CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña"

Transcripción

1 CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña

2 CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre variables. Podemos decir que hay una correlación entre dos variables si cuando una de ellas se relaciona con la otra de alguna manera

3 CONCEPTOS Análisis de correlación Conjunto de técnicas estadísticas empleado para medir la intensidad de la asociación entre dos variables Este tipo de estadístico puede utilizarse para medir el grado de relación de dos variables si ambas utilizan una escala de medida a nivel de intervalo/razón (variables cuantitativas)

4 DIAGRAMA DE DISPERSIÓN Es una gráfica que representa la relación entre dos variables. Los datos muestrales apareados (x,y) se grafican en un eje horizontal (x) y un eje vertical (y). Cada par individual (x, y) se grafica como un solo punto. Podemos encontrar tres tipos de relación entre las variables Positiva Negativa Sin relación

5 COEFICIENTE DE CORRELACIÓN El coeficiente de correlación r mide la fuerza de la relación lineal entre los valores cuantitativos apareados x y y. El coeficiente de correlación expresa de manera cuantitativa la magnitud y dirección de una relación Condiciones La muestra de datos apareados (x, y) es una muestra aleatoria de datos cuantitativos Los pares de datos ( x, y) tienen una distribución normal bivariada

6 CONCEPTOS CORRELACIÓN Coeficiente de correlación Este coeficiente expresa de manera cuantitativa la magnitud y dirección de una relación lineal La dirección se refiere a si la relación es positiva o negativa El grado de la relación se refiere a la magnitud Una correlación puede variar de +1 a - 1 Hay que considerar que la gráfica de dispersión está formada por parejas de valores de x y Si se desea conocer la relación simple entre una variable x y, podemos emplear La r de Pearson r 2 Nos mide la proporción de la variación de y, que se explica por relación lineal de x

7 X Es la suma de todos los valores de x X 2 indica que cada valor de x debe elevarse al cuadrado y después dichos cuadrados se suman (X) 2 indica que los valores de x deben sumarse y el total elevarse al cuadrado XY indica que cada valor de x debe multiplicarse por su correspondiente de y después hacer la suma de todos los productos.

8 EJERCICIOS Considere los siguiente valores para la variable x y para la variable y. Calcule el valor de la r de Pearson Calcule el valor de r 2 Cuál es la hipótesis nula Cuál es la hipótesis alternativa Establezca criterio de decisión de acuerdo a t Rechace Ho de acuerdo a los criterios anteriores Cuáles son sus conclusiones x y

9 x y xy x 2 y SUMATORIAS x =10 y=29 xy=89 x 2 = 30 y 2 =267

10 GRAFICO DE DISPERSIÓN Series

11 REGRESIÓN LINEAL En el modelo de regresión lineal simple, se supone que la relación entre la variable dependiente (y) y la variable independiente (x) es casi una recta

12 REGRESIÓN CONCEPTOS La regresión mide la relación entre dos variables y se basa en el uso de la misma relación para elaborar una predicción. Esto resultaría sencillo siempre y cuando se considere una recta perfecta en la relación entre dos variables En el caso de relaciones imperfectas la solución consiste en construir una recta que minimice los errores de predicción de acuerdo a un criterio llamado mínimos cuadrados

13 Se quiere conocer si existe una relación entre el numero de las llamadas que los empleados realizan a los clientes potenciales y el número de equipos vendidos llamadas Equipos vendidos Keller Hall Vinist Fish Welch Ramirez Niles Kiel Reynols Jones EJEMPLO

14 La media de X ( llamadas ) es 22 La media de Y ( equipos vendido) es 45

15 LA ECUACIÓN QUE DESCRIBE LA FORMA EN QUE EL VALOR MEDIO DE Y SE RELACIONA CON X SE LLAMA ECUACIÓN DE REGRESIÓN LINEAL SIMPLE E(y) = β o + β 1 x β o es la ordenada al origen β 1 es la pendiente E(y) es el valor esperado de y para determinado valor de x

16 LA ECUACIÓN QUE DESCRIBE LA FORMA EN QUE EL VALOR MEDIO DE Y SE RELACIONA CON X SE LLAMA ECUACIÓN DE REGRESIÓN ESTIMADA y = bx + a donde a es la ordenada al origen Donde b es la pendiente El valor de y sería el valor estimado de y a partir del valor de x empleando la ecuación

17 SUPUESTOS Se investiga únicamente relaciones lineales Para cada valor de (x, y) es una variable aleatoria con una distribución normal y se considera que todas estas distribuciones de y tienen la misma varianza. Si existe una correlación lineal, el mejor valor predicho de y se calcula sustituyendo el valor de x en la ecuación de regresión. Si no existe una correlación lineal, no debe utilizar la ecuación de regresión para hacer predicciones. Cuando utilice la ecuación de regresión para hacer predicciones, debe permanecer en el ámbito de los datos muestrales disponibles.

18 PENDIENTE DE LA RECTA La pendiente nos representa la cantidad que cambia la variable dependiente cuando la variable independiente cambia exactamente una unidad, esto es conocido como cambio marginal Una recta satisface la propiedad de mínimos cuadrados sí la suma de los cuadrados de los residuales es la menor posible Un residual es la diferencia entre el valor observado muestral de y, y predicho por la ecuación de regresión. Es necesario realizar una prueba de hipótesis para verificar la fiabilidad de la predicción mediante el uso de la ecuación y el valor de

19

20

21 PREDICCIÓN

22 Se puede pronosticar el valor de y siempre y cuando se tenga una recta 1.-Se puede dar confiabilidad a la estimación mediante la prueba de hipótesis. nos dice en términos de probabilidad la certeza de tener o no un recta. 2.- Se puede emplear también el calculo del error estándar de estimación. Nos dice cuán preciso es el pronóstico

23 ERROR ESTÁNDAR DE ESTIMACIÓN Es la medida de la dispersión de los valores observados respecto a la recta de regresión calcular residuos y a partir de allí el error estándar de medición Si su valor es pequeño ello significa que los datos están relativamente cercanos a la recta de regresión y la ecuación sirve para predecir con un margen de error pequeño Se emplea el método de la recta de mínimos cuadrados No hay otra recta que pase por el valor de los datos donde la suma de las desviaciones al cuadrado sea menor

24 Título del eje 1.-calcular valores estimados de la variable dependiente (y) Calcular los residuos calcular el cuadrado de los residuos Calcular error estándar de medición 5.- Comparar con regla de distribución empírica Se considera como muy confiable si se encuentra dentro de +/- un valor del error estándar se considera confiable si se encuentra dentro de +/- 2 valores del error estándar Título del eje Series1 Lineal (Series1)

25 COEFICIENTE DE DETERMINACIÓN R 2 Es una medida de la bondad de ajuste para una ecuación de regresión Esto es, qué tan bien se ajusta a los datos la ecuación de regresión los valores van desde 0 a 1 se puede emplear para relaciones que tengan dos o más variables independientes

26 EJERCICIOS

27 Un gerente de una empresa que comercializa cosméticos desea saber qué relación existe entre los ingresos de varias semanas y sus respectivos costos variables, para lo cual, registra estas variables durante 8 semanas, dando como resultado los siguientes datos Calcule el coeficiente de correlación Calcule la ecuación de regresión. Valor de b y el valor de a Si tiene un valor DE X DE 140 CUAL SERÍA EL VALOR DE Y Calcule el coeficiente de determinación Pruebe la hipótesis de la fiabilidad de la predicción de la ecuación semana ingreso Costo variable

28 semana ingreso costo var XY X 2 Y sumas

29 En la asociación de hoteleros de la zona de Naucalpan existe una preocupación por los bajos niveles de ocupación durante el año. Ellos están por plantear una solución al problema, realizando una diagnóstico del mismo, para lo cual registran los niveles de ocupación promedio al año y las tarifas por persona que se cobran por noche en habitación doble 1.- Determine el coeficiente de correlación 2.- Determine la ecuación de regresión 3.- Calcule el coeficiente de determinación 4.- Realice la prueba de hipótesis para determinar la fiabilidad de predicción de la ecuación. Sí la tarifa por persona fuera 270, cuál sería el % de ocupación esperado? TARIFA POR PERSONA % DEL NIVEL DE OCUPACIÓN 5.- De acuerdo a los resultado, cuáles serían sus conclusiones?

30 EJERCICIO 2 La cadena de cafeterías Caféj está realizando un estudio de factibilidad para establecer una sucursal más en una población con habitantes, para lo cual recopila información de 9 cafeterías que tiene distribuidas en varias poblaciones del país. Los resultados de la recopilación se muestran en el siguiente cuadro. CAFETERIA Población ( en miles) Ventas ( miles de pesos por semana)

31 PC WORLD publicó las evaluaciones para las 15 computadoras portátiles más vendidas. Las puntuaciones de desempeño es una medida de qué tan rápido una PC corre en combinación de aplicaciones de negocios en comparación con una maquina de referencia. Por ejemplo, una PC con una puntuación de desempeño de 200 es dos veces más rápida que la máquina de referencia. Se utilizó una escala de 100 puntos para asignar una evaluación global a cada computadora portátil que se probó en el estudio. 1.- Obtenga la ecuación de regresión 2.- Estime la evaluación global para una nueva PC que tiene una puntuación de desempeño de 225 Marca Desempeño Evaluación global AMS CPM COMNT DELL DELL DELLA ENP GATEW HP IBM MICROE MICROT NEC SCET SONY

32 Se seleccionó una muestra de 12 casas vendidas la semana pasada en una zona aledaña a la ciudad de Puebla. Puede concluirse que a medida que aumenta el extensión del inmueble, el precio de venta, también? Use un alfa de 0.05 para sus conclusiones? EXTENSIÓN EN MILES DE m PRECIO DE VENTA EN miles de PESOS

33 Una compañía de comida rápida quiere establecer una sucursal en la zona norte de la ciudad y para ello hace un pequeño estudio de mercado en la zona para verificar cuál es el consumo de las familias que habitan la zona. Empleando una alfa de 0.05 podría concluir que conforme el tamaño de la familia aumenta, la cantidad gastada en alimentos también aumenta? Tamaño de la familia Cantidad gastada

34 Una neuróloga sospecha que los bajos niveles de serotonina pueden estar relacionados con el comportamiento agresivo. Como primer paso de su investigación, decide realizar un estudio de correlación con nueve macacos de la India. Los monos son observados durante 6 meses y se registra en número de actos agresivos que realizan. El número de actos agresivos por cada animal es el promedio de 6 meses, expresados sobre base diaria a.- Obtenga la recta de regresión por mínimos cuadrados para predecir el número de actos agresivos a partir del nivel de serotonina b.- Cuál es el número de actos agresivos por día que se podría predecir si el nivel se serotonina es de 0.46 microgramos/gramo macaco nivel de serotonina número de actos agresivos

35 Una Psicóloga del desarrollo está interesada en determinar si es posible utilizar la estatura de los niños como base para predecir su posible estatura en la edad adulta. A.-Determine el coeficiente de correlación Empleando una alfa de 0.05, determine si tiene una relación lineal Cuáles son sus conclusiones a.- Si los datos están relacionados de manera lineal, deduzca la recta de regresión por mínimos cuadrados ( calcular la pendiente y la coordenada al origen) b.- Qué estatura podría predecir para una persona de 20 años si a los tres años tuvo una estatura de 42 pulgadas INDIVIDUO EST 3 AÑOS EST. 20 AÑOS

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

MÓDULO 1: GESTIÓN DE CARTERAS

MÓDULO 1: GESTIÓN DE CARTERAS MÓDULO 1: GESTIÓN DE CARTERAS TEST DE EVALUACIÓN 1 Una vez realizado el test de evaluación, cumplimenta la plantilla y envíala, por favor, antes del plazo fijado. En todas las preguntas sólo hay una respuesta

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION.

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Distribuciones uni- y pluridimensionales. Hasta ahora se han estudiado los índices y representaciones de una sola variable por individuo. Son las distribuciones

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables):

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): 0 81 098 www.ceformativos.com EJERCICIOS RESUELTOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Cinco niñas de 2,3,,7 y 8 años de edad pesan respectivamente 14, 20, 30, 42 y 44 kilos. a) Hallar la ecuación de la recta

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

I Unidad: La medición de los atributos psicológicos.

I Unidad: La medición de los atributos psicológicos. EL ESCALAMIENTO PSICOFÍSICO. Las primeras escalas elaboradas que se pueden considerar mediciones o medidas previas a la medición de los psicológico son las denominadas escalas psicofísicas. Representan

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

Tipos de gráficas y selección según los datos CIENCIA, TECNOLOGIA Y AMBIENTE

Tipos de gráficas y selección según los datos CIENCIA, TECNOLOGIA Y AMBIENTE Tipos de gráficas y selección según los datos CIENCIA, TECNOLOGIA Y AMBIENTE Objetivos 2 Identificar los tipos de gráficas. Definir los conceptos tablas y cuadros Reconocer las partes de una gráfica. Construir

Más detalles

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

Modelos de PERT/CPM: Probabilístico

Modelos de PERT/CPM: Probabilístico INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO Modelos de PERT/CPM: Probabilístico M. En C. Eduardo Bustos Farías 1 Existen proyectos con actividades que tienen tiempos inciertos, es decir,

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

Aplicaciones de la línea recta

Aplicaciones de la línea recta 1 FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 4 SEMESTRE II RESEÑA HISTÓRICA Aplicaciones de la línea recta RESEÑA HISTÓRICA EUCLÍDES Nació: 365 AC en Alejandría,

Más detalles

CAPÍTULO 4 TÉCNICA PERT

CAPÍTULO 4 TÉCNICA PERT 54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con

Más detalles

UNIVERSIDAD CENTROAMERICANA JOSE SIMEON CAÑAS FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS

UNIVERSIDAD CENTROAMERICANA JOSE SIMEON CAÑAS FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS UNIVERSIDAD CENTROAMERICANA JOSE SIMEON CAÑAS FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS PROFESOR: Manuel de Jesús Fornos Gómez CICLO 01/2003 GUIA DE EJERCICIOS

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

Tema 8. Análisis de dos variables Ejercicios resueltos 1

Tema 8. Análisis de dos variables Ejercicios resueltos 1 Tema 8. Análisis de dos variables Ejercicios resueltos 1 Ejercicio resuelto 8.1 La siguiente tabla muestra la distribución del gasto mensual en libros y el gasto mensual en audiovisual en euros en los

Más detalles

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor Esquema (1) Análisis de la arianza y de la Covarianza ANOA y ANCOA 1. (Muestras independientes). () 3. Análisis de la arianza de Factores 4. Análisis de la Covarianza 5. Análisis con más de Factores J.F.

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán para realizar un análisis, la obtención del rendimiento esperado

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

Problemas. 1.- Se muestran en seguida las tasas de interés para 12 meses consecutivos de Bonos corporativos triple A.

Problemas. 1.- Se muestran en seguida las tasas de interés para 12 meses consecutivos de Bonos corporativos triple A. Problemas. 1.- Se muestran en seguida las tasas de interés para 12 meses consecutivos de Bonos corporativos triple A. 9.5, 9.3, 9.4, 9.6, 9.8, 9.7, 9.8, 10.5, 9.9, 9.7, 9.6, 9.6 a) Elabore promedios móviles

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON OTRAS HERRAMIETAS ESTADISTICAS UTILES Dra. ALBA CECILIA GARZON Que es un Test de Significancia estadística? El término "estadísticamente significativo" invade la literatura y se percibe como una etiqueta

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

Explorando la ecuación de la recta pendiente intercepto

Explorando la ecuación de la recta pendiente intercepto Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el

Más detalles

Nº Persona Altura (m) Peso (Kg.) Nº Persona Altura (m) Peso (Kg.) 001 1.94 95.8 026 1.66 74.9 002 1.82 80.5 027 1.96 88.1 003 1.79 78.2 028 1.56 65.

Nº Persona Altura (m) Peso (Kg.) Nº Persona Altura (m) Peso (Kg.) 001 1.94 95.8 026 1.66 74.9 002 1.82 80.5 027 1.96 88.1 003 1.79 78.2 028 1.56 65. .1. DIAGRAMAS DE DISPERSIÓN Diagramas de Dispersión Los Diagramas de Dispersión o Gráficos de Correlación permiten estudiar la relación entre 2 variables. Dadas 2 variables X e Y, se dice que existe una

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746)

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO AREA DE MATEMATICA TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) JOSE GREGORIO SANCHEZ CASANOVA C.I. V-9223081 CARRERA: 610 SECCION Nº 1 SAN CRISTOBAL,

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

ESTADÍSTICA SEMANA 3

ESTADÍSTICA SEMANA 3 ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

USO HERRAMIENTAS EXCEL PARA LA PREDICCION

USO HERRAMIENTAS EXCEL PARA LA PREDICCION USO HERRAMIENTAS EXCEL PARA LA PREDICCION Nassir Sapag Chain MÉTODO DE REGRESIÓN LINEAL SIMPLE El método de Regresión Lineal (o Mínimos cuadrados) busca determinar una recta, o más bien la ecuación de

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7 EJERCICIOS T12-MODELOS MULTIVARIANTES ESPECÍFICOS 1. Un determinado estadístico J se distribuye según un modelo jhi-dos de parámetro (grados de libertad) 14. Deseamos saber la probabilidad con la que dicho

Más detalles

Exactitud y Linearidad del Calibrador

Exactitud y Linearidad del Calibrador Exactitud y Linearidad del Calibrador Resumen El procedimiento Exactitud y Linearidad del Calibrador fue diseñado para estimar la exactitud del sistema de medición. En contraste con los procedimientos

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

Conceptos básicos estadísticos

Conceptos básicos estadísticos Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

2. Análisis de varianza

2. Análisis de varianza 1. Análisis de varianza Introducción La estadística inferencial no solo realiza estudios con una muestra, también es necesario trabajar con más de una muestra; las que pueden ser dos o más. Para cada una

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

La representación gráfica de una función cuadrática es una parábola.

La representación gráfica de una función cuadrática es una parábola. Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación

Más detalles

Distribuciones bidimensionales. Regresión.

Distribuciones bidimensionales. Regresión. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Estadística Descriptiva. SESIÓN 11 Medidas de dispersión

Estadística Descriptiva. SESIÓN 11 Medidas de dispersión Estadística Descriptiva SESIÓN 11 Medidas de dispersión Contextualización de la sesión 11 En la sesión anterior se explicaron los temas relacionados con la dispersión, una de las medidas de dispersión,

Más detalles

MODULO VIII. Semana 1 ASPECTOS DE EVALUACIÓN FINANCIERA, ECONÓMICA, SOCIAL Y AMBIENTAL.

MODULO VIII. Semana 1 ASPECTOS DE EVALUACIÓN FINANCIERA, ECONÓMICA, SOCIAL Y AMBIENTAL. MODULO VIII Semana 1 ASPECTOS DE EVALUACIÓN FINANCIERA, ECONÓMICA, SOCIAL Y AMBIENTAL Esquema de Proyecto SNIP INDICE INTRODUCCION I. ASPECTOS GENERALES II. IDENTIFICACION III. FORMULACION IV. EVALUACION

Más detalles

b.- Realiza las comparaciones múltiples mediante los métodos LSD, Bonferroni y Tuckey.

b.- Realiza las comparaciones múltiples mediante los métodos LSD, Bonferroni y Tuckey. Ejercicio 1: Se someten 24 muestras de agua a 4 tratamientos de descontaminación diferentes y asignados al azar. Para cada muestra se mide un indicador de la calidad del agua ( cuanto más alto es el indicador,

Más detalles

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN 1 MODELO LINEAL GENERAL applemodelo estadístico appledescribe una combinación lineal de los efectos aditivos que forman la puntuación

Más detalles

TÉCNICAS DE PROYECCIÓN DE MERCADO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS DE INGENIERÍA

TÉCNICAS DE PROYECCIÓN DE MERCADO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS DE INGENIERÍA TÉCNICAS DE PROYECCIÓN DE MERCADO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS DE INGENIERÍA ÁMBITO DE LA PROYECCIÓN TÉCNICAS DE PROYECCIÓN DE MERCADO Ámbito de la proyección Situación presente Situación proyectada

Más detalles

Estadística Espacial en Ecología del Paisaje

Estadística Espacial en Ecología del Paisaje Estadística Espacial en Ecología del Paisaje Introducción H. Jaime Hernández P. Facultad de Ciencias Forestales U. de Chile Tipos de datos en análisis espacial Patrones espaciales puntuales Muestras geoestadísticas

Más detalles

Tema 1: Introducción

Tema 1: Introducción Estadística Universidad de Salamanca Curso 2010/2011 Outline 1 Estadística 2 Outline 1 Estadística 2 La estadística es una ciencia que comprende la recopilación, tabulación, análisis e interpretación de

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

TEMA III. REPRESENTACION GRAFlCA

TEMA III. REPRESENTACION GRAFlCA TEMA III REPRESENTACION GRAFlCA 1. Recomendaciones preliminares y diagramas de barras. 2. Gráfica de distribución puntual y por intervalos de variables discretas. De variable continua (histograma, polígono

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Biomecánica del Movimiento (2º) Facultad de Ciencias del Deporte. Universidad de Castilla la Mancha. TEMA 5: ERRORES

Biomecánica del Movimiento (2º) Facultad de Ciencias del Deporte. Universidad de Castilla la Mancha. TEMA 5: ERRORES Biomecánica del Movimiento (2º) 67 TEMA 5: ERRORES 1- Imprecisiones en las mediciones. Orígenes. Cómo darlas a conocer. 2- Tipos de errores. Error absoluto y error relativo. Sensibilidad y precisión. Error

Más detalles

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Estadística aplicada al Periodismo

Estadística aplicada al Periodismo Estadística aplicada al Periodismo Primera prueba parcial (B) Alumno: Grupo: Fecha: Ejercicio. La Encuesta de Pobreza y Desigualdades Sociales (EPDS) realizada por el Gobierno Vasco tiene como objetivo

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Desigualdad de ingresos en Costa Rica a la luz de las ENIGH 2004 y 2013

Desigualdad de ingresos en Costa Rica a la luz de las ENIGH 2004 y 2013 SIMPOSIO Encuesta Nacional de Ingresos y Gastos de los Hogares Desigualdad de ingresos en Costa Rica a la luz de las ENIGH 2004 y 2013 Andrés Fernández Arauz Marzo 2015 Introducción INEC (2014): la desigualdad

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL.

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. Benjamín R. Sarmiento Lugo. Universidad Pedagógica Nacional bsarmiento@pedagogica.edu.co Esta conferencia está basada en uno de los temas desarrollados

Más detalles

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como:

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como: 1 Regresión Lineal Simple Cuando la relación funcional entre las variables dependiente (Y) e independiente (X) es una línea recta, se tiene una regresión lineal simple, dada por la ecuación donde: Y =

Más detalles

Curva de Lorenz e Indice de Gini Curva de Lorenz

Curva de Lorenz e Indice de Gini Curva de Lorenz Curva de Lorenz e Indice de Gini Curva de Lorenz La curva de Lorenz es útil para demostrar la diferencia entre dos distribuciones: por ejemplo quantiles de población contra quantiles de ingresos. También

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

Presupuesto de Ventas

Presupuesto de Ventas Unidad Temática 03: Presupuesto de Ventas MSc. Pedro Bejarano V. Contenido Planificación de las Ventas y Presupuesto Métodos de Cálculo para presupuestar las Ventas: Consideraciones sobre el Cálculo del

Más detalles

Capítulo 6. Análisis bivariante de variables

Capítulo 6. Análisis bivariante de variables Contenidos: Capítulo 6 Análisis bivariante de variables Distribución bidimensional de frecuencias ( tabla de correlación o contingencia ) Distribuciones marginales Coeficientes de Asociación Análisis de

Más detalles