PLANIFICACIÓN DE TRAYECTORIAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PLANIFICACIÓN DE TRAYECTORIAS"

Transcripción

1 PLANIFICACIÓN DE TRAYECTORIAS

2 Índce Qué es un ryecor? Tpos de ryecors Puno puno Coordnds Connus Tryecors en el espco rculr: Lnel Cúbc Prbólc A rmos

3 Plnfccón de ryecors Objevo: ddo el puno ncl del robo, qué cmno debe segur pr llegr su poscón fnl? Problem: en odo momeno debe cumplr uns lmcones: Cnemács: rngo de ls rculcones Dnámcs: velocddes y celercones máxms

4 Genercón de ryecors (I).- Dr el puno ncl y fnl de l ryecor (en coordends cresns o generlzds)..- Muesrer l ryecor cresn obenendo un número fno de punos en es ryecor (x, y, z, α, β, γ)..- Ulzndo l rnsformcón nvers, converr cd puno en sus correspondenes coordends rculres (q, q, q, q 4, q 5, q 6 ) 4.- Inerpolr enre los punos rculres obendos, generndo un ryecor en funcón del empo pr cd vrble rculr: q (), que se relzble por los cudores. 5.- S esá ben hecho, es ryecor se proxmrá l desed en el plno cresno.

5 Genercón de ryecors (II) Dos forms de soluconr el problem: Coordends cresns. Venj: movmeno rel en ls res dmensones, puede esblecerse lgdurs del enorno. Desvenj: necesdd de resolver repedmene l rnsformcón homogéne nvers Coordends generlzds. Venj: ls lgdurs dnámcs se plnen en ls vrbles generlzds.

6 Tpos de ryecors (I) Tryecor puno puno: cd rculcón se mueve sn consderr el esdo o evolucón de ls demás rculcones. Movmeno eje eje Cd vez se mueve un eje El empo ol es l sum de los empos de cd rculcón.

7 Tpos de ryecors (II) Movmeno smuláneo de ejes Comenzn smulánemene odos los ejes El empo fnl será el de quell rculcón que rde más empo en fnlzr su movmeno.

8 Tpos de ryecors (III) Tryecors coordnds (sócrons) Se plne un movmeno smuláneo, rlenzndo ls rculcones más rápds, pr que ods rden el msmo empo en cb el movmeno. Tryecors connus Se fj explícmene en coordends cresns el cmno que ene que segur el exremo (nfnos punos) El movmeno de ls rculcones puede precer erráco.

9 Inerpolcón de ryecors (I) Muchs veces es necesro generr ryecors no sólo con un puno ncl y fnl, sno que mbén se mpone que pse por deermndos punos: Cmno connuo Evcón de obsáculos Suvzdo de l ryecor, ec. Solucón: selecconr lgún po de funcón polnómc (splne) cuyos coefcenes se jusn pr psr por los punos desedos (con velocddes y celercones cepbles)

10 Inerpolcón de ryecors (II) Inerpolcón lnel: q() * b Condcones: q( - ) * - b q - q( ) * b q Se despej y b y se obene: Problem: l velocdd cmb bruscmene y l celercón es nfn

11 Inerpolcón de ryecors (III) Pr segurr l connudd en l velocdd se proxm por un funcón cúbc. Condcones (4): poscón y velocdd en el puno ncl y fnl Fórmul de nerpolcón:

12 Inerpolcón de ryecors (IV) Inerpolcón prbólc: el pso por los punos nermedos se plnfc pr evr cmbos bruscos: en vez de psr por el puno se ps n cerc de él como lo perm l celercón máxm. Fórmul de nerpolcón:

13 Inerpolcón de ryecors (V) Condcones de funconmeno: q& (T rmo: q () b* q () q q (T ) b*t q Ecucón: q () q (q q ) / T * rmo: q () b * ( T ) q (T ) q q (T T ) q b *T Ecucón: q () q (q q ) / T * ( T ) rmo: q () b (- (T - τ)) c ( T τ ) τ) b b c (T τ T q& ( T τ ) b b c( T τ T τ ) τ) q q (T τ) q(t τ) q (T τ) T q c ( q ( q q ) b T q ) T ( q q ) T 4TT τ

14 Inerpolcón de ryecors (VI) S se dese sgnr poscones, velocddes y celercones del puno ncl y del puno fnl (6 condcones) > polnomo de orden 5 S se dese psr por punos nermedos, se enen más condcones: Incl: poscón, velocdd y celercón Despegue: poscón Asenmeno: poscón Fnl: Poscón, velocdd y celercón 8 condcones > Polnomo de orden q () 4 4

15 Inerpolcón de ryecors (VI) Pr consegur rnscones suves se necesrín órdenes del polnomo elevdos, pero s el orden es lo se producen compormenos errácos en punos nermedos: Solucón: nerpolcón rmos. Inerpolcón más sencll (--): Trmos de despegue y senmeno máxm celercón Trmo nermedo máxm velocdd Son desebles rnscones suves por lo que suelen usrse en cd segmeno splnes de orden, 4 o 5 Inerpolcón más usd: 4--4 Ors posblddes: --, 5-5-5, -5-, ec.

16 Inerpolcón rmos (I) Inerpolcón --: Fórmul de nerpolcón: donde V es l velocdd, y l celercón máxm permd.

17 Inerpolcón rmos (II) Tryecor 4--4 Los segmenos se jusn de form que en los punos de cmbo (despegue y senmeno) no cmbe n l velocdd n l celercón. Prmer segmeno: orden 4 Segundo segmeno: Tercer segmeno: q () h () q () h () 4 4 q () h ()

18 Inerpolcón rmos (III).- Se normlz cd segmeno pr que correspond l nervlo [ ] Tempo: Velocdd: segmeno: Acelercón: segmeno: τ τ τ τ d dh d d d dh d dh q ) ( * ) ( ) ( ) ( τ τ τ τ & ) ( ) ( * ) ( ) ( ) ( d h d d d d h d d h d q τ τ τ τ && 4 4 ) ( q & 4 6 ) ( q &&

19 Inerpolcón rmos (III) Condcones: segmeno:.- h () q.- v () v / > v.- () * / > * / 4.- h () q 4 > 4 q q v / y segmeno: 5.- Connudd en l velocdd: h & ( ) h ( ) & v

20 Inerpolcón rmos (IV) 6.- Connudd en l celercón: 4 6 q &&, () q&, () 4 6 º segmeno: 7.- h () q 8.- h () q > q q er segmeno (cmbo de vrble): [,] > [, ] > 9.- h ( ) q.- v ( ) v / > v.- ( ) / > /

21 Inerpolcón rmos (V) º y er segmeno:.- Connudd en l velocdd: h & ( ) h( ) 44 & Connudd en l celercón q&& () q& 4 ( ) h (-) q 4 - > 4 q q v / 6 v

22 Inerpolcón rmos (V) 4 4 / 6/ 6/ / 4/ / / / / / 6/ / / / 4/ v q q v q q v v q q o Cx y y C x

23 Inerpolcón rmos (VI) Un vez resuelo el problem, en el segmeno debemos deshcer el cmbo de vrble, y susur en l ecucón del ercer segmeno: 4 () 4 q () h 4 () 4( ) ( ) ( ) ( q () h ) 4 () 4( 6 4 ) ( ) ( ) ( h 4 ) h() 4 ( 44 ) ( 64 ) ( 44 ( ) 4 4 )

24 Resumen Qué es un ryecor? Psos segur pr generr un ryecor Tpos de ryecors Cómo se clculn ls ryecors? > depende de ls condcones que nos mpongn Sólo poscón: lnel Poscón y velocdd: cúbc Poscón, velocdd y celercón: ryecor de 5º orden O un ryecor rmos fjndo dos punos nermedos por lo que queremos psr y segurndo connudd en l velocdd (--), s queremos segurr mbén connudd en l celercón: (4--4), (--), (5--5) ec.

25 Bblogrfí Brrenos: explc ls ryecors, los pos de ryecors y los polnomos pero sn deducrles. Torres: hbl de l nerpolcón cúbc, y l nerpolcón lnel con juse prbólco > deducen los vlores de cd prámero y pone ejemplos Fu: explc con delle ls ecucones de l ryecor 4--4, l -5- y l ----

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

CURSO CERO DE FÍSICA CINEMÁTICA DEL PUNTO

CURSO CERO DE FÍSICA CINEMÁTICA DEL PUNTO CURSO CERO DE FÍSICA Ángel Muño Csellnos Depmeno de Físc CONTENIDO Momeno undmensonl Poscón, elocdd, celecón Momeno eclíneo unfome Momeno eclíneo unfomemene celedo Momeno en el espco Vecoes poscón, elocdd

Más detalles

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

EJERCICIOS DE DINÁMICA

EJERCICIOS DE DINÁMICA EJERCICIOS DE DIÁMICA 1. Dd un cuerd cpz de oporr un fuerz áx de 00, cuál erá l celercón áx que e podrá councr con ell un de 10 kg cundo e encuenr obre un plno horzonl n rozeno? Sol: ) 0. En un plno horzonl

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE) EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

Cu +2 + Zn Cu + Zn +2

Cu +2 + Zn Cu + Zn +2 Termodnámc. Tem 16 Sstems electroquímcos 1. Defncones Electrodo. Metl en contcto con un electrolto (Sstem físco donde se produce un semreccón redox) Un sstem electródco está consttudo por un conductor

Más detalles

Introducción al Cálculo Integral

Introducción al Cálculo Integral Inroduccón l Cálculo Inegrl José Lus Alejndre Mrco An Isel Alluev Pnll José Mguel González Sános Deprmeno de Memác Aplcd Unversdd de Zrgoz versón dgl sd en el lro "Inroduccón l Cálculo Inegrl" ISBN 8-77-5-6,

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA

MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA Dr. José A. Peñlbert Unversdd de Puerto Rco en Croln Deprtmento de Cencs Nturles Introduccón Hn surgdo un sere de teorís sobre el funconnmento

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

Sistemas de Control. Control de Sistemas Dinámicos

Sistemas de Control. Control de Sistemas Dinámicos Sstems de Control Control de Sstems Dnámcos ISA-UMH Lus M. Jménez 1 Defncón n de Control Mnpulr ls mgntudes de un sstem (plnt) pr consegur uns especfccones de comportmento desedo El dspostvo que relz est

Más detalles

CIRCUITOS CON DIODOS.

CIRCUITOS CON DIODOS. ema 3. Crcus cn dds. ema 3 CCUOS CON OOS. 1.- plcacón elemenal..- Crcus recradres (lmadres)..1.- eslucón de un crcu recradr ulzand las cuar aprxmacnes del dd..1.1.- eslucón ulzand la prmera aprxmacón..1..-

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE NGENEÍA EÉCTCA José Frncsco Gómez González Benjmín González Díz Mrí de l Peñ Fn Bendcho Ernesto Pered de Plo Tem 1: Generlddes y CC en régmen estconro PUNTOS OBJETO DE ESTUDO 3 Generlddes

Más detalles

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese:

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese: EJERIIOS DE OPERAIONES DE AMORTIZAIÓN Eercco Se concede un réstmo ersonl de 8.000 euros mortzble en 0 ños mednte térmnos mortztvos semestrles, donde ls cuots de mortzcón son déntcs en todos y cd uno de

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 0-03 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Olgopolo y competenca monopolístca.

Más detalles

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible

Más detalles

EJERCICIOS DE RAÍCES

EJERCICIOS DE RAÍCES EJERCICIOS DE RAÍCES º ESO RECORDAR: Definición de ríz n-ésim: n x x Equivlenci con un potenci de exponente frccionrio: n m x Simplificción de rdicles/índice común: Propieddes de ls ríces: x m/n n n b

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc..

5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc.. écncs Computconles Cuso 7-8. Pedo lvdo 5.- juste de cuvs El juste de cuvs es un poceso mednte el cul ddo un conjunto de pes de puntos { } sendo l vble ndependente e l dependente se detemn un uncón mtemátc

Más detalles

SISTEMA DE COORDENADAS CARTESIANAS

SISTEMA DE COORDENADAS CARTESIANAS SISTEMA DE COORDENADAS CARTESIANAS Definición El siste de coordends crtesins en el plno está constituido por dos rects perpendiculres que se intersecn en un punto O l que se le ll el origen. Un de ls rects

Más detalles

INTERPOLACIÓN DE LA SUPERFICIE DE VOLATILIDADES

INTERPOLACIÓN DE LA SUPERFICIE DE VOLATILIDADES www.qun-rng.o ITERPOLACIÓ DE LA SUPERFICIE DE VOLATILIDADES Hemos menono en nuesros oumenos que l voll mplí es un me ulz pr omprr opones on erenes srkes y venmenos. De heho en vros meros ls opones se ozn

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información Leguje humo Represetcó de l formcó Utlz u cojuto de símbolos lfumércos Crcteres lfbétcos:, B, C,.Z,, b, c,...z Símbolos umércos 9 sgos de putucó... Puede represetr Iformcó umérc lfumérc Leguje del ordedor

Más detalles

CAPITULO II FUNCIONES VECTORIALES

CAPITULO II FUNCIONES VECTORIALES CAPITULO II FUNCIONES VECTORIALES En el cpíulo nerior, cundo describimos l rec en el espcio, uilizmos un prámero en ls ecuciones pr enconrr ls coordends de los punos que conformn es rec. ecuciones prmérics

Más detalles

Mecanismos de palanca. Apuntes.

Mecanismos de palanca. Apuntes. Mecansmos de palanca. Apunes. Oreses González Qunero Deparameno de Ingenería Mecánca Faculad de de Ingenerías Químca y Mecánca 2007 1 1.- Inroduccón. El análss de los mecansmos y máqunas ene por objevo

Más detalles

UTN - FRBA Ing. en Sistemas de Información

UTN - FRBA Ing. en Sistemas de Información Modelo Relconl UTN - FRBA Ing. en Sstems de Informcón Gestón de Dtos Prof.: Ing. Jun Zffron Gestón de Dtos Ing. Jun Zffron / Ing. Mrí Crstn Chhn Modelo Relconl - 1 Concepto Propuesto por el Dr. E.F. Codd

Más detalles

FORMULACIÓN Y SOLUCIÓN DE ECUACIONES LINEALES EN DIFERENCIAS CON COEFICIENTES CONSTANTES EN EL CONTEXTO DEL ANÁLISIS DE SERIES TEMPORALES (*)

FORMULACIÓN Y SOLUCIÓN DE ECUACIONES LINEALES EN DIFERENCIAS CON COEFICIENTES CONSTANTES EN EL CONTEXTO DEL ANÁLISIS DE SERIES TEMPORALES (*) FORMULCIÓN Y SOLUCIÓN DE ECUCIONES LINELES EN DIFERENCIS CON COEFICIENTES CONSTNTES EN EL CONTEXTO DEL NÁLISIS DE SERIES TEMPORLES * Rmón Mhí Juno 998. * Ese documeno form re de l Tess Docorl enmrcd en

Más detalles

i = 0,08 Co n i C6 C3 C'6 C'3 7.000 6 0,08 11108,1203 8817,984 7560 7.000

i = 0,08 Co n i C6 C3 C'6 C'3 7.000 6 0,08 11108,1203 8817,984 7560 7.000 . Nos conceden un préstmo de. l 8% de nterés. S l durcón del msmo es de ños, clculr cuánto tendremos que pgr trnscurrdos ños y l reserv o sldo l prncpo del curto ño. S se mortz el préstmo mednte reembolso

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE ATERIALES CONCEPTO DE PIEZA PRISÁTICA Centro de grvedd Directriz o eje G C Sección trnsversl ADERTENCIA: Eisten otrs rms de l ecánic de edios Continuos en ls

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUES DE CCESO L UNVERSDD L.O.G.S.E. CURSO 2001-2002 - CONVOCTOR: JUNO ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros e clfccón.- Expresón clr y precs entro el lenguje técnco y gráfco s fuer

Más detalles

Puntos, rectas y planos en el espacio

Puntos, rectas y planos en el espacio Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. La eca coa a los es planos coodenados

Más detalles

NÚMEROS COMPLEJOS. r φ. (0,0) a

NÚMEROS COMPLEJOS. r φ. (0,0) a Educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (,b). Los númeos eles y b se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica . Inoduccón a las Ondas. Ondas en cuedas 3. Ondas sonoas acúsca Modulo II: Ondas. Ecuacón de ondas en una cueda ensa. Enegía de una onda en una cueda.3 Aenuacón.4 Refleón ansmsón de ondas.5 Supeposcón

Más detalles

ÍNDICE Capítulo 1. INTRODUCCIÓN A SHAZAM PROFESSIONAL 1. Capítulo 2. MANEJO Y ANÁLISIS DE DATOS 18

ÍNDICE Capítulo 1. INTRODUCCIÓN A SHAZAM PROFESSIONAL 1. Capítulo 2. MANEJO Y ANÁLISIS DE DATOS 18 ÍNDICE Cpíulo. INTRODUCCIÓN A SHAZAM PROFESSIONAL.. Presencón de Shzm Professonl.. Inco de un sesón de rbjo.3. Prncples Venns.3.. Venn Prncpl o Venn del Progrm 4.3.. Pnel Projec-Resources 5.3... Venn Proyeco

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura Ejemplos de cálculo de crcutos equlentes. Aplccón de los teorems de Theenn y Norton Clculr el equlente Theenn y Norton entre los puntos y en el crcuto de l fgur Ω 4Ω 3 6Ω L Ω 5Ω V L Pr clculr el equlente

Más detalles

INDICE DE COSTES DE LA CONSTRUCCIÓN

INDICE DE COSTES DE LA CONSTRUCCIÓN INDICE DE COSTES DE LA CONSTRUCCIÓN. INTRODUCCION Y OBJETIVOS El índce de coses de la consruccón es un ndcador coyunural que elabora el Mnsero de Fomeno y que ene como objevo medr la evolucón, en érmnos

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

UNIVERSIDAD DE OVIEDO

UNIVERSIDAD DE OVIEDO Trabajaremos con módulos foovolacos de capa fna. resena ceras venajas por el dferene comporameno que esa ecnología ene ane la radacón solar y las condcones ambenales: Mejor comporameno de la produccón

Más detalles

Si v y w son ambos vectores, entonces el resultado de las operaciones v + w y v w son. Dichas operaciones cumplen con propiedades conmutativas y

Si v y w son ambos vectores, entonces el resultado de las operaciones v + w y v w son. Dichas operaciones cumplen con propiedades conmutativas y Crso nzdo d Fnómnos d Trnsport Dr. Jn Cros Frro Gonzáz Dprtmnto d Ingnrí Qímc Insttto Tcnoógco d Cy Oprcons con Vctors Adcón y sbstrccón d ctors S y w son mbos ctors, ntoncs rstdo d s oprcons w y w son

Más detalles

Modelo 5 de sobrantes de Opción A

Modelo 5 de sobrantes de Opción A Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que

Más detalles

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA Hydeé Blnco Insttuto Superor del Profesordo "Dr. Joquín V. González" Buenos Ares (Argentn) RESUMEN En este rtículo se present un form

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

Determinización: Construcción de Safra

Determinización: Construcción de Safra Determinizción: Construcción de Sfr Ddo: Autómt de Büchi A = (Q,Σ,Q 0,δ,F) Supong que Q = {q 1,...,q n }. Vmos construir un utómt de Rin determinist B tl que L ω (A) = L ω (B), donde B está compuesto por:

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

Conviértase en un asesor de salud profesional

Conviértase en un asesor de salud profesional Conviértase en un asesor de salud profesional Cer$ficación, es un proceso de estudio y mejoramiento con$nuo. Su obje$vo principal es aportar conocimiento prác$co, el cual le permite op$mizar su ges$ón de

Más detalles

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2012 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2012 Cuestiones (Un punto por cuestión). Exmen de Físic-1, 1 del Grdo en Ingenierí Químic Exmen finl. Sepiembre de 1 Cuesiones (Un puno por cuesión). Cuesión 1 (Primer prcil): Un rineo se deliz por un superficie horizonl cubier de nieve con un

Más detalles

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A

Más detalles

Representación de imágenes digitales

Representación de imágenes digitales Cpíulo Represencón de máenes dles Represencón de un men dl: mrces vnculds Vmos consderr un modelo de men smple seún el cul l men vene dd por un uncón de nensdd lumnos bdmensonl xy donde el vlor xy nos

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

Φ i. Φ i. di dt. Φ i = Φ. El Transformador Monofásico. Inductancia Propia e Inductancia Mutua. Inductancia Propia e Inductancia Mutua

Φ i. Φ i. di dt. Φ i = Φ. El Transformador Monofásico. Inductancia Propia e Inductancia Mutua. Inductancia Propia e Inductancia Mutua nuctnc Prop e nuctnc Mutu El Trnsformor Monofásco Trnsformores y Máquns Eléctrcs u ( t) e( t) t Flujos socos los onos nuctnc Prop e nuctnc Mutu m spersón M En el ono Cuso por l corrente spersón egún l

Más detalles

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Movimiento Rectilíneo Uniformemente Acelerado (MRUA) 7. Movmeno Reclíneo Unorme Acelerado Movmeno Reclíneo Unormemene Acelerado (MRUA) elocdad Meda o elocdad promedo: La velocdad meda represena la relacón enre el desplazameno oal hecho por un móvl y el empo

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y Bobnas 4. Inroduccón 4. ondensadores 4.3 Energía almacenada en un condensador 4.4 Asocacón de condensadores 4.5 Bobnas 4.6 Energía almacenada en una bobna 4.7 Asocacón de bobnas

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC MECÁNIC NEWTNIN Cuso 009 áctco I Cnemátc de l tícul y Movmento eltvo NT: Los sguentes eeccos están odendos po tem y, dento de cd tem, en un oden cecente de dfcultd lgunos eeccos se encuentn

Más detalles

E.T.S. Minas: Métodos Matemáticos

E.T.S. Minas: Métodos Matemáticos E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.

Más detalles

TEMA: EXPRESIONES ALGEBRAICAS

TEMA: EXPRESIONES ALGEBRAICAS TEMA: EXPRESIONES ALGEBRAICAS CONCEPTO Son quells epresones en ls que ls opercones que se usn son sólo ls de dcón, sustrccón, multplccón, dvsón, potenccón, rdccón entre sus vrbles en un número lmtdo de

Más detalles

TEORÍA DE CIRCUITOS - 2 LEYES DE KIRCHHOFF. - Variables relacionadas. v(t) = v 1 (t) - v 2 (t) i(t) = i 1 (t) = i 2 (t) v(t)

TEORÍA DE CIRCUITOS - 2 LEYES DE KIRCHHOFF. - Variables relacionadas. v(t) = v 1 (t) - v 2 (t) i(t) = i 1 (t) = i 2 (t) v(t) TOÍ D UTOS /24 TOÍ D UTOS 2/24 UTO LÉTO DSPOSTOS LÉTOS Y LTÓNOS UTO LÉTO L LS ONDUTOS DSPOSTOS LÉTOS O LTÓNOS UTO LÉTO: DFNONS M NUDOS NO NUDO (ONXÓN N S) 2 3 N 4 ONXÓN N PLLO N2 5 6 MODLO D UTO LÉTO L

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

A LA SOMBRA DE LOS GRUPOS FINITOS

A LA SOMBRA DE LOS GRUPOS FINITOS A LA SOMBRA DE LOS GRUPOS FINITOS L Teorí de los Gruos Fntos recbe l nfluenc drect tnto del Algebr Lnel, como de l Coomologí y l Teorí de Módulos, roducendo nnumerbles lccones tnto sobre l msm Teorí de

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio.

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio. . Introuón Equlro Químo ermonám. em 4 El esto e equlro e ls reones químs reversles en sstems y onstntes tene ls sguentes rterísts: ) L omposón e los omponentes e l reón no vrí en el tempo. or eso, es posle

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

Medida de los radios de curvatura de un espejo cóncavo y otro convexo. Medida de la focal de una lente convergente y otra divergente.

Medida de los radios de curvatura de un espejo cóncavo y otro convexo. Medida de la focal de una lente convergente y otra divergente. TÉCNICAS EXPERIMENTALES II. MÓDULO DE ÓPTICA PRÁCTICA I: BANCO ÓPTICO. OBJETIVO DE LA PRÁCTICA Medda de los rados de curvaura de un espejo cóncavo y oro convexo. Medda de la focal de una lene convergene

Más detalles

Cristal. Estado Sólido. Estructura Cristalina. Red. Celdas. Red

Cristal. Estado Sólido. Estructura Cristalina. Red. Celdas. Red Estdo Sólido Estructurs Cristlins Cristl Un cristl es un rreglo periódico de átomos o grupos de átomos que es construido por l repetición infinit de estructurs unitris idéntics en el espcio. L estructur

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles