TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE"

Transcripción

1 TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

2 LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo. Págnas Modelos Multvarantes

3 LA CORRELACIÓN LINEAL COEFICIENTE DE CORRELACIÓN de PEARSON Y Es una medda del grado de asocacón entre dos varables de ntervalo o razón Una manera útl de examnar la relacón entre dos varables de ntervalo es medante un DIAGRAMA DE DISPERSIÓN Tendenca lneal A valores altos de Y le corresponden valores altos de X r xy > 0, drecta r xy = 0, ausenca de relacón X r xy < o, nversa Modelos Multvarantes 3

4 COVARIANZA Y CORRELACIÓN La correlacón es una medda estandarzada de la Covaranza -1 < r xy < + 1: es una medda tanto de la dreccón como de la fuerza de la relacón Permte que se compare la relacón entre pares de varables ndependentemente de las undades en que se mdan Cov( X, Y ) ( X X )( Y Y ) n r xy ( X ( n) S X )( Y x S y Y ) Modelos Multvarantes 4

5 REGRESIÓN LINEAL SIMPLE QUÉ ES? Un tpo de análss que permte conocer en qué medda una VD o crtero puede ser explcada o predcha a partr de una VI o predctora, sendo ambas de ntervalo o razón 100 Y EJEMPLO : V.D. V.I. Acertos en un Test (Y) Horas de estudo (X) Acertos test Horas de estudo X Modelos Multvarantes 5

6 Método de MÍNIMOS CUADRADOS Podríamos ntentar ajustar una línea a ojo, por la mtad del dagrama de dspersón, para obtener una relacón lneal entre X e Y Pero vamos a hacerlo sguendo un procedmento matemátco, defnendo una recta en el plano X,Y, con unos parámetros concretos. Tenemos que buscar la ecuacón que mnmce los errores de predccón. Para ello tenemos que calcular la Ecuacón de la recta (Y=a+bX), donde: a= valor de la nterseccón con el eje Y b= la pendente de la recta Debe mnmzar el error o la desvacón no explcada Mínmos cuadrados ( Y ˆ Y ) =e ; e mínmo Modelos Multvarantes 6

7 Método de MÍNIMOS CUADRADOS Los valores de a y b que mnmzan la suma del cuadrado de los errores ( Y ˆ Y ) son: a Y bx b rxy S Sy x En el caso de que b= 0.93 Predecríamos un ncremento de 0.93 en los acertos del test por cada hora de estudo. Un sgno negatvo de b ndcaría que a más horas de estudo menos acertos. Modelos Multvarantes 7

8 Interpretacón de los coefcentes a ndca el valor pronostcado de Y cuando X es cero ( ntercepto ) b representa la cantdad de cambo que pronostcaríamos en Y para un cambo de una undad en X (pendente de la recta) La ecuacón de regresón (Y = X) puede utlzarse para generar pronóstcos de Y a partr de X Además se cumple que la dferenca entre los valores observados y pronostcados elevados al cuadrado es mínma SC error Y Yˆ e mínmo Nngún otro valor de a y b daría este SC error tan pequeño Modelos Multvarantes 8

9 FUENTES DE VARIACIÓN Desvacón total= Desvacón debdo a X + Desvacón debdo al error SC total = Sc explcada por la regresón + Sc no explcada por la regresón ( Y Y) ( Ŷ Y) ( Y Y ˆ ) Varacón Total Varacón. explcada por la regresón = + Varacón.no explcada por la regresón Modelos Multvarantes 9

10 GRÁFICAMENTE Y ( Y Y ) total ( Y ˆ Y ) y=a+bx no explcada ( ˆ Y ) Y explcada X Y La predccón más senclla sería asgnarle la meda global. La parte explcada por el modelo es justamente la cantdad en que se reduce la desvacón total debdo a nuestro conocmento de otras varables y su relacón con la VD (ecuacón de regresón) Modelos Multvarantes 10

11 Varanza explcada Se le llama tambén coefcente de determnacón (R ) Es una proporcón entre la varacón explcada por la ecuacón de regresón, con respecto a la varacón total R xy varac.explcada varac.total SC explcada SC total ( Yˆ ( Y Y Y ) ) R xy 1 varac.error varac.total SC error SC total ( Y ( Y Yˆ ) Y ) Modelos Multvarantes 11

12 EJEMPLO El objetvo del responsable de MKT de una estacón de esquí es determnar cuáles son las varables que mejor explcan que un sujeto esquíe mucho o poco en su estacón Trató de explcar el nº de días que los esquadores ban a su estacón durante una temporada (V1). Para ello regstró Edad de los esquadores (V) Años de práctca (V3) Ingresos económcos (V4) Satsfaccón general (V5) Nº de personas con las que esquía (V6) Modelos Multvarantes 1

13 DISEÑO Prestar especal atencón a varos elementos: Fjar ben los objetvos Todas las varables deben ser métrcas (de ESCALA) Especfcar correctamente el modelo: Especfcar la VD y las VI No omtr varables relevantes n nclur rrelevantes Utlzar herramentas adecuadas para recoger (medr) los datos Garantzar que se cumplen una sere de Supuestos: NORMALIDAD DE LAS Vs LINEALIDAD (relacón lneal entre predctores y crtero) Ausenca de MULTICOLINEALIDAD INDEPENDENCIA de los errores (no correlaconados) NORMALIDAD de los errores (resduos aleatoros, meda de errores = 0) Modelos Multvarantes 13

14 Interpretacón de Resultados BONDAD DE AJUSTE R esumen del mod elo Modelo 1 3 a. b. R R cuadrado Error típ. de la R cuadrado corregda estmacón,819 a,670,656 1,478,879 b,773,75 1,54,917 c,841,818 1,075 Varables predctoras: (Constante), IN GRESOS EC ONÓMICOS Varables predctoras: (Constante), IN GRESOS EC ONÓMICOS, AÑOS PRACTICANDO ESQUÍ c. Varables predctoras: (Constante), IN GRESOS EC ONÓMICOS, AÑOS PR ACTIC ANDO ESQUÍ, SAT ISFACC IÓN GENERAL Modelos Multvarantes 14

15 Interpretacón de Resultados SIGNIFICACIÓN DEL MODELO (contraste global: F) Se comprueba hasta qué punto la Varacón Explcada por la Regresón es sgnfcatva. Se trata de un cocente o proporcón con relacón a la varanza de error. Cuanto más grande sea con los datos muestrales, menor probabldad habrá de que en la poblacón ese cocente sea 0. Modelo 1 3 a. b. Regresón Resdual Total Regresón Resdual Total Regresón Resdual Total Suma de AN OVA d cuadrados gl cuadrátca F Sg. 101, ,995 46,689,000 a 50,45 3,185 15, ,619 58,809 37,370,000 b 34,61 1,574 15, , ,66 36,940,000 c 4,53 1 1,155 15,40 4 Varables predctoras: (Constante), INGRESOS ECONÓMICOS Meda Varables predctoras: (Constante), INGRESOS ECONÓMICOS, AÑOS PRACTICANDO ESQUÍ c. Varables predctoras: (Constante), INGRESOS ECONÓMICOS, AÑOS PRACTICANDO d. ESQUÍ, SATISFACCIÓN GENERAL Varable dependente: Nº DÍAS QUE ESQUÍA POR TEMPORADA 15

16 Interpretacón de Resultados SIGNIFICACIÓN DE LOS PARÁMETROS (contraste partcular: t) Para comprobar s cada V.I. por nfluye sgnfcatvamente sobre la V.D., comprobando s se trata de un predctor estadístcamente sgnfcatvo ( sgnfcatvamente dstnto de 0 ) H 0 : B P = 0 H 1 : B P 0 C oefcentes a Modelo 1 3 a. (Constante) INGRESOS ECONÓMICOS (Constante) INGRESOS ECONÓMICOS AÑOS PRACTICANDO ESQUÍ (Constante) INGRESOS ECONÓMICOS AÑOS PRACTICANDO ESQUÍ SATISFACCIÓN GENERAL B Coefcentes no estandarzados Varable dependente: Nº DÍAS QUE ESQUÍA POR TEMPORADA Coefcentes estandarzados Error típ. Beta t Sg.,343,813,4,677,9E-03,000,819 6,833,000 9,78E-0,695,140,890,153E-03,000,603 4,94,000,7,07,386 3,151,005 -,44,98 -,85,033,075E-03,000,581 5,56,000,01,06,341 3,15,004,388,19,68,996,007 t B Se p B p Modelos Multvarantes 16

17 Interpretacón de Resultados INDICADORES DE BONDAD DE AJUSTE: a) El cuadrado del Coefcente de Correlacón Múltple (R ) b) El % de varanza explcada (R x100). 84% c) R ajustado, porque R aumenta en funcón del número de V.I. y con un n pequeño R aj. R P(1 n P R ) LOS PARÁMETROS a es la constante, el ntercepto, valor de Y cuando X=0 P, ndca la dreccón de la relacón y la ntensdad de la relacón S P > 0: un ncremento en una undad, de la varable asocada X P mplca un ncremento en Y en undades (S se ncrementa en un punto la satsfaccón se ncrementará la estanca en días) S R SC SC Re gr Y 0.84 P < 0: ncremento en una undad, de la varable asocada X P mplca una dsmnucón en Y en undades 17

18 Interpretacón de Resultados b vs. Como las X P fueron meddas en escalas dferentes (años, euros, número personas, etc.) los coefcentes b NO SON COMPARABLES ENTRE SÍ Para saber qué predctor es más mportante hay que normalzar los coefcentes b. S X p p bp S Y Modelos Multvarantes 18

19 Razones por las que B p puede no ser sgnfcatvo Tamaño de la muestra nadecuado. Solucón: amplar el n (arma de doble flo) Especfcacón ncorrecta del modelo (la relacón entre x e Y no es lneal). Solucón: transformar las varables. Poco recorrdo de los valores de X e Y. Solucón: Recurrr al Análss Dscrmnante o a la Regresón Logístca ( Grupos Polares ) Exstenca de multcolnealdad. VI en prncpo mportantes no entran en la ecuacón porque ya lo hceron antes otras con las que guarda mucha relacón. Puede dervar tambén en resultados contradctoros (B negatvos cuando las correlacones son postvas). Solucones: prescndr de alguna varable, análss de correlacones prevo, Modelos Multvarantes 19

20 La seleccón de varables VARIOS MÉTODOS A la hora de realzar el análss de regresón medante SPSS exsten dferentes métodos para selecconar los predctores a nclur en el modelo de regresón. Las opcones son fundamentalmente dos: MÉTODO INTRODUCIR (ENTER). Construye la ecuacón utlzando todos los predctores. Se utlza por defecto. No aconsejable: R está nflado. MÉTODOS POR PASOS (STEPWISE). Se van ncorporando o elmnando varables paso a paso,s cumplen unos crteros de seleccón. El objetvo es sempre maxmzar el ajuste del modelo utlzando el menor nº de predctores posble. Haca delante vs. haca atrás. No olvdar la Parsmona! Modelos Multvarantes 0

21 La seleccón de varables CRITERIOS ESTADÍSTICOS: Sgnfcacón Mayor correlacón con el crtero Mayor correlacón parcal (elmnando nfluenca del resto) Cambo en R (seleccona la varable que maxmce el cambo) Toleranca alta (una VI no puede ser explcada por las otras VI) Modelos Multvarantes 1

22 QUÉ ES? EL ERROR EN LA REGRESIÓN Y - Y = e A qué puede deberse? Varables relevantes omtdas en el modelo Mala especfcacón del modelo (relacones no lneales) Errores en la medcón (recogda de datos) Comportamento cambante de los sujetos Falta de recorrdo en la VD o en las VI Modelos Multvarantes

23 Cómo mejorar el ajuste del modelo? Tratamento de los Outlers Sujetos que estropean el ajuste del modelo Se detectan en base a los resduos Brutos (no tpfcados) Tpfcados (dvddos por S e - nunca superor a 3, ncluso ) Otros ndcadores 100 Y Dstanca de Cook (valores >1 gran mportanca de un sujeto en los parámetros del modelo) Dstanca de Mahalanobs (valores altos, sujetos dstntos al resto) X Modelos Multvarantes 3

24 Comprobacón de supuestos Normaldad de cada VI (Lllefors) Lnealdad Dagramas de dspersón partculares (de cada VI con la VD) Ausenca de Multcolnealdad TOLERANCIA. Una toleranca alta ndca que la VI es ndependente del resto de varables del modelo. Independenca de los errores (resduos) Estadístco Durbn-Watson Normaldad de los resduos Hstograma, Gráfco de probabldad normal, K-S Modelos Multvarantes 4

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

Regresión Binomial Negativa

Regresión Binomial Negativa Regresón Bnomal Negatva Resumen El procedmento Regresón Bnomal Negatva está dseñado para ajustar un modelo de regresón en el cual la varable dependente Y consste de conteos. El modelo de regresón ajustado

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón

Más detalles

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general). 3. En el modelo lneal general Y = X b + e, explcar la forma

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

T. 9 El modelo de regresión lineal

T. 9 El modelo de regresión lineal 1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Regresión y correlación simple 113

Regresión y correlación simple 113 Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes

Más detalles

Regresión Logística. StatFolio Muestra: logistic.sgp

Regresión Logística. StatFolio Muestra: logistic.sgp Regresón Logístca Resumen El procedmento de Regresón Logístca está dseñado para ajustarse a un modelo de regresón en el que la varable dependente Y caracterza un evento con sólo dos posbles resultados.

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE Especalsta en Estadístca y Docenca Unverstara REGRESION LINEAL MULTIPLE El modelo de regresón lneal múltple El modelo de regresón lneal múltple con p varables predctoras y basado en n observacones tomadas

Más detalles

Tema 2: El modelo clásico de regresión

Tema 2: El modelo clásico de regresión CURSO 010/011 Tema : El modelo clásco de regresón Aránzazu de Juan Fernández ECONOMETRÍA I ESQUEMA DEL TEMA Presentacón del modelo Hpótess del modelo Estmacón MCO Propedades algebracas de los estmadores

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

Relación 2: Regresión Lineal.

Relación 2: Regresión Lineal. Relacón 2: Regresón Lneal. 1. Se llevó a cabo un estudo acerca de la cantdad de azúcar refnada (Y ) medante un certo proceso a varas temperaturas dferentes (X). Los datos se codfcan y regstraron en el

Más detalles

HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: ANOVA (PARTE I)

HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: ANOVA (PARTE I) HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: Módulo 13 APUNTES DE CLASE Profesor: Arturo Ruz-Falcó Rojas Madrd, Mayo 009 Pág. 1 Módulo 13. HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

El subestimado problema de la confusión residual. Héctor Lamadrid-Figueroa; Alejandra Montoya; Gustavo Ángeles

El subestimado problema de la confusión residual. Héctor Lamadrid-Figueroa; Alejandra Montoya; Gustavo Ángeles El subestmado problema de la confusón resdual Héctor Lamadrd-Fgueroa; Alejandra Montoya; Gustavo Ángeles El objetvo de la estmacón del efecto Establecer s exste una relacón causal entre una exposcón y

Más detalles

Métodos cuantitativos de análisis gráfico

Métodos cuantitativos de análisis gráfico Métodos cuanttatvos de análss gráfco Método de cuadrados mínmos Regresón lneal Hemos enfatzado sobre la mportanca de las representacones gráfcas hemos vsto la utldad de las versones lnealzadas de los gráfcos

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza EL ANÁLSS DE LA VARANZA (ANOVA). Estmacón de componentes de varanza Alca Maroto, Rcard Boqué Grupo de Qumometría y Cualmetría Unverstat Rovra Vrgl C/ Marcel.lí Domngo, s/n (Campus Sescelades) 43007-Tarragona

Más detalles

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte Máster de Comerco, Transporte y Comuncacones Internaconales Análss cuanttatvo aplcado al Comerco Internaconal y el Transporte Ramón úñez Sánchez Soraya Hdalgo Gallego Departamento de Economía Introduccón

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

Mª Dolores del Campo Maldonado. Tel: :

Mª Dolores del Campo Maldonado. Tel: : Mª Dolores del Campo Maldonado Tel: : 918 074 714 e-mal: ddelcampo@cem.mtyc.es Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Pronósticos. Humberto R. Álvarez A., Ph. D.

Pronósticos. Humberto R. Álvarez A., Ph. D. Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las

Más detalles

Midiendo la Asociación lineal entre dos variables

Midiendo la Asociación lineal entre dos variables Unversdad de Sonora XVIII Semana Regonal de Investgacón y Docenca en Matemátcas Mdendo la Asocacón lneal entre dos varables Rosa Ma. Montesnos Csneros Adán Durazo Armenta Departamento de Matemátcas Hermosllo,

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

Facultad de Ciencias Básicas

Facultad de Ciencias Básicas Facultad de Cencas Báscas ANÁLISIS GRÁFICO DE DATOS EXPERIMENTALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos expermentales. Establecer un crtero para el análss de grafcas

Más detalles

TODO ECONOMETRIA. Variables cualitativas

TODO ECONOMETRIA. Variables cualitativas TODO ECONOMETRIA Varables cualtatvas Índce Defncón de las varables dummy (o varables fctcas) Regresón con varables explcatvas dummy Varables dummy S queremos estudar s los hombres ganan más que las mujeres,

Más detalles

1.Variables ficticias en el modelo de regresión: ejemplos.

1.Variables ficticias en el modelo de regresión: ejemplos. J.M.Arranz y M.M. Zamora.Varables fctcas en el modelo de regresón: ejemplos. Las varables fctcas recogen los efectos dferencales que se producen en el comportamento de los agentes económcos debdo a dferentes

Más detalles

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES PRONÓSTICOS PREDICCIÓN, PRONÓSTICO Y PROSPECTIVA Predccón: estmacón de un acontecmento futuro que

Más detalles

Riesgos Proporcionales de Cox

Riesgos Proporcionales de Cox Resgos Proporconales de Cox Resumen El procedmento Resgos Proporconales de Cox esta dseñado para ajustar un modelo estadístco sem-parámetrco a los tempos de falla de una o mas varables predctoras. Los

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

Estadística con R. Modelo Probabilístico Lineal

Estadística con R. Modelo Probabilístico Lineal Estadístca con R Modelo Probablístco Lneal Modelo Probablístco Lneal Forma de la funcón: Y b 0 +b 1 X +e Varable dependente, endógena o a explcar dcotómca : Y, S Y 0 e -b 0 - b 1 X con probabldad p. S

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

1. Variable aleatoria. Clasificación

1. Variable aleatoria. Clasificación Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.

Más detalles

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras.

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras. Capítulo : Comparacón de varos tratamentos o grupos Muchas preguntas de nvestgacón en educacón, pscología, negocos, ndustra y cencas naturales tenen que ver con la comparacón de varos grupos o tratamentos.

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Objetivos. Contenidos. Cátedra I Estadística II Autor I Gerardo Heckmann

Objetivos. Contenidos. Cátedra I Estadística II Autor I Gerardo Heckmann ANALISIS DE ASOCIACION ENTRE VARIABLES. REGRESION Objetvos Presentar el modelo de regresón lneal smple como herramenta para estmar medas condconales y predecr los valores de una varable en funcón de la

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca www.aulatecnologa.com 1 ETADÍTICA DECRIPTIVA Lo prmero que buscamos con la Estadístca es el tratamento matemátco a partr de una nformacón epermental. Cuando queremos observar la evolucón de

Más detalles

Estimación de la Demanda: Pronósticos

Estimación de la Demanda: Pronósticos UNIVERSIDAD SIMON BOLIVAR Estmacón de la Demanda: Pronóstcos PS-4161 Gestón de la Produccón I 1 Bblografía Recomendada Título: Dreccón de la Produccón: Decsones Estratégcas. Capítulo 4: Prevsón Autores:

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles

Física del Medio Ambiente

Física del Medio Ambiente Físca del Medo Ambente Teoría de Errores (Programa de Práctcas) Sara Marañón Jménez (smaranon@ugr.es) Andy Kowalsk (andy@ugr.es) 1 Programa IB. Teoría de Errores. (3h) Introduccón. Errores y conceptos

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

Nociones sobre cuadrados mínimos por Dr. Horacio Bruzzone

Nociones sobre cuadrados mínimos por Dr. Horacio Bruzzone Nocones sobre cuadrados mínmos por Dr. Horaco Bruzzone 1. Introduccón Supongamos que, a través de una sere de medcones, se han determnado un conjunto de n pares de valores de dos magntudes físcas, X e

Más detalles

INTERPRETACIÓN DE LOS PARÁMETROS DE UN MODELO BÁSICO DE REGRESIÓN LINEAL. Rafael de Arce Ramón Mahía Febrero de 2012

INTERPRETACIÓN DE LOS PARÁMETROS DE UN MODELO BÁSICO DE REGRESIÓN LINEAL. Rafael de Arce Ramón Mahía Febrero de 2012 INTERPRETACIÓN DE LOS PARÁMETROS DE UN MODELO BÁSICO DE REGRESIÓN LINEAL Rafael de Arce Ramón Mahía Febrero de 0 Además de abordar en otras sesones y documentos los aspectos relatvos a la estmacón de los

Más detalles

1 EY ( ) o de E( Y u ) que hace que g E ( Y ) sea lineal. Por ejemplo,

1 EY ( ) o de E( Y u ) que hace que g E ( Y ) sea lineal. Por ejemplo, Modelos lneales generalzados En los modelos no lneales (tanto en su formulacón con coefcentes fjos o coefcentes aleatoros) que hemos vsto hasta ahora, exsten algunos que se denomnan lnealzables : son modelos

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Diseño y Análisis de Experimentos en el SPSS 1

Diseño y Análisis de Experimentos en el SPSS 1 Dseño y Análss de Expermentos en el SPSS EJEMPLO. Los sguentes datos muestran las meddas de hemoglobna (gramos por 00 ml) en la sangre de 40 ejemplares de una espece de truchas marrones. Las truchas se

Más detalles

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales: EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n

Más detalles

EL MODELO DE REGRESIÓN LINEAL SIMPLE

EL MODELO DE REGRESIÓN LINEAL SIMPLE Unversdad Carlos III de Madrd César Alonso ECONOMETRIA EL MODELO DE REGRESIÓN LINEAL SIMLE Índce 1. Relacones empírcas y teórcas......................... 1 2. Conceptos prevos................................

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

3. Asociación, Correlación y Regresión Lineal

3. Asociación, Correlación y Regresión Lineal 3. Asocacón, Correlacón y Regresón Lneal 3 3.. Asocacón y Causaldad Algunos sucesos o crcunstancas tenden a segur a otros cuando ocurren en el tempo. varos de estos sucesos que ocurren repetdamente en

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

RMV FUNDEVAL, Bolsa Nacional de Valores, S.A. y Universidad Interamericana de Costa Rica San José, Costa Rica

RMV FUNDEVAL, Bolsa Nacional de Valores, S.A. y Universidad Interamericana de Costa Rica San José, Costa Rica RV-2005-03 DETERINACIÓN DE LA TASA LIBRE DE RIESGO IPLÍCITA PARA EL ERCADO DE VALORES EN COSTA RICA: UNA PROPUESTA * RODRIGO ATARRITA VENEGAS ** FUNDEVAL, Bolsa Naconal de Valores, S.A. y Unversdad Interamercana

Más detalles

Tema 9. Análisis de Varianza de un factor. Análisis de la Varianza (ANOVA) Conceptos generales

Tema 9. Análisis de Varianza de un factor. Análisis de la Varianza (ANOVA) Conceptos generales Tema 9 Análss de la Varanza (ANOVA) Conceptos generales La técnca del Análss de la Varanza consste en descomponer la varabldad de una poblacón (representada por su varanza) en dversos sumandos según los

Más detalles

Econometría de corte transversal. Pablo Lavado Centro de Investigación de la Universidad del Pacífico

Econometría de corte transversal. Pablo Lavado Centro de Investigación de la Universidad del Pacífico Econometría de corte transversal Pablo Lavado Centro de Investgacón de la Unversdad del Pacífco Contendo Defncones báscas El contendo mínmo del curso Bblografía recomendada Aprendendo econometría Defncones

Más detalles

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento

Más detalles

Tema 6 El mercado de bienes y la función IS

Tema 6 El mercado de bienes y la función IS Tema 6 El mercado de benes y la funcón IS Macroeconomía I Prof. Anhoa Herrarte Sánchez Curso 2007-08 Bblografía para preparar este tema Apuntes de clase Capítulo 3, Macroeconomía, O. Blanchard Prof. Anhoa

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLII D FRCUNCIA XPRION PARA L CÁLCULO D LO VNO PARA L PRÍODO D RORNO Y D LO RPCIVO RROR ÁNDAR D IMACIÓN RQURIDO PARA LA DRMINACIÓN D LO INRVALO D CONFIANZA D LO IMADO D LO VALOR PRADO JULIAN DAVID ROJO

Más detalles

ESTADISTICA APLICADA Y ECONOMETRIA

ESTADISTICA APLICADA Y ECONOMETRIA UNIVERSIDAD DE CHILE MAGISTER EN GESTION Y POLITICAS PUBLICAS ESTADISTICA APLICADA Y ECONOMETRIA Sara Arancba C 01 1 Objetvos Comprender y aplcar los conceptos báscos de Econometría y metodologías de Análss

Más detalles