Universidad de Puerto Rico, Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan, Puerto Rico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad de Puerto Rico, Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan, Puerto Rico"

Transcripción

1 Universidad de Puerto Rico, Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan, Puerto Rico Apellidos: Nombre: No. estudiente: Profesor: Dr. Luis A. Medina Mate 4032 Examen III: 7 de diciembre de 2012 INSTRUCCIONES 1. Esta prueba consiste de 9 problemas en 7 páginas. 2. Escriba su nombre y número de estudiante ahora. 3. Muestre su trabajo. Para recibir crédito, sus respuestas deben estar bien escritas, justificadas y bien organizadas. 4. Por favor, apage el teléfono celular y cualquier otro aparato electrónico que pueda interrumpir a otros tomando el examen. 5. Esta prueba es de 2 horas. 1

2 PARTE I: Ejercicios de respuesta rápida y de computación. 1. Defina: (a) Ideal Maximal Respuesta: Un ideal propio M de R es un ideal maximal de R sii los únicos ideales de R que contienen a M son el mismo M y R. (b) Ideal Principal Respuesta: Un ideal I de anillo conmutativo R es principal si existe a R tal que I = (a) = {ra r R}. (c) Dominio de Iideales Principales (4 pts) Respuesta: Un dominio integral R se llama dominio de ideales principales si todo ideal I en R tiene la forma I = {ra r R} para algún a I. (d) Dominio Euclideano (4 pts) Respuesta: Un dominio integral R es un dominio Euclideano si existe un función d : R \ {0} N {0} tal que: i. Para a 0, b 0 R, d(a) d(ab). ii. Dado a 0, b 0, existen q, r R tal que b = qa + r donde r = 0 o d(r) < d(a). 2. Enuncie el Criterio de Eisenstein. (4 pts) Respuesta: Sea f(x) = a 0 + a 1 x + + a n 1 x n 1 + x n Z[x] y p un entero primo. Suponga que (a) p a i para i = 0, 1,, n 1 (b) p 2 no divide a a 0, entonces f(x) es irreducible en Q[x]. 3. Cierto o Falso. Explique su respuesta. (a) El anillo 5Z es un PID. Repuesta: Falso. El anillo 5Z no tiene identidad, por lo tanto no puede ser un PID. (b) Suponga que R es un anillo conmutativo tal que sus únicos ideales son (0) y R, entonces R es un cuerpo. Respuesta: Falso. El anillo necesita tener identidad. (c) El polinomio f(x) = x x x x + 35 es irreducible en Q[x]. Respuesta: Cierto. Note que 7 divide a 35, 98, 168 y 42, pero 7 2 no divide a 35. Concluimos, por el Criterio de Eisenstein, que f(x) es irreducible en Q[x]. (d) El elemento i en Z[i] es una unidad. Respuesta: Cierto. Note que i( i) = i 2 = 1. Por lo tanto, i es una unidad. 2

3 4. Considere el anillo Z[x] y defina I = {p(x) Z[x] coeficiente constante de p(x) es par}. Haga lo siguiente: (15 pts) (a) Demuestre que I es un ideal. Demostración: Para f(x) Z[x], defina c 0 (f) como el coeficiente constante de f(x). Ahora, i. Suponga que f(x), g(x) I. Entonces c 0 (f) y c 0 (g) son pares. Note que el coeficiente constante de f(x) g(x) es c 0 (f) c 0 (g). Como la resta de números pares es par, entonces el coeficiente constante de f(x) g(x) es par y f(x) g(x) I. ii. Suponga que f(x) I y a(x) Z[x]. Entonces, c 0 (f) es par. Ahora, note que el coeficiente constante de a(x)f(x) es c 0 (a)c 0 (f). Como la multiplicación de cualquier entero por uno par es par, entonces c 0 (a)c 0 (f) es par y a(x)f(x) I. Concluimos que I es un ideal. (b) Demuestre que I no es principal. Demostración: Suponga que I = (a(x)). Si deg(a(x)) = 0, entonces a(x) es constante. Note que las únicas constantes en I son los multiplos de 2. Por lo tanto, si a(x) es constante, entonces a(x) = ±2 e I = (2) = {f(x) 2 f(x) Z[x]}. Pero x + 2 I, o sea, existe f(x) Z[x] tal que x + 2 = 2f(x) Concluimos que los coeficientes de x + 2 son todos pares. Contradicción. Entonces, deg(a(x)) > 0 e I = (a(x)) = {f(x)a(x) f(x) Z[x]}. Como 2 I, entonces existe f(x) Z[x] tal que Ésto implica que 2 = f(x)a(x). 0 = deg(2) = deg(f(x)a(x)) = deg(f(x)) + deg(a(x)) deg(a(x)) > 0. O sea, 0 > 0. Contradicción. Concluimos que I no puede ser principal. 3

4 5. Haga lo siguiente: (a) Demuestre que (x 2 + 1) es un ideal maximal en Z 7 [x]. (7 pts) Demostración: Sea p(x) = x Como x tiene grado 2, entonces es suficiente verificar que p(x) 0 (mod 7). Ahora, p(0) 1 (mod 7) p(1) 2 (mod 7) p(2) 5 (mod 7) p(3) 3 (mod 7) p(4) 3 (mod 7) p(5) 5 (mod 7) p(6) 2 (mod 7). Concluimos que p(x) es irreducible sobre Z 7 y por lo tanto (p(x)) es maximal en Z 7 [x]. (b) Multiplique [2x + 2] con [4x + 3] en Z 7 [x]/(x 2 + 1). (8 pts) Respuesta: Primero note que [x 2 ] = [6]. Ahora, [2x + 2][4x + 3] = [8x x + 6] = [x 2 + 6] = [6 + 6] = [5]. (c) Encuentre el inverso de [3x + 1] en Z 7 [x]/(x 2 + 1) (10 pts) Respuesta: Queremos [ax + b] tal que [ax + b][3x + 1] = [1]. Entonces, [ax + b][3x + 1] = [3ax 2 + (a + 3b)x + b] Por lo tanto, tenemos que resolver el sistema = [3a(6) + (a + 3b)x + b] = [(a + 3b)x + 18a + b] = [(a + 3b)x + 4a + b]. a + 3b 0 (mod 7) 4a + b 1 (mod 7). La solución a este sistema de congruencias es a 6 (mod 7) y b 5 (mod 7). Concluimos que [3x + 1] 1 = [6x + 5]. 4

5 6. Demuestre que p(x) = x 3 3x 2 + 9x 11 es irreducible en Q[x]. (10 pts) Demostración: Note que en este caso no podemos aplicar el Criterio de Eisenstein directamente. Sin embargo, p(x + 2) = (x + 2) 3 3(x + 2) 2 + 9(x + 2) 11 = x 3 + 3x 2 + 9x + 3. Como 3 divide a 3, 9 y 3, pero 3 2 no divide a 3, entonces, por el Criterio de Eisenstein, concluimos que p(x + 2), y por consiguiente p(x), es irreducible. 7. Construya un cuerpo con 27 elementos. (10 pts) Respuesta: La idea en este problema es conseguir un polinomio p(x) de grado 3 que sea irreducible sobre Z 3. Luego, Z 3 [x]/(p(x)) es un cuerpo con 3 3 = 27 elementos. Escoja p(x) = x 3 + 2x + 1. El lector puede verificar que p(i) 1 (mod 3) para i Z 3. Concluimos que p(x) es irreducible y por lo tanto Z 3 [x]/(p(x)) es un cuerpo con 27 elementos. 8. Si F K son dos cuerpos y f(x), g(x) F [x] son co-primos en F [x], entonces demuestre que f(x) y g(x) son co-primos en K[x]. (10 pts) Demostración: Como f(x), g(x) F [x] son co-primos, entonces existen a(x), b(x) F [x] tal que a(x)f(x) + b(x)g(x) = 1. Ahora, F K, por lo tanto a(x), b(x) K[x]. Concluimos que existen a(x), b(x) K[x] tal que a(x)f(x) + b(x)g(x) = 1 y por lo tanto, f(x) y g(x) son co-primos en K[x]. 9. Sea F un cuerpo y ϕ es un automorfismo de F [x] tal que ϕ(a) = a para toda a F. Si f(x) F [x], demuestre que f(x) es irreducible en F [x] sii g(x) = ϕ(f(x)) es irreducible. (10 pts) Demostración: Suponga que f(x) = f 0 + f 1 x + f 2 x f n x n F [x] y que f(x) es irreducible. Si g(x) = ϕ(f(x)) es reducible, entonces existen a(x), b(x) F [x], ambos con grado mayor que 0, tal que g(x) = ϕ(f(x)) = a(x)b(x) = (a 0 +a 1 x+ +a s x s )(b 0 +b 1 x+ +b t x t ), con a i, b j F y a s, b t diferentes de 0. Entonces, f(x) = ϕ 1 (ϕ(f(x))) = ϕ 1 ( (a 0 + a 1 x + + a s x s )(b 0 + b 1 x + + b t x t ) ) = (a 0 + a 1 ϕ 1 (x) + + a s (ϕ 1 (x)) s )(b 0 + b 1 ϕ 1 (x) + + b t (ϕ 1 (x)) t ) Ahora, note que ϕ 1 (x) = d 0 + d 1 x + d m x m donde al menos uno de d 1, d 2,, d m no es cero. Si todos fueran cero, entonces trendríamos ϕ 1 (x) = d 0 y luego, x = ϕ(d 0 ) = d 0, lo cual es una contradicción, pues x tiene grado 1 y d 0 tiene grado 0. Por lo tanto, a 0 + a 1 ϕ 1 (x) + + a s (ϕ 1 (x)) s y b 0 + b 1 ϕ 1 (x) + + b t (ϕ 1 (x)) t son polinomios de grado igual a o mayor que 1. Por lo tanto, (a 0 + a 1 ϕ 1 (x) + + a s (ϕ 1 (x)) s )(b 0 + b 1 ϕ 1 (x) + + b t (ϕ 1 (x)) t ) es una 5

6 factorizacio n no trivial de f (x). Contradiccio n. Concluimos que g(x) = ϕ(f (x)) es irreducible. La demostracio n de que g(x) = ϕ(f (x)) irreducible implica que f (x) es irreducible es analoga a la presentada arriba con los roles de ϕ y ϕ 1 (y por lo tanto, de f (x) y g(x)) intercambiados. Esta demostracio n fue traida a ustedes gracias a: 6

MATE 4032: Álgebra Abstracta. 1. Suponga que I, J son ideales de un anillo R. Demuestre que I J es un ideal

MATE 4032: Álgebra Abstracta. 1. Suponga que I, J son ideales de un anillo R. Demuestre que I J es un ideal Solución Asignación 9. Universidad de Puerto Rico Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan Puerto Rico MATE 4032: Álgebra Abstracta 1. Suponga que I J son ideales

Más detalles

TEMA 4. Anillos de polinomios.

TEMA 4. Anillos de polinomios. TEMA 4 Anillos de polinomios. Ejercicio 4.1. Encontrar un polinomio f(x) de grado 3 tal que: f(0) = 6, f(1) = 12 y f(x) (3x + 3) mod (x 2 + x + 1). Ejercicio 4.2. Demostrar que en un D.E. todos los ideales

Más detalles

Ejercicios de Álgebra Básica. Curso 2016/17

Ejercicios de Álgebra Básica. Curso 2016/17 Tema 4: Polinomios Ejercicios de Álgebra Básica. Curso 2016/17 El anillo k[x]. Divisibilidad Ejercicio 1. Sea A un anillo. Prueba que, si A es dominio de integridad, A[x] = A y demuestra con un contraejemplo

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

6.1. Anillos de polinomios.

6.1. Anillos de polinomios. 1 Tema 6.-. Anillo de polinomios. División y factorización. Lema de Gauss. 6.1. Anillos de polinomios. Definición 6.1.1. Sea A un anillo. El anillo de polinomios en la indeterminada X con coeficientes

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta

Más detalles

ANILLOS DE POLINOMIOS. Sea A un anillo conmutativo. El conjunto A[X] de polinomios sobre A esta formado por los elementos

ANILLOS DE POLINOMIOS. Sea A un anillo conmutativo. El conjunto A[X] de polinomios sobre A esta formado por los elementos ANILLOS DE POLINOMIOS Sea A un anillo conmutativo. El conjunto A[X] de polinomios sobre A esta formado por los elementos n i=0 a i X i = a 0 + a 1 X + a 2 X 2 +... + a n X n. Se definen dos operaciones

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS TEOREMA DE EXTENSIÓN DE KRONECKER. Los polinomios irreducibles sobre un cuerpo no tienen raíces sobre ese cuerpo, salvo que sean de grado uno. Ya hemos visto que Ejemplo 1. x

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad

Más detalles

Dominios de factorización única

Dominios de factorización única CAPíTULO 3 Dominios de factorización única 1. Dominios euclídeos En la sección dedicada a los números enteros hemos descrito todos los ideales de Z. En este apartado introducimos una familia de anillos

Más detalles

Anexo: El anillo de polinomios K[x].

Anexo: El anillo de polinomios K[x]. El anillo de polinomios K[x] 1 Anexo: El anillo de polinomios K[x]. 1. Construcción del anillo de polinomios K[x]. Dado un cuerpo K, se define m K[x] = { a i x i a i K, i = 0,..., m, m N {0}}, i=0 donde

Más detalles

ÁLGEBRA III. Práctica 1 2d. Cuatrimestre - 2007

ÁLGEBRA III. Práctica 1 2d. Cuatrimestre - 2007 ÁLGEBRA III Práctica 1 2d. Cuatrimestre - 2007 Anillos conmutativos, cuerpos y morfismos Nota: Todo anillo considerado en esta práctica será conmutativo, en particular todo ideal es bilátero. Ejercicio

Más detalles

9 Expresiones racionales

9 Expresiones racionales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #9: viernes, 10 de junio de 2016. 9 Epresiones racionales 9.1 Fracciones

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Anillos de polinomios 3 Mínimo Común Divisor y Mínimo Común Múltiplo Algoritmo de Euclides Algoritmo

Más detalles

Anillos finitos locales

Anillos finitos locales Anillos finitos locales XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Estructura de los anillos finitos Un anillo conmutativo A es local si tiene un único ideal maximal

Más detalles

Polinomios (lista de problemas para examen)

Polinomios (lista de problemas para examen) Polinomios (lista de problemas para examen) En esta lista de problemas el conjunto de los polinomios de una variable con coeficientes complejos se denota por P(C). También se usa la notación C[x], si la

Más detalles

TRABAJO PRÁCTICO Nº 4: POLINOMIOS

TRABAJO PRÁCTICO Nº 4: POLINOMIOS TRABAJO PRÁCTICO Nº : POLINOMIOS EJERCICIOS A DESARROLLAR Clase ) Dados los polinomios reales P(x) =.x ; Q(x) = 3x3 x + y los polinomios complejos R(x) = i.x ; S(x) = x + ( + i).x i, calcular: a) 3x. P(x)

Más detalles

Nombre/Código: Febrero 21 2015. Examen I. 5 /10pts. Total: /50pts

Nombre/Código: Febrero 21 2015. Examen I. 5 /10pts. Total: /50pts 1 Álgebra abstracta II Guillermo Mantilla-Soler Nombre/Código: Febrero 21 2015 Examen I Problemas Puntuación 1 /10pts 2 /10pts 3 /10pts 4 /10pts 5 /10pts Total: /50pts 2 Preguntas Problema 1[10 pts]: Sea

Más detalles

Fracciones Parciales. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Fracciones Parciales. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Una expresión racional con coeficientes en un campo K, es una expresión de la forma ax ( ) bx ( ) donde ax ( ), bx ( ) K[ x] ax ( ) cx ( )

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

MATE 3040: Teoría de Números. Solución: Aplique el Algoritmo de Euclides para obtener 8 = gcd(56, 72) = 56(4) + 72( 3).

MATE 3040: Teoría de Números. Solución: Aplique el Algoritmo de Euclides para obtener 8 = gcd(56, 72) = 56(4) + 72( 3). Solución Asignación 3. Universidad de Puerto Rico, Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan, Puerto Rico MATE 3040: Teoría de Números 1. Determine todas las soluciones

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

Ejercicios de Estructuras Algebraicas 1

Ejercicios de Estructuras Algebraicas 1 Ejercicios de Estructuras Algebraicas 1 Números enteros y polinomios 1. Para cada una de las siguientes parejas de números enteros, hallar el máximo común divisor, el mínimo común múltiplo y una identidad

Más detalles

Notaciones y Pre-requisitos

Notaciones y Pre-requisitos Notaciones y Pre-requisitos Símbolo Significado N Conjunto de los números naturales. Z Conjunto de los números enteros. Q Conjunto de los números enteros. R Conjunto de los números enteros. C Conjunto

Más detalles

GUÍA DE EJERCICIOS. Área Matemática - Polinomios

GUÍA DE EJERCICIOS. Área Matemática - Polinomios GUÍA DE EJERCICIOS Área Matemática - Polinomios Resultados de aprendizaje. Realizar operaciones entre polinomios. Aplicar Regla de Ruffini, para determinar raíces de un polinomio. Aplicar los procedimientos

Más detalles

AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE POLINOMIOS.

AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE POLINOMIOS. AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE POLINOMIOS. Ejemplo 1. Dados dos polinomios p, q Z[x] con q mónico se puede dividir p entre q. x 2 + 2x + 1 x + 1 0 x + 1 ; x 2 + 2x + 2 x + 1 1 x + 1 ; 3x2 +

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 6 Pág. Página 86 El maestro carpintero reparte entre sus dos ayudantes la construcción de un gran armario. Y cada uno de ellos, a su vez, imagina su parte de la obra despiezada para poder construirla a

Más detalles

Ceros en extensiones.

Ceros en extensiones. 1. EXTENSIONES DE CUERPOS. Varios son los objetivos de este tema. El primero de ellos, resultado debido a Kronecker, es probar que todo polinomio con coeficientes en un cuerpo tiene una raíz en un cuerpo

Más detalles

El teorema de Lüroth

El teorema de Lüroth Abstraction & Application 11 (2014) 52 56 UADY El teorema de Lüroth Antonio González Fernández, Rodrigo Jiménez Correa, Jesús Efrén Pérez Terrazas Facultad de Matemáticas, Universidad Autónoma de Yucatán,

Más detalles

M.C.D. - M.C.M. de polinomios

M.C.D. - M.C.M. de polinomios M.C.D. - M.C.M. de polinomios M.C.D. y M.C.M. de polinomios Máximo común divisor (M.C.D.) Mínimo común múltiplo (M.C.M.) Propiedades el el 1 M.C.D. de dos o más polinomios es otro polinomio que tiene la

Más detalles

gr(p(x)) = n = deg(p(x)), cuando a n 0. El conjunto de todos los polinomios con coeficiente en K lo denotamos por K[x]

gr(p(x)) = n = deg(p(x)), cuando a n 0. El conjunto de todos los polinomios con coeficiente en K lo denotamos por K[x] Capítulo 5 Polinomios Definición 22 Sea K igual a Z,Q,R,C, un polinomio en la variable x con coeficientes en K es una expresión de la forma p(x) = a n x n +a n 1 x n 1 + +a 1 x+a 0, donde a i con i desde

Más detalles

3 Polinomios y funciones racionales

3 Polinomios y funciones racionales Programa Inmersión, Verano 06 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #8: jueves, 3 de junio de 06. 3 Polinomios y funciones racionales 3. Funciones

Más detalles

3 Polinomios y funciones racionales

3 Polinomios y funciones racionales Programa Inmersión, Verano 07 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #8: miércoles, 3 de agosto de 07. 3 Polinomios y funciones racionales 3.

Más detalles

Anillo de polinomios con coeficientes en un cuerpo

Anillo de polinomios con coeficientes en un cuerpo Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.

Más detalles

METODOS DE INTEGRACION IV FRACCIONES PARCIALES

METODOS DE INTEGRACION IV FRACCIONES PARCIALES METODOS DE INTEGRACION IV FRACCIONES PARCIALES Una función racional es una función de la forma En la que f(x) y g(x) son polinomios. Si el frado de f(x) es menor que el de g(x), F(x) se denomina fracción

Más detalles

Polinomios. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Polinomios. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Definición Un polinomio es una operación indicada de sumas y productos entre números y una variable x (indeterminada): P (x) = a n x n + a

Más detalles

1 Introducción al Álgebra conmutativa

1 Introducción al Álgebra conmutativa 1 Introducción al Álgebra conmutativa Escrito por: Patrizio Guagliardo y Miguel Monsalve. A continuación, daremos algunas definiciones básicas de estructuras algebraicas para empezar a trabajar rápidamente

Más detalles

Números complejos y Polinomios

Números complejos y Polinomios Semana 13 [1/14] 23 de mayo de 2007 Forma polar de los complejos Semana 13 [2/14] Raíces de la unidad Raíz n-ésima de la unidad Sean z C y n 2. Diremos que z es una raíz n-ésima de la unidad si z n = 1

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b Capítulo 3 Anillos Hemos utilizado estructuras en las que hay dos operaciones, como la suma y el producto en Z. El objeto más básico de este tipo es un anillo, cuyos axiomas son bastante parecidos a los

Más detalles

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES)

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) Instrucciones: Resolver los 5 problemas justificando todas sus afirmaciones y presentando todos sus cálculos. 1. Sea F un campo.

Más detalles

Unidad 6. Raíces de polinomios. Objetivos. Al finalizar la unidad, el alumno:

Unidad 6. Raíces de polinomios. Objetivos. Al finalizar la unidad, el alumno: Unidad 6 Raíces de polinomios Objetivos Al finalizar la unidad, el alumno: Comprenderá el Teorema Fundamental del Álgebra. Aplicará los teoremas del residuo y del factor en la obtención de las raíces de

Más detalles

30 = 2 3 5 = ( 2) 3 ( 5) = 2 ( 3) ( 5) = ( 2) ( 3) 5.

30 = 2 3 5 = ( 2) 3 ( 5) = 2 ( 3) ( 5) = ( 2) ( 3) 5. 11 1.3. Factorización Como ya hemos mencionado, la teoría de ideales surgió en relación con ciertos problemas de factorización en anillos. A título meramente ilustrativo, nótese que por ejemplo hallar

Más detalles

IRREDUCIBILIDAD EN K[X 1,..., X n ]

IRREDUCIBILIDAD EN K[X 1,..., X n ] IRREDUCIBILIDAD EN K[X 1,..., X n ] SAURON Índice General 1. DFU y anillos de olinomios 1 2. Irreducibilidad de olinomios sobre un DFU 3 3. Algunos ejemlos 5 Referencias 6 1. DFU y anillos de olinomios

Más detalles

Álgebra. Curso de junio de Grupo B

Álgebra. Curso de junio de Grupo B Álgebra. Curso 2008-2009 9 de junio de 2009. Grupo B Primera parte Ejercicio. 1. Sea D un dominio noetheriano que no es un cuerpo. Demuestra que son equivalentes: (a) D es un dominio de Dedekind. (b) Todo

Más detalles

El Teorema Fundamental del Álgebra

El Teorema Fundamental del Álgebra El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia

Más detalles

Anillo de Polinomios.

Anillo de Polinomios. Capítulo 6 Anillo de Polinomios. Una forma de definir los polinomios en forma intuitiva es la siguiente: Sea (K,+, ) un cuerpo, entonces un polinomio con coeficiente en K es de la siguiente forma p(x)

Más detalles

Notas del curso de Algebra Moderna II

Notas del curso de Algebra Moderna II Notas del curso de Algebra Moderna II Luis Valero Elizondo 15 de Enero del 2004 Índice general 1. Anillos. 5 1.1. Monoides.............................. 5 1.2. Anillos............................... 5

Más detalles

Tema 1. Anillos e ideales. Operaciones. Divisibilidad

Tema 1. Anillos e ideales. Operaciones. Divisibilidad Tema 1. Anillos e ideales. Operaciones. Divisibilidad y factorización. La parte correspondiente a Anillos e ideales. Operaciones se corresponde con el capítulo 1 del libro Atiyah, M.F., Macdonald, I.G.,

Más detalles

Álgebra II Primer Cuatrimestre 2016

Álgebra II Primer Cuatrimestre 2016 Álgebra II Primer Cuatrimestre 2016 Práctica 3: Anillos Ejemplos construcciones 1. Probar que los siguientes conjuntos son anillos con las operaciones indicadas. Decidir en cada caso si son conmutativos,

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS DEFINICIÓN DE ANILLOS. En la Introducción a las Estructuras Algebraicas definimos las estructuras de Grupo, Anillo y Cuerpo. Repasemos la definición de Anillo antes de argumentar

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

S2: Polinomios complejos

S2: Polinomios complejos S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes

Más detalles

5. Determine todos los elementos de los conjuntos: a. {m Z mn = 30, para algún n Z}

5. Determine todos los elementos de los conjuntos: a. {m Z mn = 30, para algún n Z} 1 Ejercicios 1-1 (R = reales Q=racionales Z = enteros N = naturales) 1. Muestre que la relación D denida en R por adb a b Z es una relación de equivalencia. a. Describa los elementos en la clase de equivalencia

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS EJEMPLOS DE EXTENSIONES DE CUERPOS. Comenzamos con el primer ejemplo. Aquí ya vamos a ver las ideas que después desarrollaremos. Ejemplo 1. Consideramos el polinomio x 2 2 Q[x]

Más detalles

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las

Más detalles

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n POLINOMIOS (Versión Preliminar) Estas notas deben ser complementadas con ejercicios de la guía o de algun texto. En esta sección denotaremos por N al conjunto de los números naturales incluido el cero.

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios Sea (A, +,.) un anillo conmutativo. Indicamos con A[x] al conjunto de polinomios en una indeterminada x con coeficientes en

Más detalles

En un anillo la operación de multiplicación no siempre tiene un elemento como el 0 de la adición.

En un anillo la operación de multiplicación no siempre tiene un elemento como el 0 de la adición. Capítulo 5 Anillos Definición 5.1. Un anillo es un conjunto no vacío A en el cual hay definidas dos operaciones + (adición) y (multiplicación) que satisface los axiomas: 1. (Clausura) Para cada a, b A,

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 2 cíclicos 3 Subgrupos 4 Algoritmos 5 ElGamal Definición Un grupo es un conjunto de elementos sobre los cuales

Más detalles

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión EJERCICIOS ESTRUCTURAS ALGEBRAICAS (2004-2005) 1 Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión f = a 1 f 1 +... + a s f s + r que se obtiene al aplicar el algoritmo de

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así:

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así: Capítulo 1 Números Reales 1.1. Introducción Llamaremos número real a cualquier fracción decimal. Ejemplos:, 0;, 3333...;, 5; 0,785; 3, 14159...;,718818...; 1,414136... Las fracciones decimales periódicas

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

5.5 Sistema de coordenadas cartesianas

5.5 Sistema de coordenadas cartesianas Programa Inmersión, Verano 06 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 00 y MATE 0 Clase #7: martes, 8 de agosto de 07. 5.5 Sistema de coordenadas cartesianas Una de

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

3 Polinomios y funciones racionales

3 Polinomios y funciones racionales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #19: viernes, 24 de junio de 2016. 3 Polinomios y funciones racionales

Más detalles

Números algebraicos. Cuerpos de números. Grado.

Números algebraicos. Cuerpos de números. Grado. < Tema 5.- Números algebraicos. Cuerpos de números. Grado. 5.1 Cuerpo de fracciones de un dominio. Tratamos de generalizar la construcción de Q, a partir de Z. Sea A un dominio de integridad. En A (A \

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

Álgebra I Práctica 7 - Polinomios

Álgebra I Práctica 7 - Polinomios FCEyN - UBA - 2do cuatrimestre 2016 Generalidades Álgebra I Práctica 7 - Polinomios 1. Calcular el grado y el coeficiente principal de f Q[X] en los casos i) f = (4X 6 2X 5 + 3X 2 2X + 7) 77. ii) f = (

Más detalles

Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss.

Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss. Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss. 7.1 Divisibilidad Definición 7.1.1. Sea A un dominio de integridad. 1. Sean a, b A, cona 0. Sediráquea divide a b, oquea es un divisor

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

Álgebra. Curso

Álgebra. Curso Álgebra. Curso 2012-2013 14 de junio de 2013 Resolución Ejercicio. 1. (2 puntos) Utiliza el teorema del descenso (o alternativamente la localización en primos) para probar el siguiente resultado: Sea K

Más detalles

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010 Polinomios (II) 1 Sesión teórica 4 (págs. 3-9) 7 de septiembre de 010 Pares de raíces conjugadas irreducibles Consideremos un polinomio f (x) =a0 + a1x + ax + + anx n R[x], es decir, con coeficientes reales

Más detalles

Álgebra II Primer Cuatrimestre 2007

Álgebra II Primer Cuatrimestre 2007 Álgebra II Primer Cuatrimestre 2007 Práctica 2: Anillos 1. Definiciones 1.1. Sea A un conjunto +, : A A A dos operaciones en A que satisfacen todos los axiomas de la definicion de anillos salvo posiblemente

Más detalles

Fundamentos algebraicos

Fundamentos algebraicos Fundamentos algebraicos 1. Grupos Sea S un conjunto. Se denota con S S el conjunto de los pares ordenados (s, t) con s, t en S. Un mapeo de S S en S se llama operación binaria en S. Esta definición requiere

Más detalles

Anillos Especiales. 8.1 Conceptos Básicos. Capítulo

Anillos Especiales. 8.1 Conceptos Básicos. Capítulo Capítulo 8 Anillos Especiales 8.1 Conceptos Básicos En este capítulo nos dedicaremos al estudio de algunos anillos especiales que poseen ciertas condiciones adicionales, aparte de las propias de la definición,

Más detalles

FACTORIZACIÓN BÁSICA Y RAÍCES

FACTORIZACIÓN BÁSICA Y RAÍCES FACTORIZACIÓN BÁSICA Y RAÍCES Genaro Luna Carreto 1 1 Profesor de la Benemérita Universidad Autónoma de Puebla, México. 0.1. Algoritmo de la división El símbolo K[X] representa al conjunto de polinomios

Más detalles

Funciones cuadráticas

Funciones cuadráticas Funciones cuadráticas Qué es una Función Cuadrática? Es una función cuya regla de correspondencia está dada por un polinomio cuadrático, tal como Es una función cuya regla puede escribirse en la forma

Más detalles

El anillo de polinomios sobre un cuerpo

El anillo de polinomios sobre un cuerpo Capítulo 2 El anillo de polinomios sobre un cuerpo En este capítulo pretendemos hacer un estudio sobre polinomios paralelo al que hicimos en el capítulo anterior sobre los números enteros. Para esto, es

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

PRODUCTOS, COCIENTES NOTABLES Y FACTORIZACIÓN 36 CAPÍTULO 1 CONCEPTOS FUNDAMENTALES DE ÁLGEBRA

PRODUCTOS, COCIENTES NOTABLES Y FACTORIZACIÓN 36 CAPÍTULO 1 CONCEPTOS FUNDAMENTALES DE ÁLGEBRA 36 CAPÍTULO 1 CONCEPTOS FUNDAMENTALES DE ÁLGEBRA Otros polinomios pueden tener tres variables, por ejemplo x, y, z o bien, para el caso, cualquier número de variables. La adición, sustracción y multiplicación

Más detalles

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x S Escribe un polinomio que cumpla las siguientes condiciones: A)Se llama P(x, y) B)Tiene 5 términos C)Es de grado seis D)No tiene término independiente S Escribe un polinomio que cumpla las siguientes

Más detalles

ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS : ½ CREDITO : 1 SEMESTRE

ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS : ½ CREDITO : 1 SEMESTRE ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS CURSO VALOR DURACIÓN MAESTRA :MATEMATICA ACTUALIZADA 1 : ½ CREDITO : 1 SEMESTRE : Everis Aixa Sánchez Introducción El Programa de Matemáticas del Departamento

Más detalles

Polinomios II. I. Regla de Ruffini

Polinomios II. I. Regla de Ruffini Polinomios II En las matemáticas se define el polinomio como una expresión que está formada por un número finito de variables (no conocidas) y constantes (coeficientes) siendo muy utilizados en las matemáticas

Más detalles

Teoría de Galois. por José Antonio Belinchón

Teoría de Galois. por José Antonio Belinchón Teoría de Galois por José Antonio Belinchón Última actualización Julio 008 II Índice general. Prólogo III 1. Anillos y cuerpos 1 1.1. Anillos..................................................... 1 1..

Más detalles

Álgebra lineal II Examen Parcial 1

Álgebra lineal II Examen Parcial 1 UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA Álgebra lineal II Examen Parcial II Semestre 204 Nick Gill Instrucciones: Puede usar cualquier proposición de las lecciones, inclusive los ejercicios. Si

Más detalles

UNIDAD 3: ANILLOS DE POLINOMIOS

UNIDAD 3: ANILLOS DE POLINOMIOS UNIDAD 3: ANILLOS DE POLINOMIOS En nuestra educación matemática se nos introdujo muy pronto -generalmente en los primeros años de secundariaal estudio de los polinomios. Durante una temporada que parecía

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 3 El anillo de los polinomios sobre un cuerpo 1. Divisibilidad Un

Más detalles

TEMA 7: FRACCIONES ALGEBRAICAS. Matemáticas 3º ESO

TEMA 7: FRACCIONES ALGEBRAICAS. Matemáticas 3º ESO TEMA 7: FRACCIONES ALGEBRAICAS Matemáticas 3º ESO 1. Fracciones algebraicas valor numérica Una fracción algebraica es el cociente indicado de dos polinomios, el denominador debe ser un polinomio no nulo.

Más detalles

1. Suma y producto de polinomios. Propiedades

1. Suma y producto de polinomios. Propiedades ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resumen teoría Prof. Alcón 1. Suma y producto de polinomios. Propiedades Sea (A, +,.) un anillo conmutativo. Llamamos polinomio en una indeterminada x con coeficientes

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS RAÍCES MÚLTIPLES. Dado un polinomio con coeficientes en un cuerpo existirá siempre un elemento del cuerpo que anula el polinomio? Siempre existe un cuerpo donde podamos encontrar

Más detalles

Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma

Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma Polinomios Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma p(x) = a 0 + a 1 x +... + a n x n (1) donde x es la variable y a 0,

Más detalles