MATEMÁTICAS FINANCIERAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICAS FINANCIERAS"

Transcripción

1 MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica

2 Matemáticas Fiacieras: Iterés Simple vs. Iterés ompuesto Matemáticas Fiacieras Qué es preferible? $1. Hoy $1. vs 1 E u año t: tiempo Hoy 1 E u año t: tiempo

3 Matemáticas Fiacieras Valor del Diero e el Tiempo U peso hoy vale más que u peso mañaa. Esta coclusió o se refiere al efecto de la iflació, sio a que si tego u peso hoy, puedo ivertirlo y mañaa voy a teer más que u peso. Dicho de otra maera, ua persoa que tiee $1. hoy, estará dispuesta a ivertir esa catidad (y dejar de cosumir hoy siempre que al cabo de u período recibe los $1. más u premio que compese su sacrificio (tasa de iterés. Valor del Diero e el Tiempo 1. AHORA 1. DENTRO DE 1 AÑO INTERES meses El iterés es el precio del diero e el tiempo. Iterés f (capital, tiempo, riesgo, iflació

4 Matemáticas Fiacieras: Iterés Simple Es el que se calcula sobre u capital que permaece ivariable o costate e el tiempo y el iterés gaado se acumula sólo al térmio de esta trasacció. i 12% aual P 1, S 1, Gaacia ó Iterés Moto - apital Iicial 12 meses Gaacia ó Iterés 1,12-1, Gaacia ó Iterés 12 Matemáticas Fiacieras: Iterés Simple I P x i x I itereses P apital iicial i Tasa de iterés período de tiempo P, i, Importate E esta formula i es la tasa de ua uidad de tiempo y es él úmero de uidades de tiempo. Debe etederse que si i es ua tasa aual, deberá ser él úmero de años, si i es mesual, deberá expresarse e meses.

5 Matemáticas Fiacieras: It. ompuesto E el iterés compuesto, el iterés (I gaado e cada periodo ( es agregado al capital iicial (P para costituirse e u uevo capital (S sobre el cual se calcula u uevo iterés produciédose lo que se cooce como capitalizació la cual puede ser aual, trimestral, mesual, diaria; y se sigue aplicado hasta que vece la trasacció de acuerdo a lo pactado. 2 P S 1 P P x i S 2 S 1 S 1 x i S 3 S 2 S 2 x i S 4 S 3 S 3 x i S i i i i meses Matemáticas Fiacieras: It. ompuesto E los problemas de iterés compuesto debe expresarse i y e la misma uidad de tiempo efectuado las coversioes apropiadas cuado estas variables correspoda a diferetes períodos de tiempo. Datos P 1, i mesual.1 o 1% mesual 12 meses I? No.Periodos apital Iicial (P Iterés (I P x i p x apitaliteres (S P I (m S S S S S S 6

6 Matemáticas Fiacieras: It. ompuesto P S (1 i S P x (1i i ( ( S (1/ - 1 P log S log P log ( 1 i Dode : P apital iicial i tasa de iterés del periodo periodo de tiempo S Moto total o capital fial Matemáticas Fiacieras: It Simple e It. ompuesto LA DIFERENIA FUNDAMENTAL ENTRE EL INTERÉS SIMPLE Y EL INTERÉS OMPUESTO ESTRIBA EN QUE EN EL PRIMERO EL APITAL PERMANEE ONSTANTE, Y EN EL SEGUNDO EL APITAL AMBIA AL FINAL DE ADA PERÍODO DE TIEMPO. Ejemplo: Ua tasa mesual de 1% o es equivalete a ua tasa aual de 12%, a meos que se especifique iterés simple. La tasa compuesta equivale a 1,1 elevado a 12, meos la uidad, es decir, 1, ,68%. (1 c r (1 a r c m 12

7 Matemáticas Fiacieras: It Simple e It. ompuesto Si se deposita ua catidad, los itereses gaados al cabo de años será iguales a: o iterés simple: Itereses Dode r s a es la tasa o iterés compuesto: Itereses Dode r c a r s a de c [(1 1] r a iterés aual simple es la tasa de iterés aual compuesta Matemáticas Fiacieras: It Simple e It. ompuesto Ejemplo: osidere ua deuda al 12% aual por u moto de 1. UF, a ser pagada e tres años. uál es el valor que habría que pagar? o iterés simple: Por cocepto de devolució de capital, 1. UF Por cocepto de pago de itereses, 3 x,12 x 1.36 UF Total: 1.36 UF. o iterés compuesto: Deuda acumulada año 1: 1. (1, UF Deuda acumulada año 2: 1.12 (1, UF Deuda acumulada año 3: (1, UF Método rápido: 1. (1, UF

8 Valor Presete y Valor Futuro Valor Futuro y Valor Presete Si ua persoa ivierte ua catidad P a ua tasa r durate u período qué catidad tedrá al térmio del período? VF 1 P (1r, que se cooce como el valor futuro Si la ivierte por períodos, el valor futuro será VF P (1r Ua persoa recibirá ua catidad F1 al cabo de u año qué catidad hoy sería equivalete a F1 detro de 1 año? F 1 X (1r X Valor Presete VP 1 F 1 /(1r Al factor 1/(1r se le llama factor de descueto o de actualizació, y es ecesariamete meor que 1 porque la tasa r es positiva

9 Valor Futuro y Valor Presete Valor Futuro y Valor Presete Si la catidad se recibe e períodos más: VP F ( 1 r U caso más geeral es cuado se recibe flujos, uo al fial de cada período: VP F1 (1 r F 2 (1 r F (1 r VP F t t 1 (1 r t

10 Valor Futuro y Valor Presete El caso más geeral es cuado las tasas de iterés cambia e cada período. Si las tasas para cada período so r,1 ; r 1,2 ; r 2,3 ; etc., etoces: VP VP F1 (1 r,1 t t 1 i 1 (1 r F t (1 r i 1, i,1 F2 (1 r 1,2... (1 r,1 F...(1 r 1, Aualidad: : Flujo costate que se paga durate años: VP (1 r Fórmulas últiles (1 r (1 r Multiplicado la ecuació aterior por (1r: 1 r VP.... (1 r (1 r Restado la primera ecuació de la seguda: (1 r VP VP (1 r (1 r ( 2 1 (1 r

11 Fórmulas últiles Despejado el valor de VP: [(1 r VP (1 r 1] r Perpetuidad: : Flujo costate que se paga ifiitamete VP VP [(1 r Lim > (1 r r 1] r Ejemplo 1 Usted quiere comprar u departameto que cuesta UF 3.6. El baco le ofrece u crédito hipotecario por el 75% del valor, a 1 años plazo, co ua tasa aual de 8%. uáto va a cacelar como dividedo mesual? Primero, calculamos la tasa de iterés mesual: i m (1i a (1/12-1 (1,8 (1/12-1,64,64% mesual El moto del crédito será,75 x UF3.6 UF2.7 El dividedo mesual es: 12 (1 r r (1,64,64 VP [(1 r 1] [(1,64 1] 2.7,12 UF 32,36

12 Ua gra tieda ofrece u uevo modelo de televisor. El precio cotado es de $ La tieda ofrece u crédito e 12 cuotas de $ cada ua. uál es la tasa de iterés aual implícita que cobra esta tieda? Sabemos que la relació etre las cuotas y el precio cotado está dado por: Luego: Ejemplo 2 (1 r VP [(1 r r 1] (1 rm [(1 r m Iterado hasta lograr la igualdad, llegamos a que la tasa mesual implícita es de 4%, o e térmios auales, (1,4 12-1,61 6,1% 12 r m 1] Ua persoa obtuvo u crédito de cosumo de $1.3. a 18 meses, pagadero e cuotas iguales, co ua tasa de 1,65% mesual. alcule la cuota. Ejemplo 3 (1 r VP [(1 r r 1] 18 (1,165, [(1,165 1] E u crédito que se paga e cuotas iguales, cada cuota paga itereses y amortizacioes, e motos variables.

13 PRESTAMO 1.3. TASA 1,65% mesual PLAZO 18 meses UOTA mesual DEUDA AL AMORTIZAIÓN DEUDA AL MES INIIO DEL UOTA INTERÉS DE APITAL FINAL DEL MES MES TOTAL PAGO EN UOTAS Amortizació Iterés

14 Iflació y Tasa de Iterés Iflació: Iflació y Tasa de Iterés Es el aumeto sosteido y geeralizado del ivel de precios Se mide a través del Idice de Precios al osumidor (IP, que refleja los cambios e el precio de ua caasta de biees y servicios. Dicha caasta represeta el cosumo promedio de las familias, y se estima a partir de la Ecuesta de Presupuestos Familiares. Poder adquisitivo del diero: uátas caastas puedo comprar co ua determiada catidad de diero? Si hay iflació el poder adquisitivo cae.

15 Iflació y Tasa de Iterés Tasa de iterés omial: mide el aumeto e diero, es decir, lo que se paga por sobre lo adeudado. Ejemplo : Depósitos e pesos a ua cierta catidad de días. Tasa de iterés real: mide el aumeto de poder adquisitivo Ejemplo: tasas e UF X% (esto sigifica que al cabo de u año el diero debiera teer el mismo poder adquisitivo que el diero que ivertí Relació etre las tasas de iterés real y omial: Sea: X: atidad de diero dispoible P: Precio de la caasta de biees e período Q: atidad de caastas compradas : Idice de precios e período 1 : Idice de precios e período 1 i : i r : Iflació y Tasa de Iterés Tasa de iterés omial Tasa de iterés real Iicialmete puede comprar: Q X P

16 Iflació y Tasa de Iterés Si presta X a ua tasa i al fial del período podrá comprar: Q 1 X (1 1 dode f es la tasa de iflació. i P X P (1 (1 i f Q Q (1 (1 i f 1 i r Fialmete, Iflació y Tasa de Iterés (1 i r (1 (1 i f (Ecuació de Fisher Luego, ( 1 i r ( 1 f (1 i

17 Iflació y tasa de iterés Ejemplo: e qué baco me coviee depositar 1UM, e el baco que ofrece 18% de iterés aual o e el que ofrece UF5.5% aual.

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

Imposiciones y Sistemas de Amortización

Imposiciones y Sistemas de Amortización Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas

Más detalles

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL Dr. Wisto Castañeda Vargas ASPECTOS GENERALES Ua aualidad es u cojuto de dos o más flujos, e el que a partir del segudo, los períodos

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión ) alcular el motate o capital fial obteido al ivertir u capital de. al 8% de iterés aual simple durate 8 años.. 8 o i. 8,8 ( i ) 8.( 8,8) ) alcular el capital iicial ecesario para obteer u capital de.

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

ANEXO 2 INTERES COMPUESTO

ANEXO 2 INTERES COMPUESTO ANEXO 2 INTERES COMPUESTO EJERCICIOS VARIOS: 1. Adrés y Silvaa acaba de teer a su primer hijo. Es ua iña llamada Luciaa. Adrés ese mismo día abre ua cueta para Luciaa co la catidad de $3 000,000.00. Qué

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES Mercedes Ferádez mercedes@upucomillas.es CONTENIDO El valor temporal del diero. Selecció de iversioes CONTENIDO El valor temporal del

Más detalles

EJERCICIOS DE PORCENTAJES E INTERESES

EJERCICIOS DE PORCENTAJES E INTERESES EJERCICIOS DE PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? Ejercicio º 2.- El precio de u litro de gasóleo

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS TEMA : OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS..-INTRODUCCION : Etedemos por operació fiaciera de amortizació, aquella, e que u ete ecoómico, (acreedor ó prestamista), cede u

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math.

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math. Matemáticas Fiacieras Material recopilado por El Prof. Erique Mateus Nieves Fiacial math. 2.10 DESCUENO El descueto es ua operació de crédito que se realiza ormalmete e el sector bacario, y cosiste e que

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO

FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO DEFINICIONES Crédito de Cosumo: So aquellos créditos que se otorga a persoas aturales co igresos depedietes o idepedietes co la fialidad de ateder gastos de

Más detalles

C. INDICADORES DE EVALUACION DE PROYECTOS

C. INDICADORES DE EVALUACION DE PROYECTOS C. INDICADORES DE EVALUACION DE PROYECTOS 1. Matemáticas Fiacieras 1.1 Iterés simple e iterés compuesto Iterés simple es aquel que se calcula siempre sobre el capital origial, y por tato excluye itereses

Más detalles

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA DEFINICIONES: CRÉDITO A LA MICROEMPRESA: So aquellos créditos que se otorga a persoas aturales y jurídicas que realiza algua actividad ecoómica por

Más detalles

SISTEMA DE EDUCACIÓN ABIERTA

SISTEMA DE EDUCACIÓN ABIERTA --- UNIVERSIDAD LOS ÁNGELES DE CHIMBOTE SISTEMA DE EDUCACIÓN ABIERTA DOCENTE : Julio Lezama Vásquez. E-MAIL : fervas@yahoo.es TELÉFONO : 044-9906504 ATENCIÓN AL ALUMNO : sea@uladech.edu.pe TELEFAX : 043-327846

Más detalles

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011 CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS Año 20 El presete documeto es ua recopilació de iformació obteida e libros de autores prestigiosos y diversos sitios de iteret. El uso de este

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING . GLOSARO DE TÉRMNOS FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDTO LEASNG a. Amortizació: Pago total o parcial del capital de ua deuda o préstamo. b. Capital Fiaciado (CF): Equivale al valor de veta meos

Más detalles

FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA. CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ

FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA. CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ TABLA DE CONVERSIONES UNIVERSIDAD PERUANA LOS ANDES Educació a Distacia. Huacayo. Impresió

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

MATEMÁTICAS FINANCERAS

MATEMÁTICAS FINANCERAS MATEMÁTICAS FINANCERAS -Apoyadas co Microsoft Excel- (Versió prelimiar) Julio A. Sarmieto Sabogal Edgardo Cayó Fallo Bogotá D.C., Juio de 2005 Potificia Uiversidad Javeriaa Facultad de Ciecias Ecoómicas

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.-.3 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

2.1. Concepto Monto, capital, tasa de interés y tiempo.

2.1. Concepto Monto, capital, tasa de interés y tiempo. 1 2.1. Cocepto El iterés compuesto tiee lugar cuado el deudor o paga al cocluir cada periodo que sirve como base para su determiació los itereses correspodietes. Así, provoca que los mismos itereses se

Más detalles

Zona Próxima ISSN: 1657-2416 jmizzuno@uninorte.edu.co Universidad del Norte Colombia

Zona Próxima ISSN: 1657-2416 jmizzuno@uninorte.edu.co Universidad del Norte Colombia Zoa Próxima ISSN: 1657-2416 jmizzuo@uiorte.edu.co Uiversidad del Norte Colombia Cabeza de Vergara, Leoor Cavilacioes sobre el iterés simple Zoa Próxima, úm. 12, eero-juio, 2010, pp. 158-175 Uiversidad

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004 SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO AGROPECUARIO EL PORVENIR MÓDULO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS PRODUCTIVOS TALLER 4 TEMA: Evaluació de proyectos de iversió OBJETIVO: Determiar la retabilidad

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS Asigatura Clave: CON015 Numero de créditos Teóricos: 4 Prácticos: 4 Asesor Resposable: M.C. Eduardo Suárez Mejia (correo electróico esuarez@uaim.edu.mx) Asesor de Asistecia: Ig.

Más detalles

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE 1 OBJETIVOS Defiir escueto y valor actual. Distiguir las actualizacioes simples y compuestas. Ietificar los istitos tipos e escuetos. Demostrar fórmulas pricipales y erivaas. Resolver situacioes problemáticas.

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta MÓDULO : FUNDAMENTOS DE LA INVERSIÓN Ídice Coceptos básicos de la iversió Cocepto de Capital Fiaciero 3 Comparació de capitales fiacieros 3 Ley fiaciera Capitalizació 8 Capitalizació simple 4 Capitalizació

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

I. Derogar el Instructivo No. SAP-12/98: Valorización de Instrumentos Financieros adquiridos con los Recursos de los Fondos de Pensiones.

I. Derogar el Instructivo No. SAP-12/98: Valorización de Instrumentos Financieros adquiridos con los Recursos de los Fondos de Pensiones. RESOLUCION No. A-DO-AF 028/99 9 de Marzo de 1999 LA SUPERINTENDENTE DE PENSIONES CONSIDERANDO: I. Que mediate resolució No. A-DO-AF-013/98, de fecha 3 de Marzo de 1998, se emitió el Istructivo No. SAP-12/98:

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

COMUNICACIÓN A 5272 27/01/2012

COMUNICACIÓN A 5272 27/01/2012 2012 Año de Homeaje al doctor D. Mauel Belgrao A LAS ENTIDADES FINANCIERAS: COMUNICACIÓN A 5272 27/01/2012 Ref.: Circular LISOL 1-545 CONAU 1-962 Exigecia de capital míimo por riesgo operacioal. Determiació

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández Tema III: La Elecció de Iversioes Ecoomía de la Empresa: Fiaciació Prof. Fracisco Pérez Herádez La Elecció de Iversioes Para ayudar a la elecció de distitas operativas de iversió, se puede seguir distitos

Más detalles

UD 9. LA INVERSIÓN EN LA EMPRESA

UD 9. LA INVERSIÓN EN LA EMPRESA UD 9. LA INVERSIÓN EN LA EMPRESA 1. LA FUNCIÓN FINANCIERA DE LA EMPRESA La empresa, tato para iiciar su actividad como para realizarla co eficiecia, ecesita recursos fiacieros. Para su fucioamieto, la

Más detalles

±. C inicial = C inicial. Índice de variación

±. C inicial = C inicial. Índice de variación Aitmética mecatil: coteidos 2.1 Aumetos y dismiucioes pocetuales 2.2 Iteeses bacaios 2.3 Tasa aual equivalete ( T.A.E.) 2.4 Amotizació de péstamos 2.5 Pogesioes geométicas 2.6 Aualidades Pocetajes: C fial

Más detalles

ALGORITMOS Y DIAGRAMAS DE FLUJO

ALGORITMOS Y DIAGRAMAS DE FLUJO ALGORITMOS Y DIAGRAMAS DE LUJO Elabore diagramas de flujo para expresar la solució de los problemas que se preseta a cotiuació. Auque sólo se pida explícitamete e alguos casos, es ecesario que Ud. siempre

Más detalles

ECONOMÍA DE LA EMPRESA (FINANCIACIÓN)

ECONOMÍA DE LA EMPRESA (FINANCIACIÓN) Ecoomía de la Empresa (Fiaciació) ECONOMÍA DE LA EMPRESA (FINANCIACIÓN) 3ºLiceciatura e Derecho y Admiistració y Direcció de Empresas Prof. Dr. Jorge Otero Rodríguez 1/118 Ecoomía de la Empresa (Fiaciació)

Más detalles

5. Crecimiento, decrecimiento. y Economía

5. Crecimiento, decrecimiento. y Economía 5. Crecimieto, decrecimieto y Ecoomía Matemáticas aplicadas a las Ciecias Sociales I. Sucesioes. Matemática fiaciera 3. Fució epoecial y logarítmica 4. Modelos de crecimieto 80 Crecimieto, decrecimieto

Más detalles

Probabilidad con técnicas de conteo

Probabilidad con técnicas de conteo UNIA 3 Probabilidad co técicas de coteo Objetivos Al fializar la uidad, el alumo: distiguirá y utilizará las reglas de multiplicació y de suma para el cálculo de la catidad de arreglos co y si orde explicará

Más detalles

REGÍMENES FINANCIEROS

REGÍMENES FINANCIEROS EGÍMEES FIAIEOS are Badía, Hortèsia Fotaals, Merche Galisteo, José Mª Lecia, Mª Agels Pos, Teresa Preixes, Dídac aírez, F. Javier Sarrasí y Aa Mª Sucarrats DEPATAMETO DE MATEMÁTIA EOÓMIA, FIAIEA Y ATUAIAL

Más detalles

FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES

FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES Cosideracioes Las fórmulas detalladas tiee el objeto de iformar sobre el cálculo del iterés del crédito y la cuota a pagar La tasa de iterés

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

SOLUCIÓN ACTIVIDADES UNIDAD 7

SOLUCIÓN ACTIVIDADES UNIDAD 7 SOLUCIÓN ACTIVIDADES UNIDAD 7 1.- Qué es ua fuete fiaciera?.- Cuál es la diferecia etre los fodos propios y los fodos ajeos? La forma de obteer recursos fiacieros la empresa para llevar a cabo sus iversioes.

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

FEE02-15 FÓRMULAS Y EJEMPLOS. Incluye a los productos:

FEE02-15 FÓRMULAS Y EJEMPLOS. Incluye a los productos: FEE02-5 FÓRMULAS Y EJEMPLOS cluye a los productos: - Epresariales - Credifácil - El tiepo vale oro - Micro agropecuario - Agro crédito - Credigaadero - Credicostruye - Mi terreito - Multioficios - Crédito

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

Sucesiones (corrección)

Sucesiones (corrección) Sucesioes (correcció). La suma de los tres primeros térmios de ua proresió aritmética es y la diferecia es 6. Calcula el primer térmio. =a a a =a (a d)(a d )= a d= a 6 a = 48 a =. Halla la suma de todos

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Divisió de Plaificació, Estudios e Iversió MIDEPLAN Curso: Preparació y Evaluació de Proyectos EVALUACIÓN DE PROYECTOS: Coceptos Básicos Temario Matemáticas

Más detalles

-------- --------//-------- --------//-------- -------- TAE i 1.6.1.-.-EN ESTE MÉTODO DE AMORTIZACIÓN AMERICANO, DEBEMOS

-------- --------//-------- --------//-------- -------- TAE i 1.6.1.-.-EN ESTE MÉTODO DE AMORTIZACIÓN AMERICANO, DEBEMOS TEMA.- METODOS DE AMORTIZACION CON AGO DE INTERESES OSAGABLES Amortizació Americaa. Método Fracés. Método de cuotas de amortizació costates. Térmios amortizativos variables e progresió geométrica ó térmios

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

La volatilidad implícita

La volatilidad implícita La volatilidad implícita Los mercados de opcioes ha evolucioado bastate desde los años setetas, época e la que ue publicada la órmula de Black Scholes (BS). Dicha órmula quedó ta arraigada e la mete de

Más detalles

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 La medida del riesgo de los bonos

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 La medida del riesgo de los bonos Jua Mascareñas Uiversidad Complutese de Madrid Versió iicial: mayo 99 - Última versió: oviembre 06 - Teoremas de la valoració de los boos, - El cocepto de duració, 6 - La duració modificada como ua medida

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

REGLAMENTO DE INVERSIONES PARA EL SISTEMA DE AHORRO PARA PENSIONES

REGLAMENTO DE INVERSIONES PARA EL SISTEMA DE AHORRO PARA PENSIONES DECRETO N 21 EL PRESIDENTE DE LA REPUBLICA DE EL SALVADOR CONSIDERANDO: I. Que de coformidad co la Ley Orgáica de la Superitedecia de Pesioes, correspode a la Superitedecia fiscalizar, vigilar, y cotrolar

Más detalles

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera LAS FRACCIONES - Las fraccioes como parte de u todo - Nuestros amigos prueba su máquia del tiempo. Egipto les espera Despegamos! E la evolució del pesamieto humao, 000 años a. C., los egipcios comieza

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Global Venture Clasificadora de Riesgo

Global Venture Clasificadora de Riesgo 2 Global Veture Clasificadora de Riesgo L a clasificació de riesgo tiee como propósito pricipal el que los iversioistas y las istitucioes/empresas cuete co ua herramieta que les permita determiar los riesgos

Más detalles

Matemática Financiera Tasas de Interés y Descuento

Matemática Financiera Tasas de Interés y Descuento Matemática Fiaciera Tasas de Iterés y Descueto 3 Qué apredemos Noció fiaciera y matemática de las tasas de iterés y descueto. Iterpretació práctica. Distitos tipos de tasas: proporcioales, omiales, equivaletes

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca Facultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas Fiacieras Ejercicios resueltos sobre series uiformes Ejemplo

Más detalles

Calculo de la deuda a plazo (PAGO) 1) Método de cuota nivelada.

Calculo de la deuda a plazo (PAGO) 1) Método de cuota nivelada. Amortizació: Viee del latí Morti; Muerte, e el mercado fiaciero la expresió amortizació se utiliza para deomiar el proceso mediate el cual se extigue gradualmete ua deuda por medio de pagos o aboos periódicos

Más detalles

INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS

INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS Autor: Profesor de la Uiversidad de Graada (Dpto. Ecoomía Fiaciera y Cotabilidad) Profesor Tutor del

Más detalles

TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES

TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES TEMA 2 ARITMÉTICA MERCANTIL MATEMÁTICAS CCSSI - 1º Bach. 1 TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES E u aumeto o dismiució pocetual, el úmeo po el que hay que multiplica la

Más detalles

b. La primera parte del apartado es igual al apartado a, con la diferencia de que el segundo medio es agua.

b. La primera parte del apartado es igual al apartado a, con la diferencia de que el segundo medio es agua. Septiembre 0. Preguta B.- Se tiee u prisma rectagular de vidrio de ídice de refracció,4. Del cetro de su cara A se emite u rayo que forma u águlo a co el eje vertical del prisma, como muestra la figura.

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Encuesta y experimento de campo: redes sociales, confianza, información y desarrollo financiero 1

Encuesta y experimento de campo: redes sociales, confianza, información y desarrollo financiero 1 Ecuesta y experimeto de campo: redes sociales, cofiaza, iformació y desarrollo fiaciero 1 Soia Di Giaatale, Alexader Elbittar, María José Roa 2, Patricia López 3 Itroducció El objetivo geeral de la presete

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

INDICE DE PRECIOS IMPLICITO PARA EL SEGURO DE ENFERMEDAD Y MATERNIDAD

INDICE DE PRECIOS IMPLICITO PARA EL SEGURO DE ENFERMEDAD Y MATERNIDAD INDICE DE PRECIOS IMPLICITO PARA EL SEGURO DE ENFERMEDAD Y MATERNIDAD lit.!iiú GfIi/úr.o /ÁffZ 1..,.. LitmeiGdo 1ft EcortOlflÍJI., ' dtt Dtparl(J1fltfflo d, PfQ"ificaciótt ECOllOfrlicfI yfiqiicltra DimciMAca"arial,

Más detalles