Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears"

Transcripción

1 Aál etadítco báco (II) Magdalea Cladera Muar Departamet d Ecooma Aplcada Uvertat de le Ille Balear

2 CONTENIDOS Covaraza y correlacó. Regreó leal mple.

3 REFERENCIAS Alegre, J. y Cladera, M. (3). Itroduccó a la Etadítca Decrptva para Ecoomta. Materal Ddàctc UIB,. Palma de Mallorca. Newbold, P. (997). Etadítca para lo Negoco y la Ecoomía. Pretce-Hall. Madrd. Peña, D. y Romo, D. (997). Itroduccó a la Etadítca para la Ceca Socale. McGrawHll. Madrd. Pardo, A. y Ruíz, M. A. (). SPSS.. Guía para el aál de dato. Acceble e: Pérez, C. (). Técca Etadítca co SPSS, Pretce Hall, Madrd.

4 Relacó leal etre varable cuattatva Itrumeto etadítco: Relacó leal etre do varable cuattatva. Repreetacó gráfca. Medda de relacó leal: Covaraza Coefcete de correlacó de Pearo. Ajute leal etre do varable. Iterpretacó gráfca y bodad de ajute leal.

5 Relacó leal etre varable cuattatva Relacó leal: relacó etre do varable que puede repreetare aproxmadamete como ua líea recta. La aocacó o mplca caualdad. Do tpo de aocacó leal: potva y egatva. Gráfca. Relacó leal exacta potva. 3 Gráfca. Relacó leal exacta egatva

6 Relacó leal etre varable cuattatva Relacoe o leale Gráfca 3. Gráfca

7 Relacó leal etre varable cuattatva Relacoe leale Gráfca. Relacó leal exacta potva. 3 Gráfca. Relacó leal exacta egatva Gráfca 5. Relacó leal potva o exacta

8 Relacó leal etre varable cuattatva Etadítco de covaraza ( x)( y) Covaraza potva (Sxy>) Aocacó leal potva. Covaraza egatva (Sxy<) Aocacó leal egatva. Covaraza ula (Sxy) extete. Aocacó leal

9 Relacó leal etre varable cuattatva Etadítco de covaraza potvo Fgura

10 Relacó leal etre varable cuattatva Etadítco de covaraza ulo Fgura 5.6.,5,,5, -,5 -,

11 Relacó leal etre varable cuattatva Covaraza. Ejemplo ,55 74,6,85 8,5 3 3,3 46, ,53 75, ,8 7, ,94 65,6 7 6, 93,3 8 3,8 5, 9 9 3,53 447,7 3, 46,4 Suma 37 67,83 45,96 Meda 3,7 6,783 ( x)( y) 45, 96 3, 76, , Por tato, exte aocacó potva etre amba varable.

12 Relacó leal etre varable cuattatva Etadítco de covaraza Problema del etadítco de covaraza como medda de aocacó: No tee u límte uperor, co repecto al cual coderar el grado de aocacó. La covaraza depede de la udade e que etá medda la varable.

13 Relacó leal etre varable cuattatva Etadítco de covaraza Propedade de la covaraza: S e uma a la varable ua cotate b y a la varable ua cotate c, la covaraza etre la do ueva varable traformada erá gual a la covaraza orgal. (( + b) ( x + b) )( ( + c) ( y + c) ) ( x)( y) S e multplca la varable por ua cotate b y la varable por ua cotate c, la covaraza etre la do ueva varable traformada erá gual a la covaraza orgal multplcada por la cotate bc. ( b bx )( c cy) bc ( x)( y)

14 Coefcete de correlacó leal mple (Coefcete de correlacó de Pearo) Subttuyedo la covaraza y la devacoe típca: Relacó leal etre varable cuattatva r ( )( ) ( ) ( ) y x x y y x y x r

15 Relacó leal etre varable cuattatva Coefcete de correlacó leal mple (Coefcete de correlacó de Pearo) r Aocacó leal potva Sxy> rxy> Aocacó leal egatva Sxy< rxy< Aueca de aocacó leal Sxy rxy El coefcete de correlacó toma valore etre y. rxy Aocacó leal exacta de tpo potvo. rxy - Aocacó leal exacta de tpo egatvo. rxy Aueca de aocacó leal.

16 Relacó leal etre varable cuattatva Coefcete de correlacó leal mple (Coefcete de correlacó de Pearo) Propedade del coefcete de correlacó: El valor del coefcete de correlacó etre do varable o e modfca ua (o amba) varable e multplca por ua cotate. El coefcete de correlacó toma valore e el tervalo y. Lo valore máxmo y mímo e alcaza cuado e da ua relacó leal exacta etre la do varable, de tpo potvo o de tpo egatvo, repectvamete. Valore del coefcete próxmo a dca la exteca de ua aocacó potva fuerte etre la varable; valore cercao a dca la exteca de ua aocacó egatva fuerte etre la varable; valore cercao a cero eñala la aueca de ua aocacó leal.

17 Relacó leal etre varable cuattatva Coefcete de correlacó. Ejemplo ,55 74,6 44,7,85 8,5 65, 3 3,3 46,3 76, ,53 75, , ,8 7,7 5 33, ,94 65, ,7 7 6, 93, ,53 8 3,8 5, 9, ,53 447, ,66 3, 46,4 4 59,9 Suma 37 67,83 45, , Meda 3,7 6,783 S,67 98 S 3, 7 3, 3 96, S 6, 783 3, 79 r 67, 3, 33, 79, 95 Por tato, exte aocacó potva muy fuerte etre amba varable.

18 Relacó leal etre varable cuattatva Objetvo: aalzar la relacoe de depedeca etre ua varable depedete y u cojuto de varable explcatva. Epecfcacó: f(,, 3,..., k, β) Forma fucoal leal β + β + β β β k k + u : varable depedete o edógea. j : varable explcatva, exógea o regreore. β j : parámetro, coefcete de regreó. u: térmo de error, térmo de perturbacó o perturbacó aleatora. Modelo Smple: β + β + u Modelo Múltple: β + β + β β β k k + u

19 Relacó leal etre varable cuattatva Modelo Smple: α + β + u

20 Relacó leal etre varable cuattatva Ejemplo. Fucó de coumo ataro Fucó de coumo ataro 5 C α + βr + u 4 E(C ) α + βr Coumo Reta Obervacoe muetrale

21 Relacó leal etre varable cuattatva Ejemplo. Fucó de coumo ataro Fucó de coumo ataro 5 C α + βr + u 4 C 3,7+,677 R E(C ) α + βr Coumo Reta Obervacoe muetrale Leal (Obervacoe muetrale)

22 Relacó leal etre varable cuattatva Obtecó de α y β etmado por Mímo Cuadrado Ordaro (MCO) α + β + u e e ˆ α y ˆ β x ˆ β ( x)( y) xy ( x) x Sxy S x

23 Relacó leal etre varable cuattatva Obtecó de α y β etmado por Mímo Cuadrado Ordaro (MCO) α + β + u e e y,364+,855x ˆ α y ˆ β x ( x)( y) xy ˆ β x ( x) Sxy S x

24 Relacó leal etre varable cuattatva Coumo Ejemplo. Fucó de coumo ataro Fucó de coumo ataro Reta Obervacoe muetrale Leal (Obervacoe muetrale) ˆ α3,7 ˆ β, 677 Muetra de 5 famíla: Coumo Reta

25 Relacó leal etre varable cuattatva Coumo Ejemplo. Fucó de coumo ataro Fucó de coumo ataro 5 4 C 3,7+,677 R Reta Obervacoe muetrale Leal (Obervacoe muetrale) ˆ α3,7 ˆ β, 677 Muetra de 5 famíla: Coumo Reta

26 Relacó leal etre varable cuattatva Bodad de ajute A) B) R ( x) ( y) VE ˆ β VT R R R El modelo NO e EPLICATIVO El modelo EPLICA toda la varacó de

27 Relacó leal etre varable cuattatva Coumo Ejemplo. Fucó de coumo ataro Fucó de coumo ataro C 3,7+,677 R R, Obervacoe muetrale Reta ˆ α3,7 ˆ β, 677 Leal (Obervacoe muetrale) Muetra de 5 famíla: Coumo Reta

CAPÍTULO 3. ANÁLISIS DE REGRESIÓN

CAPÍTULO 3. ANÁLISIS DE REGRESIÓN CAPÍTULO 3. ANÁLISIS DE REGRESIÓN Leccó 0: Regreó leal Smple La palabra Regreó fue utlzada por prmera vez por Frac Galto, (.8.9) e u etudo de Bología obre la hereca, doe él oto que la caracterítca promedo

Más detalles

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL TIPOS DE RELACIONES ENTRE VARIABLES Dos varables puede estar relacoadas por: Modelo determsta Modelo estadístco Ejemplo: Relacó de la altura co la edad e ños.

Más detalles

Tema 4. Problemas de inferencia estadística en el modelo de regresión lineal múltiple

Tema 4. Problemas de inferencia estadística en el modelo de regresión lineal múltiple Método de egreó Grado e Etadítca y Emprea Tema 4 /3 Tema 4. Problema de fereca etadítca e el modelo de regreó leal múltple. Itervalo de cofaza y cotrate para lo coefcete de regreó... Itervalo de cofaza

Más detalles

1. Introducción 1.1. Análisis de la Relación

1. Introducción 1.1. Análisis de la Relación . Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

Tema 1: Introducción: Generalización y Extensión del Modelo de Regresión

Tema 1: Introducción: Generalización y Extensión del Modelo de Regresión Tema : Itroduccó: Geeralzacó y Etesó del Modelo de Regresó Tema : Itroduccó: Geeralzacó y Etesó del Modelo de Regresó Itroduccó Especfcacó del Modelo de Regresó Leal 3 Supuestos del Modelo Clásco de Regresó

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

ANÁLISIS DE REGRESIÓN. Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez

ANÁLISIS DE REGRESIÓN. Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre

Más detalles

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2).

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2). TRABAJO : Varables Estadístcas Bdmesoales (Tema ). Téccas Cuattatvas I. Curso 07/08. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: E los eucados de los ejerccos que sgue aparece los valores

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro)

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro) UIDAD.- Dstrbucoes bdmesoales. Correlacó regresó (tema del lbro). VARIABLES ESTADÍSTICAS BIDIMESIOALES Vamos a trabajar sobre ua sere de feómeos e los que para cada observacó se obtee u par de meddas.

Más detalles

Regresión lineal simple

Regresión lineal simple Descrpcó breve del tema Regresó leal smple Tema. Itroduccó. El modelo de regresó smple 3. Hpótess del modelo Lealdad, homogeedad, homocedastcdad, depedeca ormaldad 4. Estmacó de los parámetros Mímos cuadrados,

Más detalles

Análisis de Regresión Lineal Simple.

Análisis de Regresión Lineal Simple. Aál de Regreó Leal mple. Itroduccó Regreó mple Método de lo mímo cuadrado Propedade de lo etm. m. cuadrado Predccó Evaluacó de la tedad de la relacó leal Ejercco Itroduccó E mu frecuete ecotrar proceo

Más detalles

Análisis de Regresión

Análisis de Regresión Aálss de Regresó Ig. César Augusto Zapata Urqujo Ig. José Alejadro Marí Del Río Facultad de Igeería Idustral Uversdad Tecológca de Perera 0-05 Modelo de Regresó Leal Smple Y Dados A (, ) =,,. Gráfco o

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES.

VARIABLES ESTADÍSTICAS BIDIMENSIONALES. CONTENIDOS: VARIABLES ESTADÍSTICAS BIDIMENSIONALES. Orgazacó de dato: tabla de frecueca de doble etrada. Frecueca margale. Dagrama de dperó. Regreó leal: recta de regreó. Coefcete de correlacó leal. Iterpretacó.

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 5: Medidas de Dispersión para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 5: Medidas de Dispersión para Datos Agrupados por Valor Simple Curo de Etadítca Udad de Medda Decrptva Leccó 5: Medda de Dperó para Dato Agrupado por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 00 Derecho de Autor Objetvo. Calcular ampltud, varaza, devacó

Más detalles

PROBABILIDAD y ESTADÍSTICA II

PROBABILIDAD y ESTADÍSTICA II UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regoal Sa Ncolá PROBABILIDAD ESTADÍSTICA II UNIDAD Nº Lcecatura e Eeñaza de la Matemátca Año 011 Mg. Lucía C. Sacco Lcecatura e Eeñaza de la Matemátca FRSN - UTN

Más detalles

Tema 1. El modelo de regresión lineal simple

Tema 1. El modelo de regresión lineal simple Método de Regreó-Grado e Etadítca Emprea /47 Tema. El modelo de regreó leal mple. Itroduccó. Covaraza. Correlacó. Hpóte báca 3. Etmacó por el método de lo mímo cuadrado 3. Etmacó de lo parámetro 0 3. Etmacó

Más detalles

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción.

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción. TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO 5..- Itroduccó. Stuacoes segú el vel de formacó: Certeza. Icertdumbre parcal o resgo: (Iversoes co resgo) Icertdumbre total: (Iversoes co certdumbre)

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

EJERCICIOS RESUELTOS TEMA 3.

EJERCICIOS RESUELTOS TEMA 3. INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras.

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras. Capítulo : Comparacó de varo tratameto o grupo Mucha preguta de vetgacó e educacó, pcología, egoco, dutra ceca aturale tee que ver co la comparacó de varo grupo o tratameto. Ya etudamo como comparar dfereca

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

Correlación y regresión lineal. Ejemplos

Correlación y regresión lineal. Ejemplos Correlacó y regresó leal. Ejemplos Problema Nro. 0 Las estaturas (mts.) y los pesos (Kg) de 0 jugadores de Balocestos so: Estatura X Pesos Y(Kg) (mts) 86 85 89 85 90 86 9 90 93 87 98 93 0 03 03 00 93 9

Más detalles

PROBABILIDAD Y ESTADISTICA

PROBABILIDAD Y ESTADISTICA 1. Es u cojuto de procedmetos que srve para orgazar y resumr datos, hacer ferecas a partr de ellos y trasmtr los resultados de maera clara, cocsa y sgfcatva? a) La estadístca b) Las matemátcas c) La ceca

Más detalles

Regresión y correlación lineal.

Regresión y correlación lineal. Regresó y correlacó leal. Este procedmeto proporcoa medos legítmos, modelos matemátcos a trabes de los cuales, se puede establecer asocacoes etre varables de terés e las cuales la relacó usual o es casual.

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA TRATA DE DESCRIBIR CONJUNTOS DE DATOS RESUMIENDO LA INFORMACIÓN QUE ESTOS PROPORCIONAN, UTILIZANDO: TABLAS DE FRECUENCIAS GRÁFICAS MEDIDAS NUMÉRICAS REPRESENTATIVAS (POSICIÓN, DISPERSIÓN

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

N E R. A j(12) i(12) i'(1/2) 0,05 0, , B i(4) i''(1/2) 0,0125 0, i'''(1/2) 0,1025

N E R. A j(12) i(12) i'(1/2) 0,05 0, , B i(4) i''(1/2) 0,0125 0, i'''(1/2) 0,1025 . Queremo realzar ua mpocó a plazo fjo, para lo cual acudmo a tre etdade facera. La codcoe que o ofrece o: el baco ofrece u % omal pagadero meualmete, el baco B ofrece u,% efectvo trmetral y el baco u

Más detalles

Tema 2: Errores de Especificación y Problemas con la Muestra

Tema 2: Errores de Especificación y Problemas con la Muestra Tema : Errores de Especfcacó y Problemas co la Muestra TEMA : ERRORES DE ESPECIFICACIÓN ) Itroduccó ) Omsó de Varables Relevates 3) Iclusó de Varables Superfluas 4) Mala Especfcacó de la Forma Fucoal 5)

Más detalles

Gráfica de los resultados experimentales: Variable Independiente: Variable Dependiente: Variable asociada:

Gráfica de los resultados experimentales: Variable Independiente: Variable Dependiente: Variable asociada: :: OBJETIVOS [3.] o Apreder a presetar los datos epermetales como grafcas -. o Apreder a usar las hojas de papel logarítmco Semlogarítmco o Determar la relacó matemátca de ua grafca leal de datos epermetales

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x) APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

10 MEDIDAS DE DISPERSIÓN

10 MEDIDAS DE DISPERSIÓN Capítulo 10 MEDIDAS DE DISPERSIÓN U mportate cocepto de la etadítca e que gú promedo por í mmo da ua dea clara de la dtrbucó del eveto; aú cuado e codere ademá lo extremo uperor e eror, o extrá ua vó clara

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS CONVOCATORIA DE 2010

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS CONVOCATORIA DE 2010 UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO PARA MAYORES DE AÑOS CONVOCATORIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES RESOLUCIÓN DE LOS EJERCICIOS PROPUESTOS Ejercco a) ( puto) Racoalce mplfque

Más detalles

Análisis de Regresión y Correlación. Material Preparado por Olga Susana Filippini y Hugo Delfino 1

Análisis de Regresión y Correlación. Material Preparado por Olga Susana Filippini y Hugo Delfino 1 Aálss de Regresó y Correlacó Materal Preparado por Olga Susaa Flpp y Hugo Delfo ORIGEN HISTÓRICO DEL TÉRMINO REGRESlÓN El térmo regresó fue troducdo por Fracs Galto. E u famoso artículo Galto platea que,

Más detalles

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN TEMAS 1-2-3 CUESTIOARIO DE AUTOEVALUACIÓ 2.1.- Al realzar los cálculos para obteer el Ídce de G se observa que: p 3 > q 3 y que p 4 >q 4 etoces: La prmera desgualdad es falsa y la seguda certa. La prmera

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

Análisis de la Varianza

Análisis de la Varianza Descrpcó breve del tema Aálss de la Varaza Tema. troduccó al dseño de expermetos. El modelo. Estmacó de los parámetros. Propedades de los estmadores 5. Descomposcó de la varabldad 6. Estmacó de la dfereca

Más detalles

1.- DISTRIBUCIÓN BIDIMENSIONAL

1.- DISTRIBUCIÓN BIDIMENSIONAL º Bachllerato Matemátcas I Dpto de Matemátcas- I.E.S. Motes Oretales (Izalloz)-Curso 0/0 TEMAS 3, 4 y 5.- DISTRIBUCIONES BIDIMENSIONALES. CÁLCULO DE PROBABILIDADES. DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN

Más detalles

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA Colego Sagrada Famla Matemátcas 4º ESO 011-01 1.- TERMIOLOGÍA. TABLAS Y GRÁFICOS ESTADÍSTICOS ESTADÍSTICA DESCRIPTIVA La poblacó es el cojuto de de todos los elemetos, que cumpledo ua codcó, deseamos estudar.

Más detalles

6 El modelo de regresión lineal

6 El modelo de regresión lineal 6 El modelo de regresó leal 1. Coceptos báscos sobre el aálss de regresó leal. Ajuste de la recta de regresó 3. Bodad de ajuste. La regresó leal múltple 5. Descrpcó estadístca de la relacó etre dos varables:

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

Conceptos teóricos para resolver ejercicios tema 1

Conceptos teóricos para resolver ejercicios tema 1 Cocepto teórco para reolver ejercco tema MEDIDAS DE CONCENTRACIÓN Cocepto: Grado de cocetracó de la produccó (empleo, veta) e ua dutra (mporta tato el úmero como la dtrbucó relatva del tamaño de la emprea

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

1 Estadística. Profesora María Durbán

1 Estadística. Profesora María Durbán Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II.

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II. Teoría Smplfcada de ERRORES Suscrbe este documeto los coordadores de Laboratoro de Químca, Físca I y Físca II. Defcoes Báscas: -Error absoluto (o error): Itervalo xe dode co máxma probabldad se ecuetra

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

10 MUESTREO. n 1 9/ / σ σ 1

10 MUESTREO. n 1 9/ / σ σ 1 10 MUESTREO 1 Cómo varará la desvacó típca muestral s se multplca por cuatro el tamaño de la muestra? Y s se aumeta el tamaño de la muestra de 16 a 144? S µ y so la meda y la desvacó típca poblacoales,

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama

Más detalles

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA 3. Itroduccó Los datos stétcos so elemetos de suma mportaca e los sstemas de dseño e presas de almaceameto, ya que se evalúa el propósto del sstema co sumo

Más detalles

Calibración de Modelos Hidrológicos Juan Cabrera, Civ. Eng. Universidad Nacional de Ingeniería Facultad de Ingeniería Civil

Calibración de Modelos Hidrológicos Juan Cabrera, Civ. Eng. Universidad Nacional de Ingeniería Facultad de Ingeniería Civil Calbracó de Modelo Hdrológco Jua Cabrera, Cv. Eg. Uverdad Nacoal de Igeería Facultad de Igeería Cvl 1. Itroduccó El uo de modelo hdrológco tee por faldad mular lo feómeo que ocurre e la realdad. S embargo,

Más detalles

Figura 1

Figura 1 Regresó Leal Smple 7 Regresó Leal Smple 7. Itroduccó Dra. Daa Kelmasky 0 E muchos problemas cetífcos teresa hallar la relacó etre ua varable (Y), llamada varable de respuesta, ó varable de salda, ó varable

Más detalles

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO.

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO. Tema 60.Parámetros estadístcos. Calculo propedades y sgfcado Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGIFICADO.. Itroduccó. Defcó de estadístca. Estadístca descrptva y estadístca ferecal.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

Variables bidimensionales: regresión y correlación

Variables bidimensionales: regresión y correlación Varables bdmesoales: regresó correlacó VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1. Itroduccó.... Dstrbucoes margales... 4 3. Mometos... 7 3.1 Mometos respecto al orge... 7 3. Mometos respecto a la meda...

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

ESTADÍSTICA. Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid

ESTADÍSTICA.  Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid www.et.upm.e/gor/etadtca/ ESTADÍSTICA. Decrptva. Probabldad 3. Ifereca 4. Aál de la varaza 5. Deño de Epermeto 6. Regreó leal Ecuela Técca Superor de Igeero Idutrale Uverdad Poltécca de adrd Departameto

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS

INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS INGENIERÍA INDUTRIAL A meudo, e la práctca, se requere resolver prolemas que clue cojutos de varales, cuado se sae que este algua relacó herete etre ellas, esa relacó se puede ecotrar a partr de la formacó

Más detalles

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_01. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D.

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_01. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D. CPIULO 2º FUNCIONES DE VECORES Y MRICES_ Ig. Dego lejadro Patño G. M.Sc, Ph.D. Fucoes de Vectores y Matrces Los operadores leales so fucoes e u espaco vectoral, que trasforma u vector desde u espaco a

Más detalles

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión Estadístca I Capítulo. Meddas de poscó y dspersó Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gl José María Saraba Alegría DPTO. DE ECOOMÍA Este tema se publca bajo Lceca: Creatve Commos BY-C-SA

Más detalles

UNIVERSITAT ROVIRA I VIRGILI

UNIVERSITAT ROVIRA I VIRGILI UNIVERSITAT ROVIRA I VIRGILI Departamet de Químca Aalítca Químca Orgàca PARÁMETROS CUALIMÉTRICOS DE MÉTODOS ANALÍTICOS QUE UTILIZAN REGRESIÓN LINEAL CON ERRORES EN LAS DOS VARIABLES Te Doctoral FRANCISCO

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 6: Medidas de Dispersión para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 6: Medidas de Dispersión para Datos Agrupados por Clases Curo de Etadítca Udad de Medda Decrptva Leccó 6: Medda de Dperó para Dato Agrupado por Clae Creado por: Dra. Noeí L. Ruz Lardo, EdD 00 Derecho de Autor Objetvo. Calcular la edda de dperó (apltud, varaza,

Más detalles

ANÁLISIS DE REGRESIÓN SIMPLE Y CORRELACIÓN

ANÁLISIS DE REGRESIÓN SIMPLE Y CORRELACIÓN UNIDAD 6 ANÁLISIS DE REGRESIÓN SIMPLE Y CORRELACIÓN Itroduccó a la udad El uso de la regresó leal smple es muy utlzado para observar el tpo de relacó que exste etre dos varables y poder llevar a cabo la

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos

Más detalles

4 METODOLOGIA ADAPTADA AL PROBLEMA

4 METODOLOGIA ADAPTADA AL PROBLEMA 4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

Tema 3: Valoración financiera de conjuntos de capitales 1

Tema 3: Valoración financiera de conjuntos de capitales 1 Tea 3: aloracó facera de cojuto de captale. alor facero de u cojuto de captale Se deoa valor facero de u cojuto de captale e u oeto t τ, a u ua facera e dcho puto. Aí, dado u cojuto de captale (, t,(,

Más detalles

FUNCIONES ALEATORIAS

FUNCIONES ALEATORIAS Uversdad de Medoza Ig. Jesús Rubé Azor Motoya FUNCIONES ALEATORIAS Ua varable aleatora se defe como ua fucó que represeta gráfcamete el resultado de u expermeto a los úmeros reales, esto es, X(), dode

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V Área Académca de: Químca Líea de Ivestgacó: Fscoquímca de Almetos Programa Educatvo: Lcecatura e Químca Nombre de la Asgatura: Químca Aalítca V Tema: Represetacoes gráfcas de las relacoes propedadcocetracó

Más detalles