Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Muestra: son datos de corte transversal correspondientes a 120 familias españolas."

Transcripción

1 Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta famlar mensual en mles de pesetas Muestra: son datos de corte transversal correspondentes a 0 famlas españolas. Fchero : cp.wf (modelo de regresón múltple) Seres : CASOS: número de casos resueltos (sentencas, conclacones,...). JUECES: número de jueces. RATIO: relacón entre personal admnstratvo de los juzgados y número de jueces. Muestra: son datos de corte transversal, que corresponden a las salas de lo contencoso admnstratvo de los trbunales superores de justca de cudades españolas (año 99). 3.. Introduccón El objetvo de este capítulo es estmar por MCO los parámetros de un modelo de regresón smple y de un modelo de regresón múltple, ponendo énfass en las sguentes cuestones: - nterpretacón de los coefcentes - resduos del modelo - bondad del ajuste 3.. El modelo de regresón lneal smple Supongamos el sguente modelo de regresón smple, que explca el consumo famlar en funcón del ngreso mensual: = β0 + βrenta + ε, =,,...,0 En este apartado nos proponemos estmar el modelo por MCO e nterpretar los resultados, así como explctar la relacón que exste entre el modelo de regresón smple y el dagrama de dspersón Estmacón por MCO en Evews Antes de comenzar el análss de regresón convene observar un gráfco de las seres: y RENTA, porque de este modo obtenemos nformacón gráfca de la relacón exstente entre las varables del modelo. Para ello: QUICK / Graph... RENTA Graph Type: Lne Graph Show Optons: Dual Scale (no crossng) 6

2 Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas RENTA Como puede observarse la evolucón de las dos seres es bastante smlar, lo que ndca que posblemente las dos seres estén muy correlaconadas. Por tanto, es muy probable que el nvel de renta (RENTA) determne en gran medda el consumo famlar (). El estmador de MCO de los coefcentes del modelo es: ˆ ˆ β 0 β = = (X X) (X Y) ˆ β Además, es convenente estmar la matrz de varanzas y covaranzas de los parámetros estmados, porque nos nforma sobre la precsón de la estmacón. La matrz de Varanzas y Covaranzas estmada es: Vˆ ( βˆ ) = s (X X) En Evews, las estmacones por MCO de los parámetros del modelo se obtenen del sguente modo: QUICK / Estmate Equaton... C RENTA LS Sample: 0 Para estmar correctamente la ecuacón en Evews es precso tener en cuenta: - orden de las varables: en prmer lugar la varable dependente, y a contnuacón la lsta de regresores ncluda la constante, que se representa sempre por C. - método de estmacón: Mínmos Cuadrados Ordnaros, es la opcón que vene por defecto, LS. - período muestral (Sample): número de observacones ncludas en la estmacón, en nuestro casos utlzamos todas las dsponbles: -0. El output que se obtene es el sguente: LS // Dependent Varable s Sample: 0 Included observatons: 0 Varable Coeffcen Std. Error t-statstc Prob. C

3 Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas RENTA R-squared Mean dependent var Adjusted R-squared S.D. dependent var.9094 S.E. of regresson Akake nfo crter Sum squared resd Schwarz crteron Log lkelhood F-statstc 6.45 Durbn-Watson stat Prob(F-statstc) sendo la nterpretacón del output la sguente: -Coeffcen: son los coefcentes estmados C RENTA βˆ 0 βˆ = = Std. error: desvacón típca estmada de los coefcentes estmados. C RENTA Vˆ (ˆ β ) =.0 0 Vˆ ( βˆ ) = S.E. of regresson: desvacón típca estmada de los resduos. e e s = = 4.57 N K - Sum squared resd: suma de los resduos al cuadrado. e e e = = Mean dependent var: meda de la varable dependente. = N = S.D. dependent var : cuas-desvacón estándar de la varable dependente. SD ( ) = = N - R-squared: coefcente de determnacón múltple (R ) - Adjusted R-squared: coefcente de determnacón múltple corregdo ( R ). El resto de los datos se nterpretará en capítulos posterores..903 Además, Evews tambén proporcona la estmacón de la matrz de Varanzas y Covaranzas de los parámetros del modelo: Vˆ (ˆ β ). Para ello en el menú de ecuacón se hace: 8

4 Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas Vew/ Covarance Matrx Coeffcent Covarance Matrx ==================================== C RENTA ==================================== C RENTA ==================================== El modelo estmado es: = RENTA + e, =,,..., 0 (.0) ( 0. 06) sendo e la sere de resduos del modelo, y los números entre paréntess las desvacones típcas de los coefcentes. Interpretacón de los coefcentes: βˆ 0 = Es la constante del modelo e nforma del consumo promedo cuando el nvel de renta es nulo (consumo autónomo). ˆ () β = = (RENTA) Es la dervada de la varable dependente respecto a la varable ndependente, y mde el efecto medo que provoca sobre el consumo famlar () un ncremento untaro en la renta famlar (RENTA). En el modelo de regresón smple, este coefcente es la pendente de la recta de regresón. En este caso la pendente es postva, lo que sgnfca que a medda que se ncrementa la renta, aumenta el consumo. En concreto, cuando se produce un ncremento untaro en la renta, el aumento estmado en el consumo promedo es aproxmadamente de Relacón entre el modelo de regresón smple y el dagrama de dspersón En el caso del modelo de regresón smple, es posble observar gráfcamente la línea de regresón estmada (o recta de regresón muestral). La recta de regresón muestral nforma del grado de relacón exstente entre las varables del modelo así como del tpo de relacón que exste entre ellas. Para ello se utlza el dagrama de dspersón. En nuestro caso, para observar la relacón que exste entre las dos varables del modelo ( y RENTA): QUICK / Graph... RENTA Graph type: Scatter dagram Show Optons: Regresson lne 9

5 Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas RENTA Se escoge la opcón Regresson lne para que muestre la línea de regresón estmada ( $ = RENTA ), junto con la nube de puntos. Como se puede observar la línea de regresón se ajusta a la nube de puntos. La dstanca medda vertcalmente entre cada uno de los puntos observados y la línea de regresón son los resduos del modelo (e ). En este caso las varables están relaconadas postvamente, por eso la pendente de la línea de regresón es postva El modelo de regresón lneal múltple Supongamos el sguente modelo de regresón múltple: CASOS = β0 + βjueces + βratio + ε, =,,..., donde el número de casos resueltos (CASOS) se explca en funcón del número de jueces (JUECES), y del personal admnstratvo de que dspone cada juez en cada una de las sedes (RATIO). El propósto de este apartado es estmar por MCO el modelo, obtener la sere de resduos del modelo, la sere estmada, y determnar la bondad del ajuste Estmacón por MCO en Evews QUICK / Estmate Equaton...CASOS C JUECES RATIO LS // Dependent Varable s CASOS Sample: Included observatons: Varable Coeffcen Std. Error t-statstc Prob. C JUECES RATIO R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regresson Akake nfo crter Sum squared resd Schwarz crteron Log lkelhood F-statstc Durbn-Watson stat Prob(F-statstc)

6 Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas El modelo estmado es el sguente: CASOS = JUECES RATIO + e, =,,..., ( ) ( 85. ) ( ) La nterpretacón de los coefcentes es la msma que en el modelo de regresón smple. El hecho de que el térmno constante sea negatvo ndca que se necesta un número determnado de jueces para que comencen a resolverse los casos. Los coefcentes de las varables explcatvas JUECES y RATIO nforman del ncremento promedo que se produce en los casos resueltos cuando estas varables aumentan en una undad. ˆ (CASOS) β = = (JUECES) ˆ (CASOS) β = = (RATIO) La estmacón obtenda muestra que, cuanto mayor es el número de jueces mayor es el número de casos resueltos, y que éstos tambén se ncrementan a medda que aumenta el personal admnstratvo de que dspone cada juez. Obsérvese que en este caso el modelo estmado no es una recta de regresón, sno un hperplano de regresón de la muestra, de modo que ya no es posble vsualzar la estmacón medante un gráfco bdmensonal Sere estmada y resduos del modelo Podemos comparar la sere estmada o ajustada ( CASOS $ ) con la observada (CASOS), y examnar los resduos del modelo. Esto nos nformará sobre la bondad del ajuste. S el modelo es bueno la sere ajustada será muy smlar a la observada, y los resduos serán pequeños en relacón con los valores observados. a) Para obtener una tabla con los valores de estas seres, en el menú de ecuacón se hace: VIEW/ Actual, Ftted, Resds / Table obs Actual Ftted Resdual Resdual Plot = * * * * * * * * * * * * * * * * * * * * *.. 3

7 Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas = - Actual: sere observada (CASOS). - Ftted: sere estmada ( CASOS $ ). - Resdual: sere de resduos (e). - Resdual Plot: gráfco de los resduos. Observar que el valor central es el 0, y que las líneas punteadas muestran la desvacón típca de los resduos, s. Es deseable que el tamaño de los resduos no sea demasado elevado respecto al de la desvacón típca de los msmos, porque de otro modo ndcaría que los errores cometdos al ajustar el modelo a los datos son mportantes, y por tanto que el modelo puede no ser adecuado para explcar la varabldad de la varable dependente. Recordar que: CASOS = CASOS $ + e b) Para observar un gráfco de estas seres, en el menú de ecuacón se hace: VIEW/ Actual, Ftted, Resds / Graph Resdual Actual Ftted Es un gráfco a doble escala. En la parte superor se representan la sere observada y la ajustada. En este caso ambas seres son muy smlares, lo que nos ndca que el modelo se ajusta ben. En la parte nferor del gráfco se representa la sere de resduos, que fluctúa al rededor del 0 de forma aleatora, sn un patrón fjo. Como puede observarse, los resduos son pequeños en relacón al valor de la varable observada, lo que de nuevo nos nforma de la bondad del modelo Bondad del ajuste a) Coefcente de determnacón múltple: R SCE e e = = = = n STC (Y - Y) En modelos con térmno constante: 0 R En modelos sn térmno constante: R S el modelo es bueno el R será próxmo a uno. se puede calcular a partr de S.D dependent var Evews lo calcula drectamente, aparece en el output de la regresón: R-squared = = N - n (Y - Y) 3

8 Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas Está próxmo a, señal de buen ajuste. Dado que se trata de un modelo con constante, este resultado ndca que el 96% de la varabldad de Y vene explcada por el modelo. b) Coefcente de determnacón múltple corregdo: Penalza la ntroduccón de explcatvas, por ello permte comparar modelos con dstnto número de regresores. Se defne como: R N SCE = = N K STC n = e e N K = (Y Y ) N = R en todos los modelos. Incluso con térmno constante puede ser menor que cero. Evews tambén lo calcula drectamente, aparece en el output de la regresón: Adjusted R-squared = Aplcacón propuesta Dadas las sguentes seres de datos de frecuenca trmestral: ============================================== obs Y X X ============================================== ============================================== se plantea el sguente modelo de regresón: Y t b0 + bxt + bxt = + e, t que verfca los supuestos cláscos. Se pde: a) sn utlzar Evews, obtener el estmador MCO de cada uno de los coefcentes del modelo, la estmacón de su varanza y el coefcente de determnacón. b) Comprobar que los resultados obtendos en a) son correctos empleando Evews. 33

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general). 3. En el modelo lneal general Y = X b + e, explcar la forma

Más detalles

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE Especalsta en Estadístca y Docenca Unverstara REGRESION LINEAL MULTIPLE El modelo de regresón lneal múltple El modelo de regresón lneal múltple con p varables predctoras y basado en n observacones tomadas

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón

Más detalles

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.

Más detalles

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales: EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

T. 9 El modelo de regresión lineal

T. 9 El modelo de regresión lineal 1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

Regresión Binomial Negativa

Regresión Binomial Negativa Regresón Bnomal Negatva Resumen El procedmento Regresón Bnomal Negatva está dseñado para ajustar un modelo de regresón en el cual la varable dependente Y consste de conteos. El modelo de regresón ajustado

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Relación 2: Regresión Lineal.

Relación 2: Regresión Lineal. Relacón 2: Regresón Lneal. 1. Se llevó a cabo un estudo acerca de la cantdad de azúcar refnada (Y ) medante un certo proceso a varas temperaturas dferentes (X). Los datos se codfcan y regstraron en el

Más detalles

Material Docente de. Econometría. Curso Primera parte. Problemas y cuestiones

Material Docente de. Econometría. Curso Primera parte. Problemas y cuestiones Materal Docente de Econometría Curso 011-01. Prmera parte Problemas y cuestones Cuarto curso de Economía Cuarto curso de Admnstracón y Dreccón de Empresas Cuarto curso de Derecho y A.D.E Profesores: Jesús

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte Máster de Comerco, Transporte y Comuncacones Internaconales Análss cuanttatvo aplcado al Comerco Internaconal y el Transporte Ramón úñez Sánchez Soraya Hdalgo Gallego Departamento de Economía Introduccón

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

6 Impacto en el bienestar de los beneficiarios del PAAM

6 Impacto en el bienestar de los beneficiarios del PAAM 6 Impacto en el benestar de los benefcaros del PAAM Con el fn de evaluar el efecto del PAAM sobre sus benefcaros, se consderó como hpótess que el Programa ha nfludo en el mejoramento de la caldad de vda

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Regresión y correlación simple 113

Regresión y correlación simple 113 Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

Tema 2: El modelo clásico de regresión

Tema 2: El modelo clásico de regresión CURSO 010/011 Tema : El modelo clásco de regresón Aránzazu de Juan Fernández ECONOMETRÍA I ESQUEMA DEL TEMA Presentacón del modelo Hpótess del modelo Estmacón MCO Propedades algebracas de los estmadores

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Variables Dummy (parte I)

Variables Dummy (parte I) Varables Dummy (parte I) Fortno Vela Peón Unversdad Autónoma Metropoltana fvela@correo.xoc.uam.mx Octubre, 2010 19/10/2010 Méxco, D. F. 1 Introduccón Algunas de las varables son por su naturaleza propa

Más detalles

Estadística con R. Modelo Probabilístico Lineal

Estadística con R. Modelo Probabilístico Lineal Estadístca con R Modelo Probablístco Lneal Modelo Probablístco Lneal Forma de la funcón: Y b 0 +b 1 X +e Varable dependente, endógena o a explcar dcotómca : Y, S Y 0 e -b 0 - b 1 X con probabldad p. S

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han

Más detalles

Tema 8: Heteroscedasticidad

Tema 8: Heteroscedasticidad Tema 8: Heteroscedastcdad Máxmo Camacho Máxmo Camacho Econometría I - ADE+D / - Tema 8 Heteroscedastcdad Bloque I: El modelo lneal clásco r Tema : Introduccón a la econometría r Tema : El modelo de regresón

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

EL MODELO DE REGRESIÓN LINEAL SIMPLE

EL MODELO DE REGRESIÓN LINEAL SIMPLE Unversdad Carlos III de Madrd César Alonso ECONOMETRIA EL MODELO DE REGRESIÓN LINEAL SIMLE Índce 1. Relacones empírcas y teórcas......................... 1 2. Conceptos prevos................................

Más detalles

1.Variables ficticias en el modelo de regresión: ejemplos.

1.Variables ficticias en el modelo de regresión: ejemplos. J.M.Arranz y M.M. Zamora.Varables fctcas en el modelo de regresón: ejemplos. Las varables fctcas recogen los efectos dferencales que se producen en el comportamento de los agentes económcos debdo a dferentes

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Tema 3: Procedimientos de Constrastación y Selección de Modelos

Tema 3: Procedimientos de Constrastación y Selección de Modelos Tema 3: Procedmentos de Constrastacón y Seleccón de Modelos TEMA 3: PROCEDIMIENTOS DE CONTRASTACIÓN Y SELECCIÓN DE MODELOS 3) Introduccón a los Modelos con Restrccones Estmacón Restrngda 3) Contrastes

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

El subestimado problema de la confusión residual. Héctor Lamadrid-Figueroa; Alejandra Montoya; Gustavo Ángeles

El subestimado problema de la confusión residual. Héctor Lamadrid-Figueroa; Alejandra Montoya; Gustavo Ángeles El subestmado problema de la confusón resdual Héctor Lamadrd-Fgueroa; Alejandra Montoya; Gustavo Ángeles El objetvo de la estmacón del efecto Establecer s exste una relacón causal entre una exposcón y

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles

6 Heteroscedasticidad

6 Heteroscedasticidad 6 Heteroscedastcdad Defncón casas de heteroscedastcdad Defncón: la varanza de la pertrbacón no es constante. Casas: a natraleza de la relacón entre las varables Ejemplo : relacón gasto-renta; Hogares con

Más detalles

Objetivos. Contenidos. Cátedra I Estadística II Autor I Gerardo Heckmann

Objetivos. Contenidos. Cátedra I Estadística II Autor I Gerardo Heckmann ANALISIS DE ASOCIACION ENTRE VARIABLES. REGRESION Objetvos Presentar el modelo de regresón lneal smple como herramenta para estmar medas condconales y predecr los valores de una varable en funcón de la

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

USOS Y EXTENSIONES DEL MODELO LINEAL CON K VARIABLES

USOS Y EXTENSIONES DEL MODELO LINEAL CON K VARIABLES Unversdad de San Andrés Departamento de Economía Econometría Semestre de otoño USOS Y ETENSIONES DEL MODELO LINEAL CON K VARIABLES Marana Marchonn marana@depeco.econo.unlp.edu.ar Varables explcatvas bnaras

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Tema 5: Incumplimiento de las Hipótesis sobre el Término de Perturbación

Tema 5: Incumplimiento de las Hipótesis sobre el Término de Perturbación Tema 5: Incumplmento de las Hpótess sobre el Térmno de Perturbacón TEMA 5: INCMPLIMIENTO DE LAS HIPÓTESIS SOBRE EL TÉRMINO DE PERTRBACIÓN 5.) Introduccón 5.) El Modelo de Regresón Lneal Generalzado 5.3)

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

3. Asociación, Correlación y Regresión Lineal

3. Asociación, Correlación y Regresión Lineal 3. Asocacón, Correlacón y Regresón Lneal 3 3.. Asocacón y Causaldad Algunos sucesos o crcunstancas tenden a segur a otros cuando ocurren en el tempo. varos de estos sucesos que ocurren repetdamente en

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

1 EY ( ) o de E( Y u ) que hace que g E ( Y ) sea lineal. Por ejemplo,

1 EY ( ) o de E( Y u ) que hace que g E ( Y ) sea lineal. Por ejemplo, Modelos lneales generalzados En los modelos no lneales (tanto en su formulacón con coefcentes fjos o coefcentes aleatoros) que hemos vsto hasta ahora, exsten algunos que se denomnan lnealzables : son modelos

Más detalles

Riesgos Proporcionales de Cox

Riesgos Proporcionales de Cox Resgos Proporconales de Cox Resumen El procedmento Resgos Proporconales de Cox esta dseñado para ajustar un modelo estadístco sem-parámetrco a los tempos de falla de una o mas varables predctoras. Los

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

Introducción a los Modelos de Pronósticos

Introducción a los Modelos de Pronósticos Introduccón a los Modelos de Pronóstcos Dra. Fernanda Vllarreal Unversdad Naconal del Sur- Departamento de Matemátca Septembre 2016 - fvllarreal@uns.edu.ar Introduccón Planeacón del futuro, un aspecto

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: ANOVA (PARTE I)

HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: ANOVA (PARTE I) HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: Módulo 13 APUNTES DE CLASE Profesor: Arturo Ruz-Falcó Rojas Madrd, Mayo 009 Pág. 1 Módulo 13. HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS

Más detalles

TODO ECONOMETRIA. Variables cualitativas

TODO ECONOMETRIA. Variables cualitativas TODO ECONOMETRIA Varables cualtatvas Índce Defncón de las varables dummy (o varables fctcas) Regresón con varables explcatvas dummy Varables dummy S queremos estudar s los hombres ganan más que las mujeres,

Más detalles

Midiendo la Asociación lineal entre dos variables

Midiendo la Asociación lineal entre dos variables Unversdad de Sonora XVIII Semana Regonal de Investgacón y Docenca en Matemátcas Mdendo la Asocacón lneal entre dos varables Rosa Ma. Montesnos Csneros Adán Durazo Armenta Departamento de Matemátcas Hermosllo,

Más detalles

Regresión Logística. StatFolio Muestra: logistic.sgp

Regresión Logística. StatFolio Muestra: logistic.sgp Regresón Logístca Resumen El procedmento de Regresón Logístca está dseñado para ajustarse a un modelo de regresón en el que la varable dependente Y caracterza un evento con sólo dos posbles resultados.

Más detalles

Pronósticos. Humberto R. Álvarez A., Ph. D.

Pronósticos. Humberto R. Álvarez A., Ph. D. Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las

Más detalles

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES PRONÓSTICOS PREDICCIÓN, PRONÓSTICO Y PROSPECTIVA Predccón: estmacón de un acontecmento futuro que

Más detalles

Aplicación de modelos multiniveles: meta análisis y meta regresión. Aplicación de modelos multinivel

Aplicación de modelos multiniveles: meta análisis y meta regresión. Aplicación de modelos multinivel Aplcacón de modelos multnveles: meta análss y meta regresón Shrkant I. Bangdwala, PhD Profesor ttular Departamento de Boestadístca Lma Peru 01 1 Aplcacón de modelos multnvel Podemos utlzar la metodología

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

CAPÍTULO 6 TRATAMIENTO DE ASPECTOS CUALITATIVOS. USO DE VARIABLES FICTICIAS EN REGRESIÓN

CAPÍTULO 6 TRATAMIENTO DE ASPECTOS CUALITATIVOS. USO DE VARIABLES FICTICIAS EN REGRESIÓN Fchero: captulo 6 CAPÍTULO 6 TRATAMIENTO DE ASPECTOS CUALITATIVOS. USO DE VARIABLES FICTICIAS EN REGRESIÓN. TIPOLOGÍA DE LOS MODELOS DE REGRESIÓN CON VARIABLES CUALITATIVAS Los aspectos cualtatvos, meddos

Más detalles

INTERPRETACIÓN DE LOS PARÁMETROS DE UN MODELO BÁSICO DE REGRESIÓN LINEAL. Rafael de Arce Ramón Mahía Febrero de 2012

INTERPRETACIÓN DE LOS PARÁMETROS DE UN MODELO BÁSICO DE REGRESIÓN LINEAL. Rafael de Arce Ramón Mahía Febrero de 2012 INTERPRETACIÓN DE LOS PARÁMETROS DE UN MODELO BÁSICO DE REGRESIÓN LINEAL Rafael de Arce Ramón Mahía Febrero de 0 Además de abordar en otras sesones y documentos los aspectos relatvos a la estmacón de los

Más detalles

RMV FUNDEVAL, Bolsa Nacional de Valores, S.A. y Universidad Interamericana de Costa Rica San José, Costa Rica

RMV FUNDEVAL, Bolsa Nacional de Valores, S.A. y Universidad Interamericana de Costa Rica San José, Costa Rica RV-2005-03 DETERINACIÓN DE LA TASA LIBRE DE RIESGO IPLÍCITA PARA EL ERCADO DE VALORES EN COSTA RICA: UNA PROPUESTA * RODRIGO ATARRITA VENEGAS ** FUNDEVAL, Bolsa Naconal de Valores, S.A. y Unversdad Interamercana

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Estadística II - Modelos lineales: Ficha nº6 Heterocedasticidad en el modelo de regresión lineal

Estadística II - Modelos lineales: Ficha nº6 Heterocedasticidad en el modelo de regresión lineal Estadístca II - Modelos lneales: Fcha nº6 Heterocedastcdad en el modelo de regresón lneal Materal ddáctco para el curso de Estadístca II del Programa de Doctorado en Cenca ocal Tabaré Fernández Aguerre

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

MUESTREO EN POBLACIONES FINITAS

MUESTREO EN POBLACIONES FINITAS MUESTREO EN POBLACIONES FINITAS Antono Morllas A.Morllas: Muestreo 1 MUESTREO EN POBLACIONES FINITAS 1. Conceptos estadístcos báscos. Etapas en el muestreo 3. Tpos de error 4. Métodos de muestreo 5. Tamaño

Más detalles

CAPÍTULO 9 HETEROCEDASTICIDAD.

CAPÍTULO 9 HETEROCEDASTICIDAD. Fchero: captulo 9 nuevo.doc CAPÍTULO 9 HETEROCEDASTICIDAD.. CAUSAS MUESTRALES Y ESTRUCTURALES Como sabemos, la heterocedastcdad consste en que las observacones muestrales tenen varanzas del error dferentes

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

Econometría de corte transversal. Pablo Lavado Centro de Investigación de la Universidad del Pacífico

Econometría de corte transversal. Pablo Lavado Centro de Investigación de la Universidad del Pacífico Econometría de corte transversal Pablo Lavado Centro de Investgacón de la Unversdad del Pacífco Contendo Defncones báscas El contendo mínmo del curso Bblografía recomendada Aprendendo econometría Defncones

Más detalles

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun Práctca 1 - Programacón en C++ Pág. 1 Práctcas de C++ Practca Nº 1 Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Práctca 1 - Programacón en C++ Pág. 1 INDICE ÍNDICE... 1 1.1 Ejercco

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

Tema 9. Análisis de Varianza de un factor. Análisis de la Varianza (ANOVA) Conceptos generales

Tema 9. Análisis de Varianza de un factor. Análisis de la Varianza (ANOVA) Conceptos generales Tema 9 Análss de la Varanza (ANOVA) Conceptos generales La técnca del Análss de la Varanza consste en descomponer la varabldad de una poblacón (representada por su varanza) en dversos sumandos según los

Más detalles

1. Variable aleatoria. Clasificación

1. Variable aleatoria. Clasificación Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.

Más detalles

Las hipótesis en las que vamos a basar el funcionamiento del Modelo Lineal General

Las hipótesis en las que vamos a basar el funcionamiento del Modelo Lineal General CAPÍULO. EL MODELO LINEAL GENERAL. Introduccón. Hpótess del modelo Las hpótess en las que vamos a basar el funconamento del Modelo Lneal General son las sguentes. Suponemos que tenemos una muestra de valores

Más detalles