Integración de funciones reales de una variable real. 24 de octubre de 2014

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integración de funciones reales de una variable real. 24 de octubre de 2014"

Transcripción

1 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014

2 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl de Riemnn Integrción numéric Integrción impropi Cálculo de áres y volúmenes Introducción ls ecuciones diferenciles

3 L integrl indefinid

4 c Dpto. de Mtemátics UDC L integrl indefinid Se f : I R Definición Se dice que F es un primitiv de f en I si F (x) = f (x), x I Teorem Si F y G son dos primitivs de un mism función f en un intervlo I, entonces, k R tl que F(x) = G(x) + k, x I En consecuenci, si conocemos un primitiv F de f, conocemos tods.

5 c Dpto. de Mtemátics UDC L integrl indefinid Definición Dd un función f : I R, se llm integrl indefinid de f l conjunto de tods ls primitivs de f, y se escribe: f (x)dx = { F / F (x) = f (x), x I } En consecuenci, si conocemos un primitiv F de f : f (x)dx = {F(x) + k, k R} Propiedd (linelidd de l integrl) [f (x) + g(x)] dx = f (x)dx + g(x) dx α f (x)dx = α f (x)dx, α R

6 c Dpto. de Mtemátics UDC Integrles inmedits f (x) m f (x)dx = 1 m + 1 f (x)m+1 + C, m 1 e f (x) f (x)dx = e f (x) + C f (x) dx = ln f (x) + C f (x) f (x) f (x)dx = f (x) ln [sinf (x)] f (x)dx = cosf (x) + C + C, > 0, 1 [cosf (x)] f (x)dx = sinf (x) + C

7 c Dpto. de Mtemátics UDC Integrles inmedits f (x) 1 + f (x) 2 dx = rctnf (x) + C f (x) dx = rcsinf (x) + C 1 f (x) 2 f (x) sin 2 dx = cotf (x) + C f (x) [tnf (x)] f (x)dx = ln cosf (x) + C f (x) cos 2 dx = tnf (x) + C f (x) [cotf (x)] f (x)dx = ln sinf (x) + C

8 c Dpto. de Mtemátics UDC Integrción por prtes u(x)v (x)dx = (uv)(x) v(x)u (x)dx o bien, udv = uv vdu Es conveniente cundo el integrndo es un producto de: polinomio y exponencil polinomio y seno o coseno exponencil y seno o coseno

9 c Dpto. de Mtemátics UDC Integrción por cmbio de vrible Sen: f : [,b] R integrble, ϕ : [α,β] R inyectiv, con derivd continu y tl que: ϕ ([α,β]) [,b] Entonces f (x)dx = f [ϕ(t)]ϕ (t)dt

10 L integrl de Riemnn

11 c Dpto. de Mtemátics UDC Sums de Riemnn Se un intervlo [, b] R y se f : [, b] R un función cotd. Definición Se llm prtición P de [,b] un conjunto de puntos {x 0,x 1,...,x n } que verific: = x 0 < x 1 < x 2 <... < x n 1 < x n = b Definición Dd un prtición P, denotmos M i = sup f (x) m i = ínf f (x) x i 1 x x i x i 1 x x i

12 c Dpto. de Mtemátics UDC Sums de Riemnn Definición Se llm sum superior de Riemnn de l función f reltiv l prtición P : U(P,f ) = n i=1 M i (x i x i 1 ) Definición Se llm sum inferior de Riemnn de l función f reltiv l prtición P : L(P,f ) = n i=1 m i (x i x i 1 )

13 c Dpto. de Mtemátics UDC

14 c Dpto. de Mtemátics UDC

15 c Dpto. de Mtemátics UDC Integrl de Riemnn Definición Dd un función f cotd, se dice que f es integrble en [,b] en el sentido de Riemnn si y sólo si: ε > 0, P prtición de [,b] tl que U(P,f ) L(P,f ) < ε. Se escribe f R[,b]. Interpretción geométric Si f es un función positiv en un intervlo [,b], su integrl de Riemnn, f (x)dx, represent el áre limitd por l curv y = f (x), el eje y = 0 y ls rects x = y x = b.

16 c Dpto. de Mtemátics UDC Teorem (de integrbilidd) Tod función continu en [,b] es integrble en [,b]. En consecuenci, tod función derivble es integrble. Tod función monóton y cotd en [,b] es integrble en [,b]. Tod función cotd en [,b] que present en dicho intervlo un número finito de puntos de discontinuidd, es integrble en [,b] Se f un función integrble en [,b] en el sentido de Riemnn, y tl que: m f (x) M, x [,b] Si g es continu en [m,m], entonces l función compuest g f es integrble en [,b].

17 c Dpto. de Mtemátics UDC Propiedd Sen f,g R[,b]. Entonces: f ± g R[,b] y cf R[,b], c R, y se cumple: fg R[,b] (f ± g)(x)dx = (cf )(x)dx = c f (x)dx ± g(x) dx f (x)dx Si < c < b, entonces f R[,c] y f R[c,b], y se verific: c f (x)dx = f (x)dx + f (x)dx c

18 c Dpto. de Mtemátics UDC Propiedd Sen f,g R[,b]. Si f g en [,b], entonces Si m f (x) M, x [,b], entonces f (x)dx g(x) dx m(b ) f (x)dx M(b ) f R[,b], y se cumple: f (x)dx f (x) dx

19 c Dpto. de Mtemátics UDC Teorem (fundmentl del cálculo) Se f R[,b]. Pr x b, se: x F(x) = f (t)dt. Entonces, F C [,b]. Además, si f es continu en [,b], entonces F es derivble en [,b] y F (x) = f (x), x [,b]. Tmbién puede enuncirse de l siguiente mner: Si f : I R es continu en I, entonces tiene primitivs en I; un de ells es l integrl definid F dd por: donde I es culquier. x F(x) = f (t)dt

20 c Dpto. de Mtemátics UDC Regl de Brrow Si f R[,b] y existe un primitiv F de f en [,b], entonces: f (x)dx = b F(x) = F(b) F() Teorem (Integrción por prtes) Si F y G son dos funciones derivbles en [,b], y se tiene: { F = f G en [,b] = g siendo f y g integrbles en [,b], entonces F(x)g(x)dx = F(b)G(b) F()G() f (x)g(x)dx

21 c Dpto. de Mtemátics UDC Teorem Se l función F dd por l integrl definid: (x) F(x) = f (t)dt (x) Entonces, l derivd de F con respecto x viene dd por: F (x) = f (b(x))b (x) f ((x)) (x)

22 Integrción numéric

23 c Dpto. de Mtemátics UDC Integrción numéric L integrl de un función no se clcul de form exct cundo sólo conocemos los vlores de l función en un número finito de puntos su primitiv no se expres en términos de funciones elementles ejemplos: f (x) = sinx x ; f (x) = e x2 su primitiv es muy costos de clculr o de evlur 1 ejemplo: f (x) = (x 8) x 2 4x 7

24 c Dpto. de Mtemátics UDC Integrción numéric. Fórmuls simples Fórmul del rectángulo: f (x)dx (b )f (x 0 ), x 0 [,b] En prticulr, si x 0 = +b 2, l fórmul se conoce como fórmul del punto medio o de Poncelet Fórmul del trpecio: f (x)dx b ( ) f () + f (b) 2 Fórmul de Simpson: f (x)dx b ( f () + 4 f ( + b ) 6 2 ) + f (b)

25 c Dpto. de Mtemátics UDC Integrción numéric. Fórmuls compuests 1. Se divide el intervlo de integrción en n subintervlos de igul longitud: x i = + ih (i = 0,1,...,n) con h = b n 2. Se proxim l integrl medinte un fórmul simple en cd subintervlo: n 1 xi+1 f (x)dx = f (x)dx i=0 x i Fórmul del punto medio compuest: n 1 f (x)dx h Fórmul del trpecio compuest: f (x)dx h 2 i=0 ( n 1 f (x 0 ) + 2 f ( x i + x i+1 ) 2 i=1 ) f (x i ) + f (x n )

26 Integrción impropi

27 c Dpto. de Mtemátics UDC Integrción impropi Definición L integrl condiciones siguientes: f (x)dx se dice impropi si se d l menos un de ls el intervlo (,b) no es cotdo f no está cotd en (,b) Ls integrles impropis se clsificn en: 1. integrles de primer especie: (,b) no cotdo, f cotd en (,b) 2. integrles de segund especie: (,b) cotdo, f no cotd en (,b) 3. integrles de tercer especie: (,b) no cotdo, f no cotd en (,b)

28 c Dpto. de Mtemátics UDC Integrles impropis de primer especie Se f : (,b] R integrble en [m,b], f (x)dx = lím m m b. Se define: m f (x)dx si el límite existe. Si el límite es finito, se dice que l integrl es convergente.

29 c Dpto. de Mtemátics UDC Integrles impropis de primer especie De form similr, si f : [,+ ) R es integrble en [,M], M, se define + f (x)dx = si el límite existe. Por último, se define + f (x)dx = lím M + M f (x)dx + f (x)dx + f (x)dx + Si l integrl f (x)dx existe, su vlor es independiente de R.

30 c Dpto. de Mtemátics UDC Integrles impropis de segund especie Se f : (,b] R tl que lím (x) = ±. Si f es integrble en [t,b], x +f t (,b], entonces se define si el límite existe. f (x)dx = lím f (x)dx t + t De form nálog, si f : [,b) R es tl que lím (x) = ± y f es x b f integrble en [,t], t [,b), entonces se define si el límite existe. t f (x)dx = lím f (x)dx t b Si el límite es finito, se dice que l integrl es convergente.

31 c Dpto. de Mtemátics UDC Integrles impropis de segund especie c Si lím f (x) = ±, con c (,b), y existen f (x)dx y f (x) dx, entonces x c c se define c f (x)dx = f (x)dx + f (x)dx c

32 c Dpto. de Mtemátics UDC Integrles impropis de tercer especie Son integrles en un intervlo no cotdo de un función no cotd en un número finito de puntos del intervlo. Ejemplo L integrl 0 1 x dx se reduce los csos nteriores de l siguiente form: 0 1 x dx = x dx }{{} 2 especie x dx }{{} 1 especie

33 Cálculo de áres y volúmenes

34 c Dpto. de Mtemátics UDC Áre de superficies plns Sen ls funciones f,g : [,b] R integrbles. Entonces el áre A limitd por ls curvs y = f (x), y = g(x) y ls rects x = y x = b está dd por: A = f (x) g(x) dx Cso prticulr: Si g(x) = 0, entonces A = f (x) dx.

35 El volumen del cuerpo se puede obtener de form similr prtir de ls áres de ls secciones producids por plnos perpendiculres l eje OY en el intervlo [,b]. c Dpto. de Mtemátics UDC Volumen de un sólido Supongmos un sólido que, l ser cortdo por un plno perpendiculr l eje OX, pr cd x [,b], produce un sección de áre A(x). El volumen del sólido comprendido entre x = y x = b es: V = A(x) dx

36 c Dpto. de Mtemátics UDC Volumen de un sólido de revolución Al girr el grfo de f : [,b] R lrededor del eje OX, se obtiene un sólido cuyo volumen es: V = π f (x) 2 dx

37 Ecuciones diferenciles

38 c Dpto. de Mtemátics UDC Clsificción de ls ecuciones diferenciles 1. Ecuciones diferenciles ordinris 1.1 Ecuciones diferenciles ordinris de primer orden Ecuciones diferenciles seprbles o en vribles seprds Ecuciones diferenciles lineles Otros tipos: homogénes, excts, de Bernoulli, Ecuciones diferenciles ordinris de orden superior Ecuciones diferenciles lineles Ecuciones diferenciles lineles con coeficientes constntes Ecuciones diferenciles lineles con coeficientes vribles Ecuciones diferenciles no lineles 2. Ecuciones en derivds prciles

39 c Dpto. de Mtemátics UDC Ecución diferencil ordinri de primer orden Definición Un ecución diferencil ordinri (e.d.o.) de primer orden es un ecución de l form y = f (x,y) donde l incógnit es l función y = y(x). Definición El problem: hllr y = y(x) solución de { y = f (x,y) se llm problem de vlor inicil. y(x 0 ) = y 0

40 c Dpto. de Mtemátics UDC Aplicción: enfrimiento de un plc Problem: Un plc metálic se h clentdo hst un tempertur T 0 y se h depositdo en un recinto cerrdo un tempertur constnte T. Si T = 20 o C y T 0 = 80 o C, cuál es l tempertur de l plc después de t minutos? Ley de enfrimiento de Newton: Cundo l diferenci de temperturs entre un cuerpo y su medio mbiente no es demsido grnde, l vrición en el tiempo del clor trnsferido hci el cuerpo o desde el cuerpo es proporcionl l diferenci de l tempertur entre el cuerpo y el medio externo. Si Q(t): clor trnsferido hci o por l plc después de t minutos dq : vrición de clor trnsferido dt entonces dq = k(t T ) dt donde k es un constnte cuyo vlor se determin prtir de los dtos del problem.

41 c Dpto. de Mtemátics UDC Aplicción: propgción de un virus informático Problem: En un red de ordendores se propg un virus informático. L velocidd de infección es proporcionl l número de equipos infectdos y l número de equipos sin infectr: dn = kn(p N) dt Suponiendo que l red tiene P = 1000 equipos, el virus prte de uno de ellos y l cbo de 2 minutos hy 10 equipos infectdos, queremos clculr el número de equipos infectdos en cd instnte.

42 c Dpto. de Mtemátics UDC Ecuciones diferenciles en vribles seprds L ecución diferencil y = f (x,y) dy dx = f (x,y) se dice seprble o en vribles seprds si f (x,y) = g(x) h(y) Pr resolverl, seprmos ls vribles e integrmos: dy dx = g(x) h(y) h(y)dy = g(x)dx h(y)dy = g(x)dx Not: L constnte de integrción se clcul imponiendo un condición del tipo y(x 0 ) = y 0 (condición inicil).

43 c Dpto. de Mtemátics UDC Ecuciones diferenciles lineles de primer orden Un ecución diferencil linel de primer orden es un ecución de l form y + p(x)y = q(x) Multiplicndo los dos miembros de l ecución por µ(x) tl que µ(x)(y (x) + p(x)y(x)) = (µ(x)y(x)) e integrndo, se ve que l solución es de l form ( ) y(x) = µ(x) 1 µ(x)q(x)dx + C Se puede comprobr que µ(x) = e p(x) dx

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

LA INTEGRAL DE RIEMANN

LA INTEGRAL DE RIEMANN LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

6.1. Integral de Riemann de una función.

6.1. Integral de Riemann de una función. Tem 6 L integrl definid 6.. Integrl de Riemnn de un función. En un principio (Euler), el cálculo integrl se definí como l operción invers l diferencición, sin embrgo, en l primer mitd del siglo XIX se

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Integración en una variable. Aplicaciones

Integración en una variable. Aplicaciones Tem 4 Integrción en un vrible. Aplicciones Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución desrrolldo

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39 Índice generl. L Integrl Indenid.. Antiderivd e Integrl Indenid...................... Integrles inmedits........................... 3.3. Regl de l Cden............................ 4.4. Sustitución o Cmbio

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e.

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e. MsMtescom Integrles Selectividd CCNN Murci [] [EXT-A] ) Clcule l integrl indefinid rctgd, donde rctg denot l función rco-tngente de ) De tods ls primitivs de l función f() = rctg, encuentre l que ps por

Más detalles

Fundamentos matemáticos. Tema 7 Integración. Aplicaciones

Fundamentos matemáticos. Tema 7 Integración. Aplicaciones Fundmentos mtemáticos Grdo en Ingenierí grícol y del medio rurl Tem 7 Integrción. Aplicciones José Brrios Grcí Deprtmento de Análisis Mtemático Universidd de L Lgun jrrios@ull.es 16 Licenci Cretive Commons

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica

Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica Métodos Numéricos: Resumen y ejemplos em 3: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Mrzo 8, versión.4 Contenido. Fórmuls de cudrtur.

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N. Cálculo Diferencil e Integrl - Longitud de un curv. Prof. Frith J. Briceño N. Objetivos cubrir Longitud de un curv. Áre de un superficie de revolución. Ejercicios Código : MAT-CDI. resueltos Ejemplo :

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI Cálculo integrl Betriz Cmpos Sncho Cristin Chirlt Monleon Deprtment de mtemàtiques Codi d ssigntur 35 Betriz Cmpos / Cristin Chirlt - ISBN: 978-84-694-64- Edit: Publiccions de l Universitt Jume I. Servei

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY.

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. 42 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril 2006. FUNCIONES SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. Resumen Se prueb que tod función holomorf es nlític, y recíprocmente. Se desrroll

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas)

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas) ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA APLICACIONES DE LA INTEGRAL DEFINIDA CÁLCULO DE ÁREAS Y VOLÚMENES (De revolución) A. Cálculo

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

TEMA 3. Integración de funciones reales de variable real.

TEMA 3. Integración de funciones reales de variable real. TEMA 3 Integrción de funciones reles de vrible rel. Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x.

INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x. INTEGRALES IMPROPIAS Hst hor hemos estudido l integrl de Riemnn de un función f cotd y definid en un intervlo cerrdo y cotdo [, ], con., Ahor generlizmos este concepto.. Integrl de un función cotd, definid

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

Transparencias de MATEMÁTICAS. Gabriel Soler López

Transparencias de MATEMÁTICAS. Gabriel Soler López Trnsprencis de MATEMÁTICAS Gbriel Soler López Documento compildo con L A TEX el 11 de enero de 2012 Cpítulo 7 Repso del cálculo diferencil de un vrible 1. Introducción los números reles En este tem se

Más detalles

5.5 Integración numérica

5.5 Integración numérica 88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

TEMA 13: INTEGRAL DEFINIDA

TEMA 13: INTEGRAL DEFINIDA TEMA : INTEGRAL DEFINIDA..- El problem de clculr el áre bjo un curv El problem de clculr el áre limitd por lguns curvs fue borddo, por los mtemáticos griegos, desde bstntes siglos trás. El método empledo

Más detalles

Cálculo de volúmenes II: Método de los casquetes cilíndricos

Cálculo de volúmenes II: Método de los casquetes cilíndricos Sesión 6 II: Método de los csquetes cilíndricos Tems Método de los csquetes cilíndricos pr clculr volúmenes de sólidos de revolución. Cpciddes Conocer y plicr el método de los csquetes esféricos pr clculr

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

Integración Numérica. 18 Regla del Trapecio

Integración Numérica. 18 Regla del Trapecio Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método

Más detalles

INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS

INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS Mtemátics º de Bchillerto Ciencis y Tecnologí Profesor: Jorge Escribno Colegio Inmculd Niñ Grnd www.coleinmculdnin.org TEMA 7.- INTEGRALES

Más detalles

Segunda Versión. Integración y Series. Tomo II

Segunda Versión. Integración y Series. Tomo II UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA Deprtmento de Mtemátic y Cienci de l Computción CÁLCULO Segund Versión Integrción y Series Tomo II Gldys Bobdill A. y Rfel Lbrc B. Sntigo de Chile 4

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

Tema 11. La integral definida

Tema 11. La integral definida Mtemátics II (Bchillerto de Ciencis) Análisis: Integrl definid 5 Integrl definid: áre jo un curv Tem L integrl definid L integrl definid permite clculr el áre del recinto limitdo, en su prte superior por

Más detalles

10.1 Funciones integrables Teorema fundamental del Cálculo Ejercicios

10.1 Funciones integrables Teorema fundamental del Cálculo Ejercicios Integrción Funciones integrbles Integrción. Funciones integrbles 49. Teorem fundmentl del Cálculo 55.3 Ejercicios 58 El áre de un recinto, l longitud de un cble que cuelg entre dos postes, el volumen o

Más detalles

Integración de funciones de una variable

Integración de funciones de una variable Tem 5 Integrción de funciones de un vrible Introducción Este tem está dedicdo l estudio y l relción que existe entre dos problems que, en principio, tienen un nturlez muy distint.. Cálculo de primitivs:

Más detalles

AN ALISIS MATEM ATICO B ASICO.

AN ALISIS MATEM ATICO B ASICO. AN ALISIS MATEM ATICO B ASICO. LONGITUDES, AREAS Y VOL UMENES. Un trtmiento mlio de l integrl ermite el clculo de longitudes de curvs, res de suercies (lns y lbeds) y de volumenes. Con nuestro conocimiento

Más detalles

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE HUGO BARRANTES TRANSFORMADA DE LAPLACE Mteril complementrio ii Revisión filológic Mrí Benvides González Digrmción Hugo Brrntes Cmpos Encrgdo de cátedr Eugenio Rojs Mor Producción cdémic y sesorí metodológic

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

TRABAJOS DE MATEMATICA

TRABAJOS DE MATEMATICA UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral Cpítulo Aplicciones de l integrl Hst hor únicmente hemos prendido clculr integrles, sin plnternos l utilidd que ésts pueden tener. Sin embrgo, l integrl definid es un método rápido pr clculr áres, volúmenes,

Más detalles

PRACTICA 7 Integración Numérica

PRACTICA 7 Integración Numérica PRACTICA 7 Integrción Numéric Fórmuls de tipo interpoltorio ) Tommos n+ puntos distintos, x i, i = 0,,..., n, del intervlo [,] ) Clculmos el polinomio de interpolción de l función f en los puntos x i 3)

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

EJERCICIOS DE INTEGRALES IMPROPIAS

EJERCICIOS DE INTEGRALES IMPROPIAS EJERCICIOS DE INTEGRALES IMPROPIAS. Integrles impropis de primer especie. Clculr Pr n, n con >. F (b) = b n n+ = n + Si n >, entonces F (b) =, con lo que Si n

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Cap ıtulo 4 Integraci on num erica

Cap ıtulo 4 Integraci on num erica Cpítulo 4 Integrción numéric Cpítulo 4 Integrción numéric Comenzremos por recordr lguns coss fundmentles sobre ls integrles. Si f(x) es un función continu en el intervlo finito I = [, b] entonces podemos

Más detalles

Práctica 12. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 12. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA APLICACIONES DE LA INTEGRAL Práctics Mtlb Práctic Objetivos Profundizr en l comprensión del concepto de integrción. Aplicr l integrl l cálculo de áres y volúmenes Comndos de Mtlb int Clcul de

Más detalles