elaorado por Juan Francisco Gómez opera. Tema 5.

Más detalles

El campo magnético de las corrientes estacionarias

El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Introducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

Tema 9. Modelos de equilibrio de cartera

Tema 9. Modelos de equilibrio de cartera Tma 9. Modlos d quilibrio d carra Caracrísicas gnrals En la drminación dl ipo d cambio no sólo incid l mrcado monario: ambién l mrcado d bonos y l mrcado d bins No xis susiuibilidad prca nr los acivos

Más detalles

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la

Más detalles

() t ( )exp( ) 2. La transformada de Fourier

() t ( )exp( ) 2. La transformada de Fourier 1 x d La ransormada d ourr x d La ransormada d ourr Sa una uncón localmn ngrabl cuya ngral valor absoluo sa acoada n R. S dn su ransormada d ourr como: 1 d Esas xrsons nos rmn calcular la xrsón domno d

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f(

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f( Modlo Opción A Ejrcicio º Sa f : (, ) R la función dfinida por f() Ln() (Ln dnota la función logarito npriano). (a) [ 5 puntos] Dtrina los intrvalos d crciinto d dcrciinto los tros rlativos d f (puntos

Más detalles

PAU Movimiento Vibratorio Ejercicios resueltos

PAU Movimiento Vibratorio Ejercicios resueltos PU Moviiento Vibratorio jeriios resueltos 99-009 PU CyL S995 ley Hooke alitud y freuenia Colgado de un soorte hay un resorte de onste = 0 N/ del que uelga una asa de kg. n estas irunsias y en equilibrio,

Más detalles

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

Problemas Resueltos. 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 =

Problemas Resueltos. 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 = Problemas Resueltos 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 T (, ) =, donde T está medida en grados centígrados,,z en metros. 1+ + + z En qué dirección

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

Mecánica estadística de Maxwell-Boltzman. (resumen)

Mecánica estadística de Maxwell-Boltzman. (resumen) Mcánica stadística d Maxwll-oltzman (rsumn) Química Física dl stado Sólido U M 2 0 0 4 0 5 Luis Sio Contnidos Mcánica stadística (Maxwll-oltzman) Colctivo canónico Cálculo d las robabilidads Función d

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

Simulación de Series Temporales: Una Aplicación al Precio del Petróleo

Simulación de Series Temporales: Una Aplicación al Precio del Petróleo 1 Simulación de Series Temporales: Una Aplicación al Precio del Petróleo Dr. Ricardo A. Queralt (CUNEF) Lorena Zaragozá (CEPSA) 2 INDICE 1 Introducción 2 Modelos de Series Temporales y @Risk 3 Precios

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA CURSO: Maemáica Inermedia 3 JORNADA: SEMESTRE: Mauina er. Semesre AÑO: 205 TIPO DE EXAMEN: NOMBRE DEL AUXILIAR: NOMBRE

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

Electromagnetismo II. Semestre: TAREA 6 Dr. A. Reyes-Coronado

Electromagnetismo II. Semestre: TAREA 6 Dr. A. Reyes-Coronado Electromagnetismo II Semestre: 2015-1 TAREA 6 Dr. A. Reyes-Coronado Por: Pedro Eduardo Roman Taboada 1.- Problema: (10pts) Un modelo primitivo para el átomo consiste en un núcleo puntual con carga +q rodeada

Más detalles

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Electromagnetismo Andrés Cantarero Sáez Curso 25-26 Grupo C ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides Reursión y Relaiones de Reurrenia UCR ECCI CI-04 Matemátias Disretas M.S. Krysia Daviana Ramírez Benavides Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos . Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral

Más detalles

La integral Indefinida MOISES VILLENA MUÑOZ

La integral Indefinida MOISES VILLENA MUÑOZ . DEFINIIÓN. TÉNIAS DE INTEGRAIÓN.. FORMULAS.. PROPIEDADES.. INTEGRAIÓN DIRETA.. INTEGRAIÓN POR SUSTITUIÓN.. INTEGRAIÓN POR PARTES..6 INTEGRALES DE FUNIONES TRIGONOMÉTRIAS..7 INTEGRAIÓN POR SUSTITUIÓN

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 3-4. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema : Series. Problema. Halle la representación en serie de McLaurin

Más detalles

PROBLEMAS RESUELTOS. a. La potencia útil. b. El par motor. W t d. P útil P F

PROBLEMAS RESUELTOS. a. La potencia útil. b. El par motor. W t d. P útil P F ROBLEMAS RESUELTOS El moor de n aomóvil sminisra na poenia de 90 C a 5000 r.p.m. El vehílo se enenra sbiendo na pendiene, por lo qe iene qe vener na ferza de 1744,5 N en la direión del movimieno. La ransmisión

Más detalles

RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN

RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN SEMANA 1 POTENCIACIÓN Y RADICACIÓN 1. Si l numral aann s un cuadrado prfcto; Calcul la suma d cifras d su raíz cuadrada? A) 15 B) 1 C) 19 D) 1 E) 1 aann K 11 aann difrncia s cro; ntoncs s múltiplo d 11

Más detalles

UNIVERSIDAD DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO Seleividad ndaluía. Maemáias pliadas a las ienias Soiales II. JUNIO 5. UNIVERSIDD DE NDLUÍ PRUE DE ESO L UNIVERSIDD URSO 4-5 MTEMÁTIS PLIDS LS IENIS SOILES II Insruiones: EJERIIO a) Duraión: hora y minuos.

Más detalles

FUNCIONES EXPONENCIAL Y LOGARÍTMICA TRANSFORMACIONES ABACOS Prof : Sergio Weinberger. 2 3x. El número e

FUNCIONES EXPONENCIAL Y LOGARÍTMICA TRANSFORMACIONES ABACOS Prof : Sergio Weinberger. 2 3x. El número e NOMBRE P 6º I 8 FUNCIONES EXPONENCIAL Y LOGARÍTMICA TRANSFORMACIONES ABACOS Pro : Srgio Winbrgr MATEMÁTICA A Lico: Nº NOCT. Rsolvr : a 44 b d 8. 4. 5 5 c 6. 6 Rsolvr : a 5 5 4 b 5 > 4 El númro n "El númro

Más detalles

Θ(estas fórmulas se usan cuando no se sabe el tiempo)

Θ(estas fórmulas se usan cuando no se sabe el tiempo) FORMULARIO DE FÍSIA INEMÁTIA M.R.U M.R.U.A. e = = 0 ± a e = 0 ± a MOIMIENTO DE AÍDA LIBRE = 0 ± a e Θ Moimieno acelerado g > 0 (posiia) Moimieno decelerado g < 0 (negaia) Θ(esas fórmulas se usan cuando

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

COORDINACION ACADEMICA UNIDAD QUERETARO. Problemas representativos para el examen de ingreso a doctorado. Termodinámica

COORDINACION ACADEMICA UNIDAD QUERETARO. Problemas representativos para el examen de ingreso a doctorado. Termodinámica UNIDAD QUEREARO roblemas representativos para el examen de ingreso a doctorado ermodinámica Equilibrio térmico, ecuaciones de estado y trabajo 1.- Los sistemas 1 y son sales paramagnéticas con coordenadas

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauhy Fórmula integral de Cauhy. Si una funión f es analítia en una región que ontiene a urva simple errada y a su interior, entones para ada punto z 0 enerrado por, dz = 2πi f(z 0

Más detalles

Conductividad en presencia de campo eléctrico

Conductividad en presencia de campo eléctrico 6. Fenómenos de transporte Fenómenos de transporte Conductividad térmicat Viscosidad Difusión n sedimentación Conductividad en presencia de campo eléctrico UAM 01-13. Química Física. Transporte CT V 1

Más detalles

El mercado de dinero. El mercado de dinero

El mercado de dinero. El mercado de dinero El mercado de dinero El mercado de dinero 3.1 Introducción 3.2 El sistema financiero 3.3 Mercado de dinero y de bonos 3.3.1 La demanda de dinero 3.4 Determinación de la oferta monetaria 3.4.1 El multilicador

Más detalles

x y x y y x a) Dibujar el conjunto de puntos del plano donde f no está definida. b) Estudiar la continuidad de f en (0,0) y

x y x y y x a) Dibujar el conjunto de puntos del plano donde f no está definida. b) Estudiar la continuidad de f en (0,0) y ( ) (, ) (,) 1.- Dada la función f(, ) : (, ) (,) a) Dibujar el conjunto de puntos del plano donde f no está definida. b) Estudiar la continuidad de f en (,) c) Calcular (,) (,) (si es necesario prolongar

Más detalles

Ecuaciones del movimiento de un fluido

Ecuaciones del movimiento de un fluido Ecuaciones del movimiento de un fluido 1 Foma fundamental El tenso de tensiones Relación constitutiva paa un fluido Newtoniano La ecuación de Navie-Stokes El tenso de tensiones paa flujos incompesibles

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

Radiación de cargas en movimiento

Radiación de cargas en movimiento Radiación de cargas en movimiento 1 Potenciales de Liénard-Wiechert Potenciales Retardados: Φr, t)= v r r Ar, t) = 1 c v ρ r, t r r /c) Jr, t r r /c) r r dv...4) dv...5) 2 Consideremos una carga puntual

Más detalles

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas Unidad 1. Superies Cuádrias 1.6 Superies Regladas Superies Regladas Deniión 1. Una superie on la propiedad de que para ada punto en ella hay toda una reta que está ontenida en la superie y que pasa por

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles