La información y su representación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La información y su representación"

Transcripción

1 La información y su representación

2 1. INTRODUCCIÓN El hombre en su vida cotidiana trabaja desde el punto de vista numérico con el sistema decimal y desde el punto de vista alfabético con un determinado idioma. Asimismo, la computadora, debido a su construcción, lo hace desde ambos puntos de vista con el sistema binario, utilizando una serie de códigos que permiten su perfecto funcionamiento. Como veremos más adelante, tanto el sistema decimal como el binario, octal o hexadecimal están basados en los mismos principios. En todos, la representación de un número se efectúa por medio de cadenas de símbolos, los cuales representan una determinada cantidad dependiendo del propio símbolo y de la posición que ocupa dentro de la cadena. Por cuestiones de índole técnica, los circuitos electrónicos que conforman una computadora, suelen estar capacitados, en la mayoría de los casos, para reconocer señales eléctricas de tipo digital; por tanto, se hace necesario que los métodos de codificación internos tengan su origen en el sistema binario, y con ellos se puedan representar todo tipo de informaciones y órdenes que maneje una computadora. En los circuitos electrónicos, desde el punto de vista lógico, suele representarse la presencia de tensión en un punto de un circuito (respecto a masa) por medio de un 1, correspondiendo el 0 a la ausencia de tensión. Si se hacen las consideraciones anteriores, se dice que se está utilizando lógica positiva (utilizada en la mayoría de los casos). Por otro lado, si se asocia el 0 a la presencia de tensión y el 1 a la ausencia de la misma, se dice que se utiliza lógica negativa. 1

3 2. LOS SISTEMAS DE NUMERACIÓN Y SU EVOLUCIÓN Desde hace muchos años, el hombre ha utilizado la escritura para mantener y transmitir información. La escritura va desde el antiguo jeroglífico egipcio, en el que se utilizaban símbolos para la representación de palabras, hasta el alfabeto latino actual que utilizan la mayoría de los idiomas existentes. Originalmente, el alfabeto como conjunto de símbolos se desarrolló en Grecia y posteriormente en Roma, y de él se deriva nuestro alfabeto actual. Ilustración 1: Jeroglíficos egipcios Uno de los primeros intentos para la conservación de cantidades en forma de escritura fue el sistema de numeración indo-arábigo, del que se derivaron los actuales sistemas de numeración decimal. Ilustración 2: Evolución de los sistemas de numeración 2

4 En la Ilustración 2 se representan cronológicamente algunos de los sistemas de numeración que se han utilizado hasta nuestros días. Se define como sistema de numeración, el conjunto de símbolos y reglas utilizados para la representación de datos numéricos o cantidades. Un sistema de numeración se distingue fundamentalmente por su base, que es el número de símbolos que utiliza y que, además, se caracteriza por ser el coeficiente que determina cuál es el valor de cada símbolo dependiendo de su posición. Los sistemas de numeración actuales son sistemas posicionales, en los que el valor relativo que representa cada símbolo o cifra depende de su valor absoluto y de la posición relativa que ocupa dicha cifra con respecto a la coma decimal, íntimamente ligada al valor de la base del sistema de numeración utilizado. En el presente texto utilizamos como representación de la coma (,) que separa las partes entera y fraccionaria de un número el punto (.), por ser éste el más generalizado en dicha representación en ambientes informáticos. En algunos casos utilizaremos la notación matemática de la base para distinguir a cuál de ellas nos estamos refiriendo. Esta representación se hace de la forma: Número en base B = Número (B 3

5 3. EL SISTEMA DECIMAL Desde hace muchos años, el hombre ha utilizado como sistema para contar el denominado decimal, que derivó del sistema numérico indo arábigo; posiblemente se adoptó este mismo por contar con diez dedos en las manos. El sistema decimal es uno de los denominados sistemas posicionales, utilizando un conjunto de símbolos cuyo significado depende fundamentalmente de su posición relativa al símbolo coma (.), denominado coma decimal, que en caso de ausencia se supone colocada implícitamente a la derecha. C n C n-1 C n-2 C 3 C 2 C 1 C 0 C -1 C -2 C -3 C m+1 C m El sistema decimal utiliza como base el 10, que corresponde al número de símbolos que comprende para la representación de cantidades; estos símbolos (también denominados dígitos) son: Una determinada cantidad, que denominaremos número decimal, se puede expresar de la siguiente forma: donde: i n = = N 10 ( C) i *(10) i= m 10 = Base i = posición respecto a la coma n = n de dígitos a la derecha de la coma m = n de dígitos a la izquierda de la coma C = Cada uno de los dígitos que componen el número i Esta fórmula corresponde al Teorema Fundamental de la Numeración (que veremos en el Apartado 4) y, por tanto, corresponde a la representación: C n * 10 n + C 2 * C 1 * C 0 * C -1 * C -2 * C m * 10 m Ejemplos: 1992 = 1* * * * = 3* * * * *10-4 4

6 4. TEOREMA FUNDAMENTAL DE LA NUMERACIÓN Se trata de un teorema que relaciona una cantidad expresada en cualquier sistema de numeración con la misma cantidad expresada en el sistema decimal. Supongamos una cantidad expresada en un sistema cuya base es B y representamos por C i cada uno de los dígitos que contiene dicha cantidad, donde el subíndice indica la posición del dígito con respecto a la coma decimal, posición que hacia la izquierda de la coma se numera desde 0 en adelante y de 1 en 1, y hacia la derecha se numera desde -1 y con incremento -1. El Teorema Fundamental de la Numeración dice que el valor decimal de una cantidad expresada en otro sistema de numeración, viene dado por la fórmula: donde: i n = = N B ( C) i *( B) i= m B = Base i = posición respecto a la coma n = n de dígitos a la derecha de la coma m = n de dígitos a la izquierda de la coma C = cada uno de los dígitos que componen el número C n * B n + C 2 * B 2 + C 1 * B 1 + C 0 * B 0 + C -1 * B -1 + C -2 * B C m * B m Ejemplos: Supongamos la cantidad expresada en el sistema de numeración de base 3 (que utiliza para la representación de cantidades los dígitos 0, 1 y 2). Cuál será la representación de la misma cantidad en el sistema decimal? 2* * * *3-1 = = Supongamos la cantidad 516 expresada en el sistema de numeración de base 7 (que utiliza para la representación de cantidades los dígitos 0, 1, 2, 3, 4, 5 y 6) Cuál será la representación de la misma cantidad en el sistema decimal? 5* * *7 0 = = Supongamos la cantidad expresada en el sistema de numeración de base 2 (que utiliza para la representación de cantidades los dígitos 0 y 1). Cuál será la representación de la misma cantidad en el sistema decimal? 1* * * * *2-3 = = El teorema aplicado a la inversa nos sirve para obtener la representación de una cantidad decimal en cualquier otra base, por medio de divisiones sucesivas por dicha base, como se verá en el Apartado 8.1. i 5

7 5. EL SISTEMA BINARIO Es el sistema de numeración que utiliza internamente el hardware de las computadoras actuales, por ello será el sistema al que prestaremos mayor atención y estudio. Se basa en la representación de cantidades utilizando los dígitos 1 y 0. Por tanto, su base es 2, (número de dígitos del sistema). Cada dígito de un número representado en este sistema se denomina bit (contracción de binary digit). Se suelen utilizar con nombre propio determinados conjuntos de dígitos en binario: Cuatro bits se denominan nibble o cuarteto (Ejemplo: 1001). Ocho bits octeto o byte (B). (Ejemplo: ). Al conjunto de 1024 bytes se le llama kilobyte (KB) kilobytes forman el llamado megabyte (MB) megabytes se denomina gigabyte (GB) gigabytes se denomina terabyte (TB). En el sistema de unidades con valores decimales, los múltiplos y los submúltiplos son potencias de diez: 1 kg = 10 3 g; 1 ton: 1000 kg. En binario el factor utilizado es 1024 = Por tanto, podemos establecer las siguientes igualdades relacionadas al dígito binario (bit): 1 cuarteto = 4 bits. 1 byte = 8 bits. 1 KM = 1024 * 8 bits = bits. 1 MB = 1024 * 1024 * 8 = bits. 1 GB = 1024 * 1024 * 1024 * 8 = bits. 1 TB = 1024 * 1024 * 1024 * 1024 * 8 = bits. 6

8 6. EL SISTEMA OCTAL Es un sistema de numeración cuya base es 8, es decir, utiliza 8 símbolos para la representación de cantidades. Estos símbolos son: Este sistema también es de los llamados posicionales y la posición de sus cifras se mide con relación a la coma decimal que en caso de no aparecer se supone implícitamente a la derecha del número. Ejemplo: Qué número decimal representa el número octal 4701 utilizando el TFN? 4* * * *8 0 = =

9 7. EL SISTEMA HEXADECIMAL Es un sistema posicional de numeración en el que su base es 16, por tanto, utilizará 16 símbolos para la representación de cantidades. Estos símbolos son: A B C D E F Se le asignan los siguientes valores absolutos a los símbolos A, B, C, D, E y F: Símbolo Valor absoluto A 10 B 11 C 12 D 13 E 14 F 15 Ejemplo: Qué número decimal representa el número hexadecimal 2CA utilizando el TFN? 2* C* A*16 0 = = 714 8

10 Decimal Binario Octal Hexadecimal Decimal Binario Octal Hexadecimal A B C A D B E C F D E F A B C A D B E C F D E F A B C A D B E C F D E F Tabla 1: Equivalencias entre los sistemas de numeración principales 9

11 8. CONVERSIONES ENTRE LOS SISTEMAS DE NUMERACION Se denomina conversión a la transformación de una determinada cantidad en un sistema de numeración a su representación equivalente en otro sistema Conversión binario-decimal Se toma el número binario a convertir y se suman las potencias de 2 correspondientes a las posiciones de todos sus dígitos cuyo valor es 1. El número decimal buscado en la suma de dichas potencias. i 2 i i 2 i , , , , , , , , , , Tabla 2: Potencias de 2 Podemos decir que este método es la aplicación directa del teorema fundamental de la numeración particularizado para el caso en que la base es 2. C n * 2 n + C 2 * C 1 * C 0 * C -1 * C -2 * C m * 2 m Ejemplos: Convertir a decimal el número binario Número en binario Posición Potencia de Suma de potencias = Convertir a decimal el número binario Número en binario Posición Potencia de Suma de potencias =

12 Convertir a decimal el número binario Número en binario Posición Potencia de , Suma de potencias = Convertir el número binario a decimal: = Conversión octal-decimal Se recurre al mismo método que la conversión binario a decimal, pero utilizando potencias de 8 en lugar de potencias de 2. Ejemplos: Convertir el número 764 a decimal = 7* * *8 0 = = Convertir el número a decimal = 2* * * *8-1 = = Convertir el número 777 a decimal = 7* * *8 0 = = Conversión hexadecimal-decimal Se recurre al mismo método que la conversión binario a decimal, pero utilizando potencias de 16 en lugar de potencias de 2. Además, se han de tener en cuenta las equivalencias (expresadas en la tabla adjunta) existentes entre los dígitos hexadecimales y los decimales. Símbolo Valor absoluto A 10 B 11 C 12 D 13 E 14 F 15 Tabla 3: Equivalencias hexadecimal-decimal 11

13 Ejemplos: Convertir el número 3E8 a decimal 3E8 16 = 3* E* *16 0 = 3* * *16 0 = = Convertir el número A3.1 a decimal A = A* * *16-1 = 10* * *16-1 = = Conversión decimal-binario Los métodos más conocidos para convertir un número decimal a su equivalente en binario son los siguientes: Divisiones sucesivas entre 2 Este método se utiliza para convertir números enteros en decimal a su respectivo entero en binario. Se trata de dividir sucesivamente por 2 tanto el número decimal como los sucesivos cocientes que se van obteniendo, hasta que el cociente en una de las divisiones se haga 0. La unión de todos los restos obtenidos escritos en orden inverso a su obtención nos proporciona el número inicial expresado en el sistema binario. Ejemplos: Convertir el número 10 a binario Convertir el número 1994 a binario =

14 Conversión de una fracción decimal a binario Se multiplica la fracción por 2, obteniendo en la parte entera del resultado el primero de los dígitos binarios de la fracción binaria que buscamos. A continuación repetimos el mismo proceso con la parte fraccionaria del resultado anterior, obteniendo en la parte entera del nuevo resultado el segundo de los dígitos buscados. Iteraremos sucesivamente de esta forma, hasta que desaparezca la parte fraccionaria o hasta que tengamos los suficientes dígitos binarios que nos permitan no sobrepasar un determinado error. Ejemplos: Convertir la fracción decimal en fracción binaria * 2 = * 2 = * 2 = * 2 = * 2 = * 2 = = Convertir la fracción decimal en fracción binaria * 2 = * 2 = * 2 = * 2 = * 2 = * 2 = * 2 = * 2 = * 2 = * 2 = = * 2 = * 2 = Con un error inferior a 2-12 Conversión de un número decimal con partes entera y fraccionaria Cuanto un número decimal tiene parte entera y fraccionaria se recurre al uso de los dos métodos anteriores de forma combinada. Se toma su parte entera y se convierte por medio de las divisiones sucesivas por 2, mientras que su parte fraccionaria se trata por medio del método de las multiplicaciones sucesivas por 2. Ejemplos: Convertir a binario el número decimal: En primer lugar tomamos la parte entera y la pasamos a binario. 13

15 = En segundo lugar, tomamos la parte fraccionaria y la pasamos a binario. 0, * 2 = 1, ,53125 * 2 = 1,0625 0,0625 * 2 = 0,125 0,125 * 2 = 0,25 0,25 * 2 = 0,5 0,5 * 2 = = Por consiguiente, el número decimal es el número binario: = Conversión decimal-octal Se recurre a los mismos métodos que los empleados para convertir de decimal a binario, sustituyendo tanto en las divisiones como en la multiplicaciones los 2 por 8. Divisiones sucesivas entre 8 Este método se utiliza para convertir números enteros en decimal a su respectivo entero en octal. Se trata de dividir sucesivamente por 8 tanto el número decimal como los sucesivos cocientes que se van obteniendo, hasta que el cociente en una de las divisiones se haga 0. La unión de todos los restos obtenidos escritos en orden inverso a su obtención nos proporciona el número inicial expresado en octal. Ejemplos: Convertir el número 500 a octal =

16 Convertir el número 1994 a octal = Conversión de una fracción decimal a octal El método a usar es el de las multiplicaciones sucesivas por 8 (exactamente igual que en el caso del binario). Se multiplica la fracción por 8, obteniendo en la parte entera del resultado el primero de los dígitos binarios de la fracción binaria que buscamos. A continuación repetimos el mismo proceso con la parte fraccionaria del resultado anterior, obteniendo en la parte entera del nuevo resultado el segundo de los dígitos buscados. Iteraremos sucesivamente de esta forma, hasta que desaparezca la parte fraccionaria o hasta que tengamos los suficientes dígitos binarios que nos permitan no sobrepasar un determinado error. Ejemplos: Convertir la fracción decimal en fracción octal * 8 = * 8 = = Conversión de un número decimal con partes entera y fraccionaria Cuanto un número decimal tiene parte entera y fraccionaria se recurre al uso de los dos métodos anteriores de forma combinada. Se toma su parte entera y se convierte por medio de las divisiones sucesivas por 8, mientras que su parte fraccionaria se trata por medio del método de las multiplicaciones sucesivas por 8. Ejemplos: Convertir el número decimal 25.4 a octal * 8 = * 8 = * 8 = * 8 = * 8 = = =

17 8.6. Conversión decimal-hexadecimal Se recurre a los mismos métodos que los empleados para convertir de decimal a binario, sustituyendo tanto en las divisiones como en la multiplicaciones los 2 por 8. Divisiones sucesivas entre 16 Este método se utiliza para convertir números enteros en decimal a su respectivo entero en hexadecimal. Se trata de dividir sucesivamente por 16 tanto el número decimal como los sucesivos cocientes que se van obteniendo, hasta que el cociente en una de las divisiones se haga 0. La unión de todos los restos obtenidos escritos en orden inverso a su obtención nos proporciona el número inicial expresado en hexadecimal. Ejemplos: Convertir el número 1000 a hexadecimal = 3E8 16 Convertir el número 1994 a hexadecimal = Conversión de una fracción decimal a hexadecimal El método a usar es el de las multiplicaciones sucesivas por 16 (exactamente igual que en el caso del binario). Se multiplica la fracción por 8, obteniendo en la parte entera del resultado el primero de los dígitos binarios de la fracción binaria que buscamos. A continuación repetimos el mismo proceso con la parte fraccionaria del resultado anterior, obteniendo en la parte entera del nuevo resultado el segundo de los dígitos buscados. Iteraremos sucesivamente de esta forma, hasta que desaparezca la parte fraccionaria o hasta que tengamos los suficientes dígitos binarios que nos permitan no sobrepasar un determinado error. Ejemplos: Convertir la fracción decimal en fracción hexadecimal * 16 = * 16 = = Conversión de un número decimal con partes entera y fraccionaria Cuanto un número decimal tiene parte entera y fraccionaria se recurre al uso de los dos métodos anteriores de forma combinada. Se toma su parte entera y se convierte por medio de las divisiones sucesivas por 16, mientras que su parte fraccionaria se trata por medio del método de las multiplicaciones sucesivas por

18 Ejemplos: Convertir el número decimal 25.4 a hexadecimal * 16 = * 16 = = = Conversión hexadecimal-binario Para convertir un número hexadecimal a binario se sustituye cada dígito hexadecimal por su representación binaria con cuatro dígitos según la Tabla 4. Dígito hexadecimal Ejemplo: Convertir 7BA3.BC 16 a binario Dígitos binarios A 1010 B 1011 C 1100 D 1101 E 1110 F 1111 Tabla 4: Equivalencia hexadecimal-binario 7 B A 3. B C Luego 7BA3.BC 16 = Conversión binario-hexadecimal Para convertir de binario a hexadecimal se realiza un proceso inverso al anterior. Se agrupan los dígitos binarios de 4 en 4 a partir del punto decimal hacia la izquierda y hacia la derecha, sustituyendo cada cuarteto por su correspondiente dígito hexadecimal. De ser preciso, para formar los cuartetos, se añadirán ceros por la izquierda o la derecha según estemos a la izquierda o a la derecha del punto decimal. 17

19 Al ser esta conversión inmediata y sencilla, la codificación de programas en lenguaje máquina, empleada en los primeros tiempos de la Informática, se hacía utilizando el sistema hexadecimal en lugar del binario, que es el utilizado por la computadora. Ejemplo: Convertir a hexadecimal B 6 Luego = 1948.B Conversión octal-binario Para convertir un número hexadecimal a binario se sustituye cada dígito octal por su representación binaria con tres dígitos según la Tabla 5. Dígito octal Ejemplo: Convertir a binario Dígitos binarios Tabla 5: Equivalencia octal-binario Luego = Conversión binario-octal Para convertir de binario a octal se realiza un proceso inverso al anterior. Se agrupan los dígitos binarios de 3 en 3 a partir del punto decimal hacia la izquierda y hacia la derecha, sustituyendo cada cuarteto por su correspondiente dígito hexadecimal. De ser preciso, para formar los tercetos, se añadirán ceros por la izquierda o la derecha según estemos a la izquierda o a la derecha del punto decimal. Ejemplo: Convertir a octal Luego =

20 8.11. Conversión octal-hexadecimal Esta conversión se realiza recurriendo a un paso intermedio utilizando el sistema binario. Primero se convierte el número de octal a binario y, finalmente, este último se pasa a hexadecimal. Ejemplo: Convertir a hexadecimal = = Conversión hexadecimal-octal Esta conversión, al igual que la anterior, realiza un paso intermedio utilizando el sistema binario. Se pasa el número de hexadecimal a binario y de éste a octal. Ejemplo: Convertir 1F4 8 a hexadecimal 1 F F4 16 = =

21 9. EL SISTEMA BCD Aunque un ordenador realiza todos sus cálculos por medio del sistema binario, tanto los datos iniciales como los resultados finales son, en la mayoría de los casos, traducidos al sistema de numeración decimal, que es el utilizado por nosotros. En muchos casos, este intercambio de datos entre nosotros y la máquina es tan frecuente (como, por ejemplo, en el caso de las calculadoras) que se pierde una enorme cantidad de tiempo a la hora de efectuar las correspondientes conversiones de unos sistemas de numeración a otros, lo que se traduce en una merma de las prestaciones de la máquina, en cuanto a lo que se refiere a tiempos de respuesta desde que le proporcionamos unos datos hasta que aparecen por pantalla los resultados. Por este motivo surgió el sistema de numeración BCD que, sin ser tan bueno como el binario para representar información (por cuanto que para representar la misma cantidad en decimal precisa de más bits), resulta más adecuado que el binario natural a la hora de efectuar conversiones con el sistema decimal, puesto que éstas son inmediatas. En el sistema BCD se coge cada dígito del número representado en decimal y se traduce a un cuarteto de dígitos en binario natural. En la tabla se presentan las equivalencias entre ambos sistemas. Decimal BCD Tabla 6: Equivalencias dígitos decimales - BCD Ejemplo: Representar en el código BCD Luego = BCD Representar BCD en el decimal Luego BCD =

22 10. REPRESENTACIÓN DE NÚMEROS ENTEROS Las computadoras digitales utilizan principalmente cuatro métodos para representar números enteros, éstos son los siguientes: Módulo y signo (MS). Complemento a 1 (C-1). Complemento a 2 (C-2). Exceso a 2 n-1. Se denomina rango de representación en un método determinado al conjunto de números representables por medio del mismo. En estas representaciones de números se utiliza el sistema binario y se considera que tenemos un número limitado de dígitos para cada dato numérico. Dicho número de dígitos disponibles lo representaremos por n. Al igual que en el sistema decimal, la representación de las cantidades numéricas viene restringida por el número de dígitos (bits en el caso del sistema binario) que se empleen. Así, si en el sistema decimal n dígitos permiten representar cantidades que van desde 0 hasta 10 n -1, en el sistema binario dichas cantidades van desde el 0 hasta el 2 n -1. Ejemplo: Sistema decimal (n = 4 dígitos) 10 4 cantidades: típicamente de 0 a (=9999) Sistema binario (n = 4 dígitos) 2 4 cantidades: típicamente de 0 a (=15) Dado que en un ordenador el número de bits que se pueden emplear para representar la información es limitado, la capacidad de representación numérica de los ordenadores será asimismo limitada. Las cantidades de bits más utilizadas por los ordenadores para representar números enteros son: 8, 16 y 32 bits, siendo las dos últimas las dos más utilizadas. También se pueden representar mediante estos métodos números reales, como veremos más adelante (usando 32, 64 y hasta 80 bits típicamente) Módulo y signo (MS) En este sistema de representación, el bit que está situado más a la izquierda representa el signo, y su valor será de 0 para el signo + y de 1 para el signo. El resto de los bits (n-1) representan el módulo (valor absoluto) del número. Dado que los números enteros no poseen parte decimal, se supone la coma decimal implícita a la derecha del bit de menor peso. Ejemplo: Supongamos que disponemos de 8 bits y queremos representar las cantidades +10 y -10 Número 10 0 { Signo Módulo Número { Signo Para módulo y signo los diferentes rangos de representación según el número de bits son los siguientes: Módulo 21

23 8 bits 7 7 (2 1) x x bits (2 1) x x bits (2 1) x x Este método de representación presenta dos ventajas: Posee rango simétrico, esto es, se puede representar el mismo número de cantidades positivas que negativas. La representación de dos números opuestos es la misma con la única diferencia del bit de signo (exactamente igual que en matemáticas). Asimismo el sistema MS adolece de dos inconvenientes: El ordenador no dispone de ningún algoritmo para realizar directamente la suma de dos números de distinto signo, al contrario que en los sistemas de representación en C-1 y C-2, que sí lo tienen. Existen dos representaciones para el cero, con lo que la capacidad de numeración desperdicia una combinación numérica. Por ejemplo: Con 8 bits, el cero se puede representar por medio de las combinaciones: Número { Signo { Signo Módulo Un punto muy importante a tener en cuenta es el hecho de que si, partiendo del 0, vamos aumentando de 1 en 1 y recorriendo todas las cantidades positivas, al llegar al mayor número positivo representable con el número de bits utilizado (en el ejemplo de la tabla el +127) el siguiente número será interpretado como un número negativo por el ordenador (en el ejemplo el -1). Este fenómeno se denomina desbordamiento (overflow), y se produce cuando se supera la capacidad de numeración del sistema utilizado. Los fenómenos de desbordamiento deben evitarse dado que, una vez se producen, los datos numéricos son interpretados de forma errónea. El desbordamiento puede ser positivo o negativo según nos salgamos de rango por un lado u otro Módulo

24 10.2. Complemento a 1 (C-1) Este sistema de representación utiliza el bit más a la izquierda para el signo, correspondiendo el 0 para el + y el 1 para el. Para los números positivos, los n-1 bits de la derecha representan el módulo (igual que en MS). La diferencia con el sistema de representación anterior surge porque los números negativos se obtienen complementando (cambiando ceros por unos y viceversa) todos los dígitos (incluido el bit de signo) del módulo del número opuesto. Ejemplo: Supongamos que disponemos de 8 bits y queremos representar las cantidades +10 y -10 Número 10 0 { Signo 23 Módulo Número -10 (se complementa su positivo) 1 { Signo Módulo Para C-1 los diferentes rangos de representación según el número de bits son los siguientes: 8 bits 7 7 (2 1) x x bits (2 1) x x bits (2 1) x x Este método de representación presenta dos ventajas: Posee rango simétrico, esto es, se puede representar el mismo número de cantidades positivas que negativas. El ordenador cambia de signo un número de forma casi instantánea, puesto que la complementación es una operación inmediata en un microprocesador. Se pueden sumar directamente dos números cualquiera que sea su signo, de tal modo que, una vez hecha la suma, si el bit más a la izquierda está a 0 el resultado es un número positivo y, en caso contrario (si está a 1), el número es negativo y está ya representado en C-1. Este sistema tiene dos inconvenientes: La identificación del valor de una cantidad negativa no es inmediata, ya que hay que realizar una conversión (complementando todos sus bits) para poder pasarla al sistema decimal y conocer su valor. Existen dos representaciones para el cero, con lo que la capacidad de numeración desperdicia una combinación numérica. Por ejemplo: Con 8 bits, el cero se puede representar por medio de las combinaciones: Número { Signo { Signo Módulo El fenómeno del desbordamiento en el sistema de C-1 es ligeramente diferente al de MS. Cuando llegamos al máximo número positivo representable con los bits utilizados por el sistema, el número siguiente es el menor número negativo representable (desbordamiento positivo). En el caso contrario, si le restamos 1 al menor número negativo la cantidad que aparece es el mayor número positivo representable, de tal modo que existe una especie de lazo cerrado en el que al desbordar Módulo

25 positivamente aparecemos por los negativos más pequeños y, al hacerlo negativamente, por los positivos más altos. Se ha de tener en cuenta la presencia de este fenómeno a la hora de programar ya que en muchos lenguajes de programación el ordenador no avisa cuando se producen este tipo de errores Ejemplo: Con n=8 bits. Cantidad Combinación binaria Interpretación del ordenador Máximo número positivo Mínimo número negativo Complemento a Esta combinación binario es interpretada por el ordenador como -127, ya que se trata del complemento a 1 de 127 ( ) Complemento a 2 (C-2) Es igual al sistema de C-1 con la adicción final de un 1 a la combinación complementada. El bit más a la izquierda es el de signo, correspondiendo el 0 al + y el 1 al. Para los números positivos, los N-1 dígitos de la derecha representan el módulo (exactamente igual que en MS y C-1). El negativo de un número se obtiene en dos pasos: Primer paso: Se complementa todos los bits del número positivo (cambiando ceros por unos y viceversa) incluido el bit de signo, esto es, se realiza el complemento a 1. Segundo paso: A1 resultado obtenido de hacer este complemento a 1 en el paso anterior se le suma 1 (en binario) despreciando el último acarreo si éste existe. Ejemplo: Supongamos que disponemos de 8 bits y queremos representar las cantidades +10 y

26 Número 10 0 { Signo Módulo Número -10 se hace el complemento a 1 1 { Signo Módulo se suma { Signo Módulo Para C-1 los diferentes rangos de representación según el número de bits son los siguientes: 8 bits x x bits x x bits x x Este método de representación presenta dos ventajas: Posee una única representación para el 0, por lo que no se produce el desperdicio de una combinación numérica tal y como era el caso con los dos sistemas anteriores. Dicha combinación liberada de representar el 0 se utiliza ahora para representar una cantidad negativa adicional, por lo que el rango no es simétrico (el número de combinaciones negativas es superior en un unidad al de positivas). Número 0 Representación positiva { Signo Módulo Cálculo representación negativa 1 { Signo Módulo Se suma uno +1 El acarreo se desprecia El ordenador cambia de signo un número de forma casi instantánea, puesto que la complementación y la adicción son operaciones inmediatas en un microprocesador. Se pueden sumar directamente dos números cualquiera que sea su signo, de tal modo que, una vez hecha la suma, si el bit más a la izquierda está a 0 el resultado es un número positivo y, en caso contrario (si está a 1), el número es negativo y está ya representado en C-1. Este sistema tiene dos inconvenientes: La ya comentada asimetría del rango de numeración. La identificación del valor de una cantidad negativa no es inmediata, ya que hay que realizar una conversión (complementando a 2) para poder pasarla al sistema decimal y conocer su valor. 25

27 El fenómeno del desbordamiento en el sistema de C-2 es igual al del C-1, con la única diferencia de que el menor número negativo es distinto en ambos sistemas. Ejemplo: Supongamos que trabajamos con 8 bits. Cantidad Combinación binaria Interpretación del ordenador Máximo número positivo Mínimo número negativo Exceso a 2 (N-1) Este método no utiliza ningún bit para el signo, con lo cual todos los bits representan un módulo o valor que corresponde al número representado más el exceso. Dicho exceso para N bits viene dado por 2 N-1. Por ejemplo, para 8 bits el exceso es de 2 7 = 128, con lo que el número 10 vendrá representado por = 138 (en binario natural). De igual modo, el -10 se representará por la combinación de binario natural 118 (= ). Cantidad Exceso a 128 Combinación binaria = = = Resulta interesante observar que todo número representado en exceso a 2 n-1 tiene la misma representación que en complemento a 2, pero con el bit de signo (primer bit de la izquierda) cambiado. 26

28 11. REPRESENTACIÓN DE NÚMEROS REALES A1 utilizar la computadora el sistema binario como método de representación interna de datos, es conveniente tener en cuenta que disponemos de un número finito de bits, que denominamos palabra, lo que hace que los números reales sufran un determinado truncamiento en su parte decimal. También se cumple que, al utilizar la coma flotante, no todos los números tienen representación, por lo que éstos se representan de forma aproximada, introduciéndose pequeños errores de representación. El tamaño de una palabra depende de la computadora que se utilice y se corresponde a la cantidad de bits que es capaz de transferir en una operación de E/S. Las máquinas con las que trabajamos actualmente utilizan rangos de representación de 32, 64 e incluso 80 bits para la representación de números reales Representación en coma fija Su nombre viene de la posición en que se supone situado el punto decimal, que será en una posición fija. Se utilizó hace mucho tiempo para la representación de números reales, pero el uso de cierta cantidad fija de bits para los decimales limitaba mucho el rango de numeración de la parte entera así como la precisión de la parte decimal. Debido a esto, la coma fija es utilizada en la actualidad exclusivamente para la representación de números enteros, dándose por supuesto que la coma decimal figura implícitamente a la derecha de los dígitos Representación en coma flotante La coma flotante surge de la necesidad de representar números reales con un rango de representación mayor al que nos ofrece la representación en coma fija y posibilitar a la computadora el tratamiento de números muy grandes y muy pequeños. Estas ventajas que nos ofrece la coma flotante traen como contraprestación una disminución en la precisión de los números representados. En su representación se utiliza la notación matemática, según la cual: N = mantisa * (base de exponenciación) exponente Un número en esta notación tiene infinitas representaciones. De todas ellas se toma la denominada normalizada, que consiste en que la mantisa no tiene parte entera y el primer dígito a la derecha de la coma es significativo (distinto de 0), salvo en la representación del número 0, que se representa por una combinación binaria de todo ceros. EJEMPLO: Representación del número con base de exponenciación = 8354 * 10-1 = * 10 0 = * 10 1 = * 10 2 = * 10 3 = * 10 4 Representación normalizada Normalmente se suelen seguir las siguientes reglas: El exponente se representa en las notaciones módulo y signo o exceso a 2 elevado a N -1 siendo éste un número entero. La mantisa es un número real con la coma implícita a la izquierda representada en módulo y signo, complemento a 1 o complemento a 2. La base de exponenciación, también denominada radix, es una potencia de 2 determinada por el fabricante (2, 8 o 16). 27

29 Existen muchas formas de representación en coma flotante, variando la longitud de la palabra de la computadora, la base de exponenciación, el número de dígitos reservados para la mantisa y para el exponente, el sistema de representar la mantisa y el exponente, etc. La coma flotante se define particularmente en cada caso, siendo las definiciones más comunes las siguientes: a) Para simple precisión (en computadoras de 32 bits): signo exponente mantisa b) Para doble precisión (en computadoras de 32 bits): signo exponente mantisa El rango de representación en coma flotante tiene la siguiente estructura: mnn MNN 0 mnp MNP Donde: mnn es el mínimo número negativo que podemos representar y se corresponde con: (máximo exponente) mnn = - máxima mantisa * base MNN es el máximo número negativo que podemos representar y se corresponde con: (máximo exponente) MNN = - mínima mantisa * base mnp es el mínimo número positivo que podemos representar y se corresponde con: mnp = mínima mantisa * base (máximo exponente) MNP es el máximo número positivo que podemos representar y se corresponde con: (máximo exponente) MNP = máxima mantisa * base Conviene observar que existen cuatro zonas de números que no se pueden representar mediante un formato de coma flotante. Subdesbordamiento positivo: 0 < x < mnp Subdesbordamiento negativo: MNN < x < 0 Desbordamiento positivo: x > MNP Desbordamiento negativo: x < MNN Además, la cantidad de números representables es finita, existiendo números no representables entre los números mnn y MNN, así como entre mnp y MNP; es decir, en ambos subran- 28

30 gos existen huecos con números que la computadora aproxima al más cercano representable para poder trabajar con ellos. mnn MNN 0 mnp MNP Desbordamiento negativo Subdesbordamiento negativo Subdesbordamiento positivo Desbordamiento positivo EJEMPLO: Una computadora utiliza el siguiente formato para registrar números en coma flotante: Los bits del 23 al 30 para el exponente representado en exceso a 128 (2 elevado a 8-1). Los bits del 0 al 22 para la mantisa normalizada que se representa en C-1. El bit 31 para el signo de la mantisa (0 para el +). Base de exponenciación 2. El 0 se representa con todos los dígitos a 0. Representar el número 12: 12 en binario es: 1100 Normalizando 1100 tenemos x 2 4. Pasamos el exponente 4 a exceso (128+4) = Así, tendremos: Representar el número -12: Signo (+) Exponente 4 Mantisa 0.11 El exponente es el mismo del caso anterior y la mantisa se pasa a C-1 (invirtiendo sus dígitos), luego: Representar el 0: d) Calcular el rango de representación: Signo (-) Exponente 4 Mantisa 0.11 en C mnn = - 0, x : MNN = - 0, x

31 mnp = 0, x MNP = 0, x

32 12. REPRESENTACION DE DATOS ALFANUMÉRICOS. Los datos e informaciones que se manejan internamente en un sistema informático se pueden representar, según sus características, de las siguientes formas: ALFANUMÉRICAS ASCII EBCDIC Representaciones o códigos internos NUMÉRICAS Coma fija Coma flotante Una computadora puede trabajar internamente con un conjunto de caracteres que nos permitirán manejar datos, informaciones, instrucciones, órdenes de control, etc. Este conjunto de caracteres podemos subdividirlo en los siguientes grupos: Caracteres alfabéticos: Letras mayúsculas (de la A a la Z sin la Ñ ) y minúsculas (de la a a la z sin la ñ ) Cifras decimales: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Caracteres especiales: Son el punto (.), la coma (,), asterisco (*),, y caracteres de control (NUL, ACK, CR, ) Los primeros códigos utilizados fueron los de 6 bits, permitían la representación de 2 6 = 64 caracteres (variaciones con repetición de 2 elementos en 6 posiciones), que corresponden a: 26 letras mayúsculas. 10 cifras numéricas. 28 caracteres denominados especiales. Con el nacimiento de los lenguajes de programación de alto nivel comenzaron a utilizarse códigos de 7 bits que permitían la representación de minúsculas y caracteres cuyo significado son órdenes de control para periféricos. Un ejemplo de este tipo de códigos es el ASCII de 7 bits. Bits 654 Bits NUL DLE SP P ` p 0001 SOH DC1! 1 A 4 a q 0010 STX DC2 " 2 B R b r 0011 ETX DC3 # 3 C S c s 0100 EOT DC4 $ 4 D T d t 0101 ENQ NAK % 5 E U e u 0110 ACK SYN & 6 F V f v 0111 BEL ETB 7 G W g w 1000 BS CAN ( 8 H X h x 1001 HT EM ) 9 1 Y i y 1010 LF SUB * : J Z j Z 1011 VT ESC + ; K [ k { 1100 FF FS, < L \ CR GS - = M ] m } 1110 SO RS. > N ^ n ~ 1111 SI US /? 0 _ o DEL Donde los significados de los caracteres de control son: 31

33 NUL Null (carácter nulo) DC1 Device control 1 (control de dispositivo 1) SOH Start of heading (comienzo de cabecera) DC2 Device control 2 (control de dispositivo 2) STX Star of text (comienzo de texto) DC3 Device control 3 (control de dispositivo 3) ETX End of text (final de texto) DC4 Device control 4 (control de dispositivo 4) EOT End of transmission (fin de transmisión) NAK Negative acknowledge (transmisión negativa) ENQ Enquiry (petición de transmisión) SYN Synchronous idle (espera síncrona) ACK Acknowledge (reconocimiento de transmisión) ETB End of transmission blok (fin bloque de transmisión) BEL Bell (señal audible, timbre o alarma) CAN Cancel (cancelar) BS Backspace (retroceso) EM End of medium (final del medio) HT Horizontal tabulation (tabulación horizontal) SUB Subtitute (sustitución) LF Line feed (avance de línea) ESC Escape (escape) VT Vertical tabulation (tabulación vertical) FS File separator (separador de archivos) FF Form feed (avance de página) GS Group separator (separador de grupos) CR Carriage return (retorno de carro) RS Record separator (separador de registros) SO Shift out (quitar desplazador de bits) US Unit separator (separador de unidades) SI Shift in (poner desplazador de bits) SP Espace (carácter de espacio) DEL Data link escape (escape de enlace de datos) DEL Delete (borrar) Dada la actual necesidad de representar más de 127 caracteres en los ordenadores (piénsese por ejemplo en la ñ y en todos los caracteres acentuados), hoy en día los códigos alfanuméricos utilizados son de 8 bits, de los cuales el más usado es el ASCII extendido. Dicho ASCII extendido consta de 256 caracteres distintos, de los cuales los que van del 0 al 127 son los mismos para todos los países del mundo y coinciden con la tabla del ASCII de 7 bits, mientras que los que van del 128 al 255 varían según zonas geográficas, ya que las necesidades de caracteres adicionales no son las mismas en unas lenguas que en otras. En España se utilizan las páginas de códigos ASCII 437 y

34 Bits 7654 Bits Blanco (nulo)? Blanco (espacio) P ` p 0001??! 1 A 4 a q 0010?? " 2 B R b r 0011?!! # 3 C S c s 0100? $ 4 D T d t 0101? % 5 E U e u 0110?? & 6 F V f v 0111?? 7 G W g w 1000?? ( 8 H X h x 1001?? ) 9 1 Y i y 1010?? * : J Z j Z 1011?? + ; K [ k { 1100??, < L \ ?? - = M ] m } 1110??. > N ^ n ~ 1111? /? 0 _ o? Bits 7654 Bits Ç É á + - a = 0001 ü æ í - - ß ± 0010 é Æ ó - - G = 0011 â ô ú + + p = 0100 ä ö ñ - + S ( 0101 à ò Ñ + + s ) 0110 å û ª + µ 0111 ç ù º + + t 1000 ê ÿ F 1001 ë Ö + + +?? 1010 è Ü O? 1011 ï ½ + - d v 1100 î ¼ + _ 8 n 1101 ì + - ø ² 1110 Ä Pt «+ +? 1111 Å ƒ» + - n 33

35 13. INTERPRETACIÓN DE LOS DATOS Un punto importantísimo a tener en cuenta con los ordenadores es que éstos no saben de qué tipo es la información que contienen almacenada. Para ellos se trata únicamente de ristras de bits tratadas almacenadas en la memoria en octetos y tomadas por el microprocesador en grupos de tamaños diversos, a saber, 1, 4, 8, 16, 32, 64, 80 o incluso 128 bits. Una misma combinación binaria puede tener distintos significados según la interpretación que le digamos al ordenador que haga de ella. La mejor forma de entender esta problemática es por medio de un ejemplo. Supongamos que tenemos un grupo de 32 bits. El significado de dichos bits a la hora de interpretarlos como información será muy diversa según los supongamos caracteres (8 bits), números enteros en binario (16 o 32 bits según el tipo de máquina), números enteros en BCD (4 bits), reales (32 bits). Grupo de 32 bits Interpretación como caracteres H o l a Interpretación como número entero Interpretación como número en coma flotante Signo Exponente Mantisa ,

SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN)

SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN) SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN) INTRODUCCIÓN Desde hace mucho tiempo, el hombre en su vida diaria se expresa, comunica, almacena información, la manipula, etc. mediante letras y números. Para

Más detalles

TEMA 2 REPRESENTACIÓN BINARIA

TEMA 2 REPRESENTACIÓN BINARIA TEMA 2 REPRESENTACIÓN BINARIA ÍNDICE. INTRODUCCIÓN HISTÓRICA A LA REPRESENTACIÓN NUMÉRICA 2. REPRESENTACIÓN POSICIONAL DE MAGNITUDES 2. Transformaciones entre sistemas de representación (cambio de base)

Más detalles

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C"

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: EMPEZAR DE CERO A PROGRAMAR EN lenguaje C Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C" Autor: Carlos Javier Pes Rivas (correo@carlospes.com) Capítulo 2 REPRESENTACIÓN DE LOS DATOS 1 OBJETIVOS Entender cómo la computadora

Más detalles

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5.

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Representación de la información Contenidos 1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Conversiones

Más detalles

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte)

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA... 1 1. Representación interna de datos.... 1 1.2. Sistemas de numeración.... 2 1.3. Aritmética binaria...

Más detalles

FUNCIONAMIENTO DIGITAL DE UN SISTEMA. EL SISTEMA BINARIO. Sistema Digital. Fr. Casares. Sistema Digital. Sistema Digital

FUNCIONAMIENTO DIGITAL DE UN SISTEMA. EL SISTEMA BINARIO. Sistema Digital. Fr. Casares. Sistema Digital. Sistema Digital FUNCIONAMIENTO DIGITAL Sistema Digital -Emplea dispositivos en los que solo son posibles dos estados DE UN SISTEMA. EL SISTEMA BINARIO Relé Elemento Válvula Situación (Falso) (Verdadero) Desactivado Cerrada

Más detalles

Tema 2. La Información y su representación

Tema 2. La Información y su representación Tema 2. La Información y su representación 2.1 Introducción. Un ordenador es una máquina que procesa información. La ejecución de un programa implica la realización de unos tratamientos, según especifica

Más detalles

UD 1. Representación de la información

UD 1. Representación de la información UD 1. Representación de la información 1.1 INTRODUCCION... 1 1.2 SISTEMAS DE REPRESENTACIÓN... 2 1.2.1 El Sistema Decimal.... 2 1.2.2 Teorema Fundamental de la Numeración. (TFN)... 2 1.2.3 El Sistema Binario....

Más detalles

Materia Introducción a la Informática

Materia Introducción a la Informática Materia Introducción a la Informática Unidad 1 Sistema de Numeración Ejercitación Prof. Alejandro Bompensieri Introducción a la Informática - CPU Ejercitación Sistemas de Numeración 1. Pasar a base 10

Más detalles

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 4: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas

Más detalles

Fundamentos de Informática 1er curso de ingeniería Industrial. Tema 2. Datos. Tema 2. Datos

Fundamentos de Informática 1er curso de ingeniería Industrial. Tema 2. Datos. Tema 2. Datos Fundamentos de Informática 1er curso de ingeniería Industrial Tema 2. Datos 1 Tema 2. Datos 2.1 Codificación binaria 2.2 Tipos de datos 2.3 Operaciones básicas 2.4 Expresiones 2.5 Almacenamiento 2 1 2.1

Más detalles

Representación de la Información

Representación de la Información Representar: Expresar una información como una combinación de símbolos de un determinado lenguaje. Trece -> símbolos 1 y 3 Interpretar: Obtener la información originalmente representada a partir de una

Más detalles

Informática. Temas 27/03/2014. Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon

Informática. Temas 27/03/2014. Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon Informática Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon Temas O Sistema de Numeración O Conversión entre números decimales y binarios. O El tamaño de las cifras binarias

Más detalles

Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 3: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas

Más detalles

Estructura de Computadores

Estructura de Computadores Estructura de Computadores Tema 2. Representación de la información Departamento de Informática Grupo de Arquitectura de Computadores, Comunicaciones y Sistemas UNIVERSIDAD CARLOS III DE MADRID Contenido

Más detalles

Computación Tercer Año

Computación Tercer Año Colegio Bosque Del Plata Computación Tercer Año UNIDAD 2 Digitalización de la información y su almacenamiento E-mail: garcia.fernando.j@gmail.com Profesor: Fernando J. Garcia Ingeniero en Sistemas de Información

Más detalles

1 LA INFORMACION Y SU REPRESENTACION

1 LA INFORMACION Y SU REPRESENTACION 1 LA INFORMACION Y SU REPRESENTACION 1.1 Sistemas de numeración Para empezar a comprender cómo una computadora procesa información, debemos primero entender cómo representar las cantidades. Para poder

Más detalles

Ingeniería Técnica en Informática de Sistema E.T.S.I. Informática Universidad de Sevilla

Ingeniería Técnica en Informática de Sistema E.T.S.I. Informática Universidad de Sevilla Fundamentos de Computadores Representación Binaria Ingeniería Técnica en Informática de Sistema E.T.S.I. Informática Universidad de Sevilla Versión 1.0 (Septiembre 2004) Copyright 2004 Departamento de

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

TEMA II: REPRESENTACIÓN DE LA INFORMACIÓN

TEMA II: REPRESENTACIÓN DE LA INFORMACIÓN TEMA II: REPRESENTACIÓN DE LA INFORMACIÓN 2.1. Introducción. El computador procesa información. Para que un ordenador ejecute unos datos es necesario darle dos tipos de información: las instrucciones que

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles

Tema 1. Representación de la información MME 2012-20131

Tema 1. Representación de la información MME 2012-20131 Tema 1 Representación de la información 1 Índice Unidad 1.- Representación de la información 1. Informática e información 2. Sistema de numeración 3. Representación interna de la información 2 Informática

Más detalles

UNIDAD 3 Representación de la Información

UNIDAD 3 Representación de la Información DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA UNIDAD 3 Representación de la Información Cátedra: INFORMATICA I (BIO) COMPUTACION I (ELO) UNIDAD 3 REPRESENTACION DE LA INFORMACION 3.1- Sistemas Numéricos. En

Más detalles

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

Tema 1: Sistemas de numeración

Tema 1: Sistemas de numeración 1 Tema 1: Sistemas de numeración Felipe Machado Norberto Malpica Susana Borromeo Joaquín Vaquero López, 2013 2 01 Digital vs. Analógico Índice 02 Sistemas de numeración 03 Códigos binarios 04 Aritmética

Más detalles

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN Un sistema de numeración es el conjunto de símbolos y reglas que se utilizan para la representación de datos numéricos o cantidades. Un sistema de numeración se caracteriza

Más detalles

A continuación se mostrarán ejemplos de tres clases de códigos: numéricos, alfanuméricos y de despliegue.

A continuación se mostrarán ejemplos de tres clases de códigos: numéricos, alfanuméricos y de despliegue. Capítulo 3 1 Codificación binaria 3.1. Codificación En un ambiente de sistemas digitales se denomina codificación a la asignación de un significado a una configuración de bits. Al modelar problemas es

Más detalles

Fundamentos de Programación. Sabino Miranda-Jiménez

Fundamentos de Programación. Sabino Miranda-Jiménez Fundamentos de Programación Sabino Miranda-Jiménez MÓDULO 1. Introducción a la computación Temas: La computación en el profesional de ingeniería Desarrollo computacional en la sociedad Aplicaciones Software

Más detalles

Capítulo 2 Representación Interna de Datos 2.1 Introducción

Capítulo 2 Representación Interna de Datos 2.1 Introducción Capítulo Representación Interna de Datos. Introducción En la actualidad, y desde hace ya muchos años, el hombre en su vida diaria se comunica, almacena información y la maneja desde el punto de vista numérico

Más detalles

Lista completa de códigos ASCII

Lista completa de códigos ASCII Lista completa de códigos ASCII formato: documento de word, visítenos en www.elcodigoascii.com.ar símbolo código ASCII 0 NULL ( carácter nulo ) código ASCII 1 SOH ( inicio encabezado ) código ASCII 2 STX

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

Introducción a Códigos

Introducción a Códigos Introducción a Página 1 Agenda Página 2 numéricos posicionales numéricos no posicionales Construcción de cantidades Sistema decimal Sistema binario binarios alfanuméricos Conversión decimal a binario Conversión

Más detalles

SEGUNDO APUNTES ANALISTA DE SISTEMAS DE CLASE EN COMPUTACIÓN. Materia: DATOS. Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I

SEGUNDO APUNTES ANALISTA DE SISTEMAS DE CLASE EN COMPUTACIÓN. Materia: DATOS. Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I ANALISTA DE SISTEMAS EN COMPUTACIÓN Materia: DATOS Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I Cátedra: Lic. Ulises Vazquez SEGUNDO APUNTES DE CLASE 1 INDICE SISTEMAS NUMÉRICOS - 1 RA PARTE...3 DEFINICIÓN

Más detalles

TEMA 2: Representación de la Información en las computadoras

TEMA 2: Representación de la Información en las computadoras TEMA 2: Representación de la Información en las computadoras Introducción Una computadora es una máquina que procesa información y ejecuta programas. Para que la computadora ejecute un programa, es necesario

Más detalles

TEMA 1: SISTEMAS INFORMÁTICOS. Parte 2: representación de la información

TEMA 1: SISTEMAS INFORMÁTICOS. Parte 2: representación de la información TEMA 1: SISTEMAS INFORMÁTICOS Parte 2: representación de la información Qué vamos a ver? Cómo se representa y almacena la información en un ordenador Cómo podemos relacionar la información que entendemos

Más detalles

13/10/2013. Clase 02: Sistemas de Numeración. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar.

13/10/2013. Clase 02: Sistemas de Numeración. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar. Clase 02: Sistemas de Numeración Ing. Christian Lezama Cuellar Semestre 2013-I Sistemas Digitales y Arquitectura de Computadoras 1 Conjunto de números que se relacionan para expresar la relación existente

Más detalles

Codificación binaria de la información

Codificación binaria de la información Tema 2 Codificación binaria de la información Se ha indicado en el tema introductorio que las computadoras digitales sólo manejan información en forma de ceros y unos. Esto es así porque los dispositivos

Más detalles

Clase 02: Representación de datos

Clase 02: Representación de datos Arquitectura de Computadores y laboratorio Clase 02: Representación de datos Departamento de Ingeniería de Sistemas Universidad de Antioquia 2015-2 Contenido 1 2 Representación de la Información Y sistemas

Más detalles

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8 Dpto. de ATC, Universidad de Sevilla - Página de Capítulo : INTRODUCCIÓN SISTEMAS DE REPRESENTACIÓN NUMÉRICA Introducción Bases de numeración Sistema decimal Sistema binario Sistema hexadecimal REPRESENTACIÓN

Más detalles

Informática Básica: Representación de la información

Informática Básica: Representación de la información Informática Básica: Representación de la información Departamento de Electrónica y Sistemas Otoño 2010 Contents 1 Sistemas de numeración 2 Conversión entre sistemas numéricos 3 Representación de la información

Más detalles

Instituto Tecnológico de Celaya

Instituto Tecnológico de Celaya LOS SISTEMAS DE REPRESENTACIÓN NUMÉRICA Es común escuchar que las computadoras utilizan el sistema binario para representar cantidades e instrucciones. En esta sección se describen las ideas principales

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

Sistemas de Numeración Operaciones - Códigos

Sistemas de Numeración Operaciones - Códigos Sistemas de Numeración Operaciones - Códigos Tema 2 1. Sistema decimal 2. Sistema binario 3. Sistema hexadecimal 4. Sistema octal 5. Conversión decimal binario 6. Aritmética binaria 7. Complemento a la

Más detalles

2. Desde los transistores hasta los Circuitos Integrados 3Sit 3. Sistemas de representación numérica éi 4. Números con signo

2. Desde los transistores hasta los Circuitos Integrados 3Sit 3. Sistemas de representación numérica éi 4. Números con signo Electrónica Digital: Introducción 1Sñl 1. Señales Analógicas lói Sñl Señales Diitl Digitales 2. Desde los transistores hasta los Circuitos Integrados 3Sit 3. Sistemas de representación numérica éi 4. Números

Más detalles

Técnicas y Dispositivos Digitales 1. UNIDAD 3 Códigos Binarios

Técnicas y Dispositivos Digitales 1. UNIDAD 3 Códigos Binarios Técnicas y Dispositivos Digitales 1 UNIDAD 3 Códigos Binarios Departamento de Ingeniería Electrónica y Computación. Facultad de Ingeniería. Universidad Nacional de Mar del Plata Codificación Numero Letra

Más detalles

TEMA 1 Representación de la información

TEMA 1 Representación de la información TEMA 1 Representación de la información Tema 1: Representación de la información. Aritmética y Representación binaria 1) Introducción BB1, Cap 2, Ap: 2.1, 2.2.1 2) Sistemas binario-octal-hexadecimal BB1,

Más detalles

Sistema binario. Representación

Sistema binario. Representación Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza

Más detalles

ELECTRÓNICA DIGITAL TEMA 1

ELECTRÓNICA DIGITAL TEMA 1 ELECTRÓNICA DIGITAL TEMA CÓDIGOS BINARIOS 2 Escuelas Técnicas de Ingenieros CÓDIGOS BINARIOS CÓDIGOS BINARIOS CÓDIGO BINARIO NATURAL CÓDIGO BINARIO NATURAL 5 4 3 2 9 8 7 6 5 4 3 2 Sistema decimal de numeración

Más detalles

Materia: Informática. Nota de Clases Sistemas de Numeración

Materia: Informática. Nota de Clases Sistemas de Numeración Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos

Más detalles

Tema 1. SISTEMAS DE NUMERACION

Tema 1. SISTEMAS DE NUMERACION Tema 1. SISTEMAS DE NUMERACION SISTEMAS DE NUMERACION Sistemas de numeración Sistema decimal Sistema binario Sistema hexadecimal Sistema octal. Conversión entre sistemas Códigos binarios SISTEMAS DE NUMERACION

Más detalles

Guía 01: Sistemas Numéricos

Guía 01: Sistemas Numéricos Guía 01: Sistemas Numéricos 1.1.- Sistemas Numéricos, bases 2, 10 y 16 En los sistemas numéricos posicionales un número se expresa como los dígitos del sistema multiplicados por la base de dicho sistema

Más detalles

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales Definición(1) Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos

Más detalles

SISTEMAS Y CÓDIGOS DE NUMERACIÓN

SISTEMAS Y CÓDIGOS DE NUMERACIÓN INTRODUCCIÓN SISTEMAS Y CÓDIGOS DE NUMERACIÓN Una señal analógica es aquella que puede tomar infinitos valores para representar la información. En cambio, en una señal digital se utiliza sólo un número

Más detalles

ARQUITECTURA DE LAS COMPUTADORAS PRACTICA

ARQUITECTURA DE LAS COMPUTADORAS PRACTICA ARQUITECTURA DE LAS COMPUTADORAS PRACTICA SISTEMAS NUMÉRICOS INTRODUCCIÓN TEÓRICA: Definimos Sistema de Numeración como al conjunto de reglas que permiten, con una cantidad finita de símbolos, representar

Más detalles

Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería Química Curso 2010/2011

Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería Química Curso 2010/2011 Módulo 1. Fundamentos de Computadores Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería Química Curso 2010/2011 1 CONTENIDO Tema 1. Introducción y conceptos básicos

Más detalles

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN.

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. INDICE. CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. TÉRMINOS BÁSICOS DE LA INFORMÁTICA. REPRESENTACIÓN INTERNA DE LA INFORMACIÓN. El SISTEMA BINARIO DE NUMERACION. El sistema decimal

Más detalles

Representación de Datos. Una Introducción a los Sistemas Numéricos

Representación de Datos. Una Introducción a los Sistemas Numéricos Representación de Datos Una Introducción a los Sistemas Numéricos Tipos de Datos Datos Texto Número Imagen Audio Video Multimedia: Información que contiene números, texto, imágenes, audio y video. Como

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

Lenguajes de Programación

Lenguajes de Programación Lenguajes de Programación Mediante los programas se indica a la computadora que tarea debe realizar y cómo efectuarla, pero para ello es preciso introducir estas órdenes en un lenguaje que el sistema pueda

Más detalles

Tema 2 : Códigos Binarios

Tema 2 : Códigos Binarios Tema 2 : Códigos Binarios Objetivo: Conocer diferentes códigos binarios Conocer algunos códigos de detección y corrección de errores. Códigos alfanuméricos 1 Códigos Binarios A la representación de cifras,

Más detalles

INFORMATICA I. Sistemas de Numeración - Representación Interna. Autor: Jorge Di Marco

INFORMATICA I. Sistemas de Numeración - Representación Interna. Autor: Jorge Di Marco Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Formación Básica Dpto de Matemática Carrera de : Ingeniería Civil, Electricista, Electrónica, Industrial, Mecánica y Agrimensura Autor:

Más detalles

Estructura de Datos. Unidad I Tipos de Datos

Estructura de Datos. Unidad I Tipos de Datos Estructura de Datos Unidad I Tipos de Datos Conceptos Básicos Algoritmo: es una secuencia finita de pasos o instrucciones ordenadas crono-lógicamente que describen un método para resolver un problema específico.

Más detalles

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES SISTEMA DE NUMERACIÓN BASE 2 El sistema de numeración binario es el conjunto de elementos {0, 1} con las operaciones aritméticas (suma, resta,

Más detalles

Aritmética del computador. Departamento de Arquitectura de Computadores

Aritmética del computador. Departamento de Arquitectura de Computadores Aritmética del computador Departamento de Arquitectura de Computadores Contenido La unidad aritmético lógica (ALU) Representación posicional. Sistemas numéricos Representación de números enteros Aritmética

Más detalles

❸ Códigos Binarios 3.1.- CÓDIGOS NUMÉRICOS

❸ Códigos Binarios 3.1.- CÓDIGOS NUMÉRICOS Capítulo ❸ No toda la información que maneja un sistema digital es numérica, e inclusive, para la información numérica a veces no es conveniente utilizar el sistema binario descrito en los capítulos anteriores.

Más detalles

TEMA 3 Representación de la información

TEMA 3 Representación de la información TEMA 3 Representación de la información Álvarez, S., Bravo, S., Departamento de Informática y automática Universidad de Salamanca Introducción Para que el ordenador ejecute programas necesita dos tipos

Más detalles

UNIDADES DE ALMACENAMIENTO DE DATOS

UNIDADES DE ALMACENAMIENTO DE DATOS 1.2 MATÉMATICAS DE REDES 1.2.1 REPRESENTACIÓN BINARIA DE DATOS Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo

Más detalles

Organización del Computador. Prof. Angela Di Serio

Organización del Computador. Prof. Angela Di Serio Punto Flotante Muchas aplicaciones requieren trabajar con números que no son enteros. Existen varias formas de representar números no enteros. Una de ellas es usando un punto o coma fijo. Este tipo de

Más detalles

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas Fecha: 1 er semestre de 2011 INTRODUCCIÓN El sistema

Más detalles

Hardware I - Datos e información en el ordenador

Hardware I - Datos e información en el ordenador Hardware I - 1. El tratamiento de la información. Datos e información. Conviene, en primer lugar, diferenciar el significado de los términos datos e información. La información es un concepto muy amplio,

Más detalles

Tema I. Sistemas Numéricos y Códigos Binarios

Tema I. Sistemas Numéricos y Códigos Binarios Tema I. Sistemas Numéricos y Códigos Binarios Números binarios. Aritmética binaria. Números en complemento-2. Códigos binarios (BCD, alfanuméricos, etc) Números binarios El bit. Representación de datos

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO TRABAJO REALIZADO COMO APOYO PARA LA CATEDRA INFORMATICA I Autora: Ing. Ing. Sylvia

Más detalles

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales.

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales. ELECTRÓNICA DIGITAL El tratamiento de la información en electrónica se puede realizar de dos formas, mediante técnicas analógicas o mediante técnicas digitales. El analógico requiere un análisis detallado

Más detalles

Sistemas de Numeración

Sistemas de Numeración UNIDAD Sistemas de Numeración Introducción a la unidad Para la mayoría de nosotros el sistema numérico base 0 aparentemente es algo natural, sin embargo si se establecen reglas de construcción basadas

Más detalles

Matemática de redes Representación binaria de datos Bits y bytes

Matemática de redes Representación binaria de datos Bits y bytes Matemática de redes Representación binaria de datos Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo pueden entender

Más detalles

Notas de Diseño Digital

Notas de Diseño Digital Notas de Diseño Digital Introducción El objetivo de estas notas es el de agilizar las clases, incluyendo definiciones, gráficos, tablas y otros elementos que tardan en ser escritos en el pizarrón, permitiendo

Más detalles

Introducción a la Programación 11 O. Humberto Cervantes Maceda

Introducción a la Programación 11 O. Humberto Cervantes Maceda Introducción a la Programación 11 O Humberto Cervantes Maceda Recordando En la sesión anterior vimos que la información almacenada en la memoria, y por lo tanto aquella que procesa la unidad central de

Más detalles

CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA.

CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA. CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA. INTRODUCCIÓN La lógica es el arte de la argumentación correcta y verdadera Organon, Aristóteles de Estagira Desde hace mucho tiempo, el hombre en su

Más detalles

Representación de la información

Representación de la información Unidad 1 Representación de la información En esta unidad aprenderás a: Operar de la misma forma que lo hacen los ordenadores internamente. Comprender el funcionamiento interno de los ordenadores. Interpretar

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

Tipo de datos. Montse Bóo Cepeda. Este trabajo está publicado bajo licencia Creative Commons Attribution- NonCommercial-ShareAlike 2.5 Spain.

Tipo de datos. Montse Bóo Cepeda. Este trabajo está publicado bajo licencia Creative Commons Attribution- NonCommercial-ShareAlike 2.5 Spain. Tipo de datos Montse Bóo Cepeda Este trabajo está publicado bajo licencia Creative Commons Attribution- NonCommercial-ShareAlike 2.5 Spain. Estructura del curso 1. Evolución y caracterización de los computadores.

Más detalles

Sistemas de numeración, operaciones y códigos

Sistemas de numeración, operaciones y códigos Sistemas de numeración, operaciones y códigos Slide 1 Sistemas de numeración Slide 2 Números decimales El sistema de numeración decimal tiene diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9 Es un sistema

Más detalles

Tema 2 Representación de la información. Fundamentos de Computadores

Tema 2 Representación de la información. Fundamentos de Computadores Tema 2 Representación de la información Fundamentos de Computadores septiembre de 2010 Índice Índice 2.1 Introducción 2.2 Representación de enteros 2.2.1 Representación posicional de los números. 2.2.2

Más detalles

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen Tema 7.- Los circuitos digitales. Resumen Desarrollo del tema.. Introducción al tema. 2. Los sistemas de numeración.. El sistema binario. 4. Códigos binarios. 5. El sistema octal y hexadecimal. 6. El Álgebra

Más detalles

Representación de la Información en una Computadora

Representación de la Información en una Computadora Representación de la Información en una Computadora Sistemas de Numeración El sistema de numeración que utiliza el hombre es el sistema decimal (de base 10). Lo creamos en forma natural porque tenemos

Más detalles

1. SISTEMAS DIGITALES

1. SISTEMAS DIGITALES 1. SISTEMAS DIGITALES DOCENTE: ING. LUIS FELIPE CASTELLANOS CASTELLANOS CORREO ELECTRÓNICO: FELIPECASTELLANOS2@HOTMAIL.COM FELIPECASTELLANOS2@GMAIL.COM PAGINA WEB MAESTROFELIPE.JIMDO.COM 1.1. INTRODUCCIÓN

Más detalles

UNIDAD Nº 1: 1. SISTEMAS DE NUMERACION. Formalizado este concepto, se dirá que un número X viene representado por una cadena de dígitos:

UNIDAD Nº 1: 1. SISTEMAS DE NUMERACION. Formalizado este concepto, se dirá que un número X viene representado por una cadena de dígitos: UNIDAD Nº 1: TECNICATURA EN INFORMATICA UNLAR - CHEPES 1.1. INTRODUCCION 1. SISTEMAS DE NUMERACION El mundo del computador es un mundo binario. Por el contrario, el mundo de la información, manejada por

Más detalles

EJERCICIOS DEL TEMA 1

EJERCICIOS DEL TEMA 1 EJERCICIOS DEL TEMA 1 Introducción a los ordenadores 1) Averigua y escribe el código ASCII correspondiente, tanto en decimal como en binario, a las letras de tu nombre y apellidos. Distinguir entre mayúsculas/minúsculas,

Más detalles

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos

Más detalles

Sistemas de Numeración

Sistemas de Numeración Sistemas de Numeración Objetivo: Conoce los sistemas de numeración diferentes al decimal Ser capaces de transformar una cifra de un sistema a otro 1 Introducción El sistema de numeración usado de forma

Más detalles

Sistemas Numéricos Cambios de Base Errores

Sistemas Numéricos Cambios de Base Errores Cálculo Numérico Definición: es el desarrollo y estudio de procedimientos (algoritmos) para resolver problemas con ayuda de una computadora. π + cos ( x) dx 0 Tema I: Introducción al Cálculo Numérico Sistemas

Más detalles

1.1 Sistema de numeración binario

1.1 Sistema de numeración binario 1.1 Sistema de numeración binario Un sistema de numeración consta de: Un conjunto ordenado de cifras y un conjunto de operaciones. Llamaremos Base al número de cifras que hay en dicho conjunto. De este

Más detalles

Unidad Didáctica. Códigos Binarios

Unidad Didáctica. Códigos Binarios Unidad Didáctica Códigos Binarios Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

Lección 1. Representación de números

Lección 1. Representación de números Lección 1. Representación de números 1.1 Sistemas de numeración Empecemos comentando cual es el significado de la notación decimal a la que estamos tan acostumbrados. Normalmente se escribe en notación

Más detalles

3. Codificación de información en binario

3. Codificación de información en binario Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2005 2006 3. Codificación de información en binario Existen Distintos muchas formas distintas de expresar

Más detalles

Unidad I Sistemas Digitales

Unidad I Sistemas Digitales Unidad I Sistemas Digitales Rafael Vázquez Pérez Arquitectura de Computadoras martes de febrero de 4 Agenda. Electrónica, electrónica analógica y digital. 2. Circuitos y sistemas digitales. 3. Sistemas

Más detalles

EL LENGUAJE DE LAS COMPUTADORAS

EL LENGUAJE DE LAS COMPUTADORAS EL LENGUAJE DE LAS COMPUTADORAS Una computadora maneja sus instrucciones por medio de un sistema numérico binario, que es el más simple de todos al contar con sólo dos símbolos para representar las cantidades.

Más detalles

ELO311 Estructuras de Computadores Digitales. Números

ELO311 Estructuras de Computadores Digitales. Números ELO311 Estructuras de Computadores Digitales Números Tomás Arredondo Vidal Este material está basado en: material de apoyo del texto de David Patterson, John Hennessy, "Computer Organization & Design",

Más detalles