DETERMINACIÓN DEL COMPORTAMIENTO DE LAS POBLACIONES DE PECES E INVERTEBRADOS MEDIANTE LA VARIACIÓN DE CAUDALES A TRAVÉS UNA SIMULACIÓN EN SIMULINK

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DETERMINACIÓN DEL COMPORTAMIENTO DE LAS POBLACIONES DE PECES E INVERTEBRADOS MEDIANTE LA VARIACIÓN DE CAUDALES A TRAVÉS UNA SIMULACIÓN EN SIMULINK"

Transcripción

1 DETERMINACIÓN DEL COMPORTAMIENTO DE LA POBLACIONE DE PECE E INERTEBRADO MEDIANTE LA ARIACIÓN DE CAUDALE A TRAÉ UNA IMULACIÓN EN IMULINK ÁREA TEMÁTICA: ECOHIDRÁULICA MODALIDAD DE PREENTACIÓN: PREENTACIÓN ORAL Carlo André Peña Guzmán, David André Zamora Ávila GRUPO DE INETIGACIÓN DE ITEMA Y RECURO AMBIENTALE OTENIBLE, FACULTAD DE INGENIERÍA AMBIENTAL, UNIERIDAD MANUELA BELTRÁN, A. CIRCUNALAR NO , BOGOTÁ, COLOMBIA, TEL.: (57-) ET 959 GRUPO DE INETIGACIÓN CIENCIA E INGENIERÍA DEL AGUA Y EL AMBIENTE, FACULTAD DE INGENIERÍA, PONTIFICIA UNIERIDAD JAERIANA, CARRERA 7 NO. 40 6, BOGOTÁ, COLOMBIA, TEL.: (57-) ET El objetivo primordial del ete trabajo, e dearrollar un modelo integrado que permita identificar el comportamiento en la interaccione de poblacione de pece e invertebrado bajo la modificación en la taa de crecimiento de invertebrado y de pece al 50, 00 y 00%, adicionalmente para cada una de eta, e lleva a cabo una variabilidad a do condicione hidráulica, caudale,.3, 3.94, 7.07, 8.00 y 9.00 m 3 / y lo volúmene del canal 7.93, 75.,.3, 58.6, y m 3. Para llevar a cabo la imulación, e contruyeron 3 modelo independiente lo cuale e enlazaban entre ello, el primero hace referencia al crecimiento de biomaa acoplado con la diminución de un utrato dado, el egundo e un modelo de una población de invertebrado que etá determinada por do factore de evolución: (i) el crecimiento debido a la depredación de la biomaa y al nivel de individuo de invertebrado y (ii) la diminución por la depredación por parte del etadio adulto de lo pece, por último, un modelo de la población de pece para 4 diferente etadio larva, freza, juvenil y adulto. Todo eto dentro de 3 tranecto (tramo analizado en Phabim), lo cuale e uponen como reactore completamente mezclado. El modelo de crecimiento aumido etá dado por la ecuacione de Lotka olterra, el cual involucra el crecimiento natural de la epecie y la capacidad de ubitencia de la mima, ete modelo fue formulado por el matemático Italiano ito olterra ( ) y el biólogo Norteamericano Alfred Jame Lotka ( ), aunque el modelo tiene deficiencia e utilizado para la predicción del comportamiento de poblacione o epecie. A continuación e repreentan lo modelo de crecimiento de la biomaa, utrato en vertebrado e invertebrado al mimo tiempo el modelo de depredador prea en oftware Matlab, con el Toolbox de imulink.

2 i i i N v ve re t r i - i - N v ve r e t r N v ve re t r u t r a t o - B ii on mv e a r t e a b r a T d r o u c h a u t r a t o - B i oi n m v ea r t a e b Tr a r du oc h a u t r a t o - B I in o v m e ra t e a b r a d T o r u c h i - i - Figura : Diagrama General modelo.3 Q0 cope Q0 0 Biomaa cope i- cope Qo i- 0 utrato Figura : Ecuación utrato-biomaa La Figura repreenta el diagrama de bloque del modelo biomaa, utrato, invertebrado y vertebrado, en cuanto a la Figura, e equematiza la programación de bloque de la relación utrato biomaa con de la ecuación: () La cual repreenta la variación de la biomaa con repecto a un caudal de entrada, la taa de concentración y la taa endógena del mantenimiento de la biomaa. La Figura 3, ilutra la programación de la ecuación, que repreenta la cantidad de pece que depredan a lo invertebrado ()

3 i Nvertebrado R*I* R umof Element Integrator Pinvert Beta Beta*I*Nvert cope Figura 3: Ecuación utrato-biomaa A continuación e preenta el diagrama de la depredación prea bajo la ecuacione de Lotka- olterra, que repreenta la iguiente ecuacione: (3) (4) Taa 3 Adulto F4 cope3 F3 Pinvert Product Alfa Nvertebrado cope Freza F um of Element Larva cope cope Figura 4: Ecuación utrato-biomaa Para encontrar la curva de área hábitat para la tre etapa de pece freza, juvenil y adulto e realizó una imulación mediante el programa en Phabim, la cuale e pueden obervar en la Figura 5 (izquierda).

4 Curva de área de habitat utilizable Adulto Frea 0.9 Curva de área de habitat utilizable Adulto Frea Área (m ) Área (m ) Caudal (m 3 /) Figura 5: Curva de área hábitat para freza, juvenil y adulto (izquierda) y Curva de área hábitat normalizada para freza, juvenil y adulto (derecha) Caudal (m 3 /) Como e puede obervar, cada tipo de etapa requiere un diferente caudal para obtener una mayor área, por lo tanto eto caudale on un valor de entrada en la ecuación. Reultado La biomaa en lo 3 ecenario motró que durante el primer tranecto diminuye debido a la perdida de utrato, para lo do iguiente tranecto la biomaa aumenta rápidamente aociada al crecimiento del utrato hata encontrar u crecimiento máximo y aí diminuir, como e puede ver en la figura 6, por otra parte el aumento de caudal y de volumen generó que el crecimiento máximo de biomaa ea cada vez menor al igual que el nivel de recuperación de utrato. Figura 6: Comportamiento de biomaa (izquierda) y Comportamiento biomaa y utrato (derecha) En cuanto al comportamiento de lo invertebrado, el mayor crecimiento e preentó en el ecenario de 00% y dentro de ete donde favoreció el crecimiento fue en lo caudale.3 y 3.94 m 3 / y lo volúmene 75. y.3 m 3. E importante mencionar que el comportamiento de lo invertebrado e función del crecimiento de biomaa y de la depredación de lo pece, por lo tanto en la figura 7 e oberva como lo invertebrado decaen rápidamente aociado a la falta de biomaa, in embrago logran recuperare pero al er depredado por lo pece eta vuelve a decaer.

5 Figura 7: Comportamiento de invertebrado (izquierda) y Comportamiento de invertebrado ecenario 00% (derecha). En cuanto al comportamiento de lo 4 diferente etadio a menor caudal y volumen el crecimiento e má rápido en el tiempo in embargo e menor en cantidad, por otra parte en lo 3 ecenario e encontró que en donde e hallaron lo mejore crecimiento de toda la etapa de lo pece e en el caudal 7.07 m 3 /. De acuerdo a lo anterior, la unificación de modelo de depredación y crecimiento y caracterítica hidráulica pueden llegar determinar calcular lo caudale que permitan el mayor crecimiento de epecie, in embargo e importante mencionar que tener un único caudal y no un régimen de caudale puede determinar un crecimiento otenido pero que acabo de un tiempo puede llevará obre población que conduzca al declive y a una probable diminución de la capacidad biogenica de la ictiofauna.

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Diagramas de bloques

Diagramas de bloques UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D INNIRÍA MCANICA Y LÉCTRICA Diagrama de bloque INNIRÍA D CONTROL M.C. JOSÉ MANUL ROCHA NUÑZ M.C. LIZABTH P. LARA HDZ. UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO

CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO 9 CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO 2.1 Criterios de diseño para el predimensionamiento de los sistemas de abastecimiento de agua 2.1.1 Período de diseño

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN

UNIVERSIDAD NACIONAL DE ASUNCIÓN UNIVERSIDAD NACIONAL DE ASUNCIÓN Facultad de Ciencias Químicas Carrera de Ingeniería Química 21 de junio 2010 TRABAJO FINAL DE GRADO Carlos Domingo Mendez Gaona CONTENIDO Motivación y planteamiento del

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

Ingeniero electrónico. Investigador de la Universidad Pedagógica y Tecnológica de Colombia. Sogamoso, Colombia. Contacto: landres87@hotmail.

Ingeniero electrónico. Investigador de la Universidad Pedagógica y Tecnológica de Colombia. Sogamoso, Colombia. Contacto: landres87@hotmail. Boot LENNY ANDRÉS HERNÁNDEZ FONSECA Ingeniero electrónico. Invetigador de la Univeridad Pedagógica y Tecnológica de Colombia. Sogamoo, Colombia. Contacto: landre87@hotmail.com DIEGO RICARDO GÓMEZ LEÓN

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

Movimiento rectilíneo uniformemente variado (parte 2)

Movimiento rectilíneo uniformemente variado (parte 2) Semana (parte 1) 9 Semana 8 (parte ) Empecemo! Apreciado participante, neceitamo que tenga una actitud de éxito y dipoición de llegar hata el final, aún en medio de la dificultade, por ello perevera iempre!

Más detalles

Contenido. Vision ME Guía del usuario s

Contenido. Vision ME Guía del usuario s GUÍA DEL USUARIO Contenido 1. Introducción...2 1.1. Viion ME Iniciar eión automáticamente...2 2. Invitar a lo alumno a unire a la clae...3 2.1. Ver a lo alumno en clae...6 2.2. Experiencia de lo alumno...7

Más detalles

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado? CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura

Más detalles

PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO

PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO MODALIDAD FLEXIBLE DECRETO Nº211 1. En el siguiente sistema de ecuaciones: Cuál es el valor de y? A. 4 B. 0 C. 6 D. 8 2. Cuál es el resultado de ( 5)

Más detalles

FLUJO DE AGUA EN EL SUELO Y ZONA NO SATURADA

FLUJO DE AGUA EN EL SUELO Y ZONA NO SATURADA Lección 7. Flujo de agua en el suelo. Ley de Darcy. Conductividad hidráulica. Relación entre conductividad hidráulica y tensión. Ecuaciones que rigen la infiltración vertical. Ecuación de Richards. Capacidad

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

5. MODELO DE UN INTERCAMBIADOR DE CALOR

5. MODELO DE UN INTERCAMBIADOR DE CALOR 5. MODELO DE UN INERCAMBIADOR DE CALOR Para la explicación del modelo matemático de un intercambiador de calor aire agua, e neceario en primer lugar definir una erie de término. Éto aparecen en la abla

Más detalles

División Recursos Materiales y Suministros

División Recursos Materiales y Suministros Diviión Recuro Materiale y Suminitro Departamento de Adquiicione PEDIDO DE PRECIOS Nº 182/2014 FECHA DE APERTURA: 30/12/14 Hora: 14:00 Aunto: Materiale para Red de Dato y Telefonía Solicitud: 28578 INFORMACIÓN

Más detalles

REGISTROS CONTABLES Y AJUSTES

REGISTROS CONTABLES Y AJUSTES REGISTROS CONTABLES Y AJUSTES Aiento de Ajute Para conocer el monto de la utilidad o pérdida del período, la emprea preparan el etado de reultado final del período contable. Para conocer con preciión el

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 8: EQUILIBRIOS DE PRECIPITACIÓN

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 8: EQUILIBRIOS DE PRECIPITACIÓN PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 QUÍMICA TEMA 8: EQUILIBRIOS DE PRECIPITACIÓN Junio, Ejercicio, Opción A Reerva, Ejercicio 5, Opción B Reerva 4, Ejercicio 6, Opción A Septiembre, Ejercicio,

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS Facultad de Ciencia Curo 00-0 SOLUCIONES PROBLEMAS FÍSICA. TEMA : MECÁNICA DE SÓLIDOS Y FLUIDOS. Una gota eférica de mercurio de radio,0 mm e diide en do gota iguale. Calcula a) el radio de la gota reultante

Más detalles

VIOLENCIA EN CENTROS EDUCATIVOS CURSO LECTIVO 2013

VIOLENCIA EN CENTROS EDUCATIVOS CURSO LECTIVO 2013 Boletín 08-14 VIOLENCIA EN CENTROS EDUCATIVOS CURSO LECTIVO 2013 El propóito de ete boletín e brindar información obre la cantidad de cao de violencia regitrado en lo centro educativo de Educación Tradicional,

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

Tema 2. Circuitos resistivos y teoremas

Tema 2. Circuitos resistivos y teoremas Tema. Circuito reitivo y teorema. ntroducción.... Fuente independiente..... Fuente de tenión..... Fuente independiente de intenidad.... eitencia.... 4.. ociación de reitencia... 5 eitencia en erie... 5

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

ÓPTICA GEOMÉTRICA. Virtual: La imagen se forma al hacer concurrir en un punto al otro lado del espejo rayos que divergen tras reflejarse en el espejo.

ÓPTICA GEOMÉTRICA. Virtual: La imagen se forma al hacer concurrir en un punto al otro lado del espejo rayos que divergen tras reflejarse en el espejo. 12 ÓPTI GEOMÉTRI UESTIONES 1. La imagen de un objeto que e refleja en un epejo plano erá: a) Real, invertida y má pequeña. b) Virtual, invertida y del mimo tamaño. c) Real, derecha y del mimo tamaño. d)

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

PROGRAMA DE LA ASIGNATURA DE RIEGOS (36402) 4º Curso de Ingenieros Agrónomos

PROGRAMA DE LA ASIGNATURA DE RIEGOS (36402) 4º Curso de Ingenieros Agrónomos PROGRAMA DE LA ASIGNATURA DE RIEGOS (36402) 4º Curso de Ingenieros Agrónomos Profesor: Camilo Robles García Departamento de Proyectos e Ingeniería Rural Curso 2008-2009 1 I - INTRODUCCION Tema 1: Introducción

Más detalles

CA Nimsoft Monitor Snap

CA Nimsoft Monitor Snap CA Nimoft Monitor Snap Guía de configuración de Monitorización de Cico UCS Server Serie de cico_uc 2.1 Avio legale Copyright 2013, CA. All right reerved. Garantía El material incluido en ete documento

Más detalles

*Cap. 1/o Ing. Ind. Carlos Eduardo Palomo Juárez

*Cap. 1/o Ing. Ind. Carlos Eduardo Palomo Juárez UNA APORTACION A LA ECOLOGIA Y MEDIO AMBIENTE CON EL FUNCIONAMIENTO DE LA PLANTA TRATADORA DE AGUAS RESIDUALES DEL HOSPITAL MILITAR REGIONAL DE SAN LUIS POTOSI. S.L.P. INTRODUCCION *Cap. 1/o Ing. Ind.

Más detalles

P t. Primer Semestre 2010 PAUTA AYUDANTÍA 7 DINÁMICA DE FLUIDOS. Loa fluidos se pueden clasificar de las siguientes maneras:

P t. Primer Semestre 2010 PAUTA AYUDANTÍA 7 DINÁMICA DE FLUIDOS. Loa fluidos se pueden clasificar de las siguientes maneras: Unieridad Técnica Federico Santa María Introducción a la Mecánica de Fluido y Calor Prier Seetre 00 Profeor: Rodrigo Suárez yudante: Macarena Molina PUT YUDNTÍ 7 DINÁMIC DE FLUIDOS Loa fluido e pueden

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

Fuerza de fricción estática

Fuerza de fricción estática Laboratorio de Meánia. Experimento 10 Fuerza de friión etátia Objetivo general Etudiar la fuerza de friión etátia. Objetivo epeífio Determinar lo oefiiente de friión entre diferente pareja de materiale.

Más detalles

PRÁCTICA: BANCO DE ENSAYO DE BOMBAS

PRÁCTICA: BANCO DE ENSAYO DE BOMBAS PRÁCTICA: BANCO DE ENSAYO DE BOMBAS htttp://www.uco.es/moodle Descripción del equipo y esquema de la instalación La instalación en la que se lleva a cabo esta práctica es un banco de ensayos preparado

Más detalles

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO 2 ÓPTICA GEOMÉTRICA 2.. ORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO. En la imagen que e forma de un objeto en un epejo plano e invierten la izquierda la derecha, pero no la parte de arriba la parte de abajo

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

Cuenca de los ríos Magdalena y Becerra

Cuenca de los ríos Magdalena y Becerra Cuenca de los ríos Magdalena y Becerra Objetivo: Elaborar un modelo hidrológico e hidráulico de la cuenca y cauce de los ríos Magdalena y Becerra, que permita contar con una herramienta de predicción de

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

Revista Cubana de Ciencia Agrícola ISSN: 0034-7485 rcca@ica.co.cu Instituto de Ciencia Animal Cuba

Revista Cubana de Ciencia Agrícola ISSN: 0034-7485 rcca@ica.co.cu Instituto de Ciencia Animal Cuba Revita Cubana de Ciencia Agrícola ISSN: 34-7485 rcca@ica.co.cu Intituto de Ciencia Animal Cuba Valiño, Elaine C.; Ibarra, Adibet; García, aneiy; Izquierdo, Elena; Dutet, J. C. Decripción de la fermentación

Más detalles

Programa de estudios por competencias Arquitectura de computadoras

Programa de estudios por competencias Arquitectura de computadoras Programa de estudios por competencias Arquitectura de computadoras 1. Identificación del curso Programa educativo: Ingeniería en Computación Unidad de aprendizaje: Arquitectura de computadoras Departamento

Más detalles

CIRCULAR Nº 2 (Aclaratoria)

CIRCULAR Nº 2 (Aclaratoria) Bueno Aire, 8 ero 2016 Referencia: Licitación Pública N 27/15 CIRCULAR Nº 2 (Aclaratoria) A lo efecto una mejor comprenión lo volcado en la epecificacione técnica l Pliego Bae y Condicione Particulare

Más detalles

Poblaciones multietáneas

Poblaciones multietáneas : Estado biológico Dinámica de poblaciones: crecimiento de poblaciones multietáneas José Antonio Palazón Ferrando palazon@um.es http://fobos.bio.um.es/palazon Departamento de Ecología e Hidrología Universidad

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

Sistemas de orden superior

Sistemas de orden superior 7 Sitema de orden uperior Hata ahora ólo e ha etudiado la repueta del régimen tranitorio de lo itema de primer y egundo orden imple. En ete capítulo e pretende analizar la evolución temporal de itema de

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA * Análii de Sitema en el Dominio del Tiempo. * I. NOMBRE : Análii de Sitema en el Dominio del Tiempo. II. OBJETIVOS : El etudiante conocerá y aplicará un oftware

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES ENERGÍA (I) CONCEPTOS UNDAMENTALES IES La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido

Más detalles

Diseño de medidor de humedad relativa (psicrómetro) con labview

Diseño de medidor de humedad relativa (psicrómetro) con labview Lucila Graciano Gaytán Miguel Eduardo González Elía Julián González Trinidad Unidad Académica de Ingeniería Eléctrica Univeridad Autónoma de Zacateca E mail: lgracianog@hotmail.com XII JORNADAS DE INVESTIGACIÓN

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

SILABO DEL CURSO FUNDAMENTOS DE PROGRAMACIÓN

SILABO DEL CURSO FUNDAMENTOS DE PROGRAMACIÓN FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA DE SISTEMAS SILABO DEL CURSO FUNDAMENTOS DE PROGRAMACIÓN 1. DATOS GENERALES 1.1. Facultad : Ingeniería 1.2. Carrera Profesional : Ingeniería de Sistemas 1.3.

Más detalles

CA Nimsoft Monitor Snap

CA Nimsoft Monitor Snap CA Nimoft Monitor Snap Guía de configuración de Monitorización de IBM SVC Serie de ibm_vc 1.0 Avio de copyright de CA Nimoft Monitor Snap Ete itema de ayuda en línea (el "Sitema") e proporciona con el

Más detalles

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: 978 83 33 06 TRABAJO Y ENERGÍA

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: 978 83 33 06 TRABAJO Y ENERGÍA Cl. Miguel leta, Tel/ax: 978 83 33 06 www.academia-nipho.e TRABAJO Y NRGÍA La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA. Problemas resueltos de cambios de fase de la materia.

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA. Problemas resueltos de cambios de fase de la materia. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA Problemas resueltos de cambios de fase de la materia. 1. Qué se entiende por sistema y alrededores? Un sistema se define como cualquier

Más detalles

Distribuciones continuas de carga: Ley de Gauss

Distribuciones continuas de carga: Ley de Gauss : Ley de Gau. Campo eléctrico de ditribucione continua de carga. Flujo del campo eléctrico. Ley de Gau. Aplicacione de la ley de Gau. BIBLIOGRAFÍA: -Tipler. "Fíica". Cap. 22. Reerté. -Serway. "Fíica".

Más detalles

Problemas Primera Sesión

Problemas Primera Sesión roblema rimera Seión 1. Demuetra que ax + by) ax + by para cualequiera x, y R y cualequiera a, b R con a + b = 1, a, b 0. n qué cao e da la igualdad? Solución 1. Nótee que ax + by ax + by) = a1 a)x + b1

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Por qué e dice que todo lo movimiento on relativo? 2 Cómo e claifican lo movimiento en función de la trayectoria decrita? 3 Coincide iempre el deplazamiento

Más detalles

Entradas (E) - Salidas (S) = Cambio de Almacenamiento. Recarga total Descarga total = Cambio de almacenamiento en la unidad hidrogeológica

Entradas (E) - Salidas (S) = Cambio de Almacenamiento. Recarga total Descarga total = Cambio de almacenamiento en la unidad hidrogeológica 8.- BALANCE INTEGRAL DE AGUAS SUBTERRÁNEAS Un balance de aguas subterráneas consiste en registrar las entradas, salidas y cambio en el volumen de almacenamiento, que acontecen en un volumen específico

Más detalles

Universidad de Valladolid, 47011 Valladolid, España E-mail: augusto@mat.uva.es 2 Departamento de Estadística, Investigación Operativa y Computación

Universidad de Valladolid, 47011 Valladolid, España E-mail: augusto@mat.uva.es 2 Departamento de Estadística, Investigación Operativa y Computación 27 Congreo Nacional de Etadítica e Invetigación Operativa Lleida, 8 11 de abril de 2003 THE EOQ/ω o + ωt/π o + πt/ρ INVENTORY SYSTEM L.A. San Joé 1, J. Sicilia 2, J.G. Laguna 3 1 Departamento de Matemática

Más detalles

Vertedores y compuertas

Vertedores y compuertas Vertedores y compuertas Material para el curso de Hidráulica I Se recomienda consultar la fuente de estas notas: Sotelo Ávila Gilberto. 2002. Hidráulica General. Vol. 1. Fundamentos. LIMUSA Editores. México.

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

Fundamentos de Bases de Datos Facultad de Ciencias UNAM

Fundamentos de Bases de Datos Facultad de Ciencias UNAM Desarrollo Fundamentos de Bases de Datos Facultad de Ciencias UNAM M.I. Gerardo Avilés Rosas gar@ciencias.unam.mx Laboratorio: L en C.C. Erick Orlando Matla Cruz ematla@ciencias.unam.mx Práctica 03 En

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS ECONOMICAS

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS ECONOMICAS UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS ECONOMICAS DETERMINANTES DE LA INSERCION DE LA MUJER JOVEN DE LA REGION CALLAO EN EL MERCADO LABORAL 1 Javier Vargas Diaz 2 1 El presente trabajo es

Más detalles

El tubo De Vénturi. Introducción

El tubo De Vénturi. Introducción El tubo De Vénturi Recopilado a partir de http://www.monografias.com/trabajos6/tube/tube.shtml por: Jose Carlos Suarez Barbuzano. Técnico Superior Química Ambiental. Técnico del Centro Canario del Agua

Más detalles

CANTIDAD DE MOVIMIENTO LINEAL

CANTIDAD DE MOVIMIENTO LINEAL NOTAS DE FÍSICA GRADO CANTIDAD DE MOIMIENTO LINEAL CONTENIDO. IMPULSO. COLISIONES O CHOQUES 3. PROBLEMAS PROPUESTOS Contanteente ecuchao y veo choque de auto y oto, nootro alguna vece deprevenido chocao

Más detalles

CAPITULO IV. Análisis y Determinantes Sociales de la Situación de Salud

CAPITULO IV. Análisis y Determinantes Sociales de la Situación de Salud CAPITULO IV Análii y Determinante Sociale de la Situación de Salud Memoria Intitucional DE COSTA RICA Y MORTALIDAD POR GRUPOS DE POBLACIÓN La caracterización de la población en Cota Rica parte de lo dato

Más detalles

JUNTA MONETARIA RESOLUCION JM-349-94

JUNTA MONETARIA RESOLUCION JM-349-94 JUNTA MONETARIA RESOLUCION JM-349-94 Inerta en el Punto Tercero, del acta número 34-94 correpondiente a la eión celebrada por la Junta Monetaria el 20 de julio de 1994. PUNTO TERCERO: El Superintendente

Más detalles

s Teatro/Auditorio (390 pax en dos plantas) s 3 Salas de conferencias y cursos s Sala Polivalente s Sala patio s 2 Salas para exposiciones y muestras

s Teatro/Auditorio (390 pax en dos plantas) s 3 Salas de conferencias y cursos s Sala Polivalente s Sala patio s 2 Salas para exposiciones y muestras Ubicado en el centro neurálgico de la zona hitórica y comercial del Ditrito de Vegueta-Triana de La Palma de Gran Canaria, el edificio que alberga el CICCA e obra del Arquitecto Manuel Ponce de León y

Más detalles

Prácticas de Laboratorio de Hidráulica

Prácticas de Laboratorio de Hidráulica Universidad Politécnica de Madrid E.T.S. Ingenieros de Caminos, Canales y Puertos Prácticas de Laboratorio de Hidráulica Jaime García Palacios Francisco V. Laguna Peñuelas 2010 Índice general 3. Venturi

Más detalles

Palacio de Convenciones 19 23 de octubre de 2015

Palacio de Convenciones 19 23 de octubre de 2015 PiqCuba /2015 VIII Congreo Cubano de Piquiatría VI Congreo Panamericano de Salud Mental Infanto Juvenil Por una Piquiatria Integradora Palacio de Convencione 19 23 de octubre de 2015 CONVOCATORIA En nombre

Más detalles

FECHA DE INICIO UNIVERSIDAD AUTONOMA DE OCCIDENTE -CALI SEGÚN CALENDARIO SEGÚN CALENDARIO SEGÚN CALENDARIO SEGÚN CALENDARIO SEGÚN CALENDARIO

FECHA DE INICIO UNIVERSIDAD AUTONOMA DE OCCIDENTE -CALI SEGÚN CALENDARIO SEGÚN CALENDARIO SEGÚN CALENDARIO SEGÚN CALENDARIO SEGÚN CALENDARIO PROGRAMA DE BECA COLOMBO-ECUATORIANA CATÁLOGO DE OFERTA ACADÉMICA PARA EGUNDO EMETRE DE 205 NOTA: OLO E PUEDE APLICAR A LA UNIVERIDADE Y PROGRAMA RELACIONADO EN ETA LITA. LO CUPO EN LA UNIVERIDADE ON LIMITADO.

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

RESUMEN ANALÍTICO EN EDUCACIÓN - RAE FACULTAD DE INGENIERIA PROGRAMA DE INGENIERIA INDUSTRIAL PREGRADO EN INGENIERÍA INDUSTRIAL BOGOTÁ D.C.

RESUMEN ANALÍTICO EN EDUCACIÓN - RAE FACULTAD DE INGENIERIA PROGRAMA DE INGENIERIA INDUSTRIAL PREGRADO EN INGENIERÍA INDUSTRIAL BOGOTÁ D.C. AÑO DE ELABORACIÓN: 2015 FACULTAD DE INGENIERIA PROGRAMA DE INGENIERIA INDUSTRIAL PREGRADO EN INGENIERÍA INDUSTRIAL BOGOTÁ D.C. TÍTULO: PROPUESTA DE MEJORA EN EL PROCESO DE INSPECCIONES PLANEADAS DE ETERNIT

Más detalles

TALLER DE CONTROL DE INVENTARIOS. Area III Instituto Mexicano Madero P.Zav

TALLER DE CONTROL DE INVENTARIOS. Area III Instituto Mexicano Madero P.Zav TALLER DE CONTROL DE INVENTARIOS Area III Instituto Mexicano Madero P.Zav METODO ABC Método ABC Conteo Cíclico MÉTODOS DE CONTROL DE INVENTARIOS Promedio Ponderado, PEPS y UEPS. Promedio Ponderado 1. Se

Más detalles

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán para realizar un análisis, la obtención del rendimiento esperado

Más detalles

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859 SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann Noviembre, 859 No creo poder exprear mejor mi agradecimiento por la ditinción que la Academia me ha hecho al nombrarme

Más detalles

DOCTORADO EN CIENCIAS (Biología, Física, Matemáticas)

DOCTORADO EN CIENCIAS (Biología, Física, Matemáticas) DOCTORADO EN CIENCIAS (Biología, Física, Matemáticas) Facultad de Ciencias 10.1.1 Biblioteca y acervos Biblioteca Biblioteca y acervos La comunidad Académica y Estudiantil en la Facultad de Ciencias cuentan

Más detalles

SÍLABO DE ORGANIZACIÓN Y ADMINISTRACIÓN DEL SOPORTE TÉCNICO

SÍLABO DE ORGANIZACIÓN Y ADMINISTRACIÓN DEL SOPORTE TÉCNICO INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO PRIVADO EL BUEN PASTOR SÍLABO DE ORGANIZACIÓN Y ADMINISTRACIÓN DEL SOPORTE TÉCNICO I. INFORMACIÓN GENERAL Carrera Profeion :Computación e Informática Módulo

Más detalles

DPTO. DE DE FÍSICA ÁREA. y Tiro

DPTO. DE DE FÍSICA ÁREA. y Tiro UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA Caída Libre y Tiro Vertical Guillermo Becerra Córdova E-mail: gllrmbecerra@yahoo.com 1 TEORÍA La Cinemática es la ciencia de

Más detalles

UNIVERSIDAD JUÁREZ AUTÓNOMA DE TABASCO DIVISIÓN ACADÉMICA DE CIENCIAS BIOLÓGICAS LICENCIATURA EN INGENIERÍA AMBIENTAL

UNIVERSIDAD JUÁREZ AUTÓNOMA DE TABASCO DIVISIÓN ACADÉMICA DE CIENCIAS BIOLÓGICAS LICENCIATURA EN INGENIERÍA AMBIENTAL UNIVERSIDAD JUÁREZ AUTÓNOMA TABASCO DIVISIÓN ACADÉMICA CIENCIAS BIOLÓGICAS LICENCIATURA EN INGENIERÍA AMBIENTAL ASIGNATURA: INSTRUMENTACIÓN Y CONTROL NIVEL: AREA FORMACIÓN SUSTANTIVA PROFESIONAL HORAS

Más detalles

FICHA PÚBLICA DEL PROYECTO

FICHA PÚBLICA DEL PROYECTO NUMERO DE PROYECTO: 218824 EMPRESA BENEFICIADA: MICROCALLI DEL GOLFO S.A DE C.V TÍTULO DEL PROYECTO: LÍNEA DE PRODUCTOS DE SOFTWARE PARA DOMÓTICA OBJETIVO DEL PROYECTO: Incorporar el paradigma de LPS como

Más detalles

ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE

ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE DAVID CUEVA ERAZO daidcuea.5@hotail.co ANTHONY ENCALADA CAIZAPANTA anthony-fer@hotail.co ALPHA LANDÁZURI

Más detalles

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática Univeridad Central Del Ete U C E Facultad de Ciencia y Humanidade Ecuela de Pedagogía Mención Ciencia Fíica y Matemática Programa de la aignatura: (MAT351) Álgebra Superior Total de Crédito: 3 Teórico:

Más detalles

TUBIFICACIÓN EN PRESAS DE MATERIALES DE PRESTAMO. Ms. Sc. Ing. Jorge Briones G.

TUBIFICACIÓN EN PRESAS DE MATERIALES DE PRESTAMO. Ms. Sc. Ing. Jorge Briones G. TUBIFICACIÓN EN PRESAS DE MATERIALES DE PRESTAMO Ms. Sc. Ing. Jorge Briones G. jebriones@hotmail.com EJEMPLO DE EROSION INTERNA EN PRESAS DE MATERIALES DE PRESTAMO PRESAS DE MATERIALES DE PRESTAMO Presa

Más detalles

Cómo leer la curva característica de una bomba?

Cómo leer la curva característica de una bomba? Cómo leer la curva característica de una bomba? Este boletín trata sobre la lectura y la comprensión de las curvas de funcionamiento de una bomba centrífuga. Se consideran tres tipos de curvas: bomba autocebante

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Se considerarán los títulos con contenidos afines al aquí presentado. Nº mínimo de ECTS a reconocer: Nº máximo de ECTS a reconocer:

Se considerarán los títulos con contenidos afines al aquí presentado. Nº mínimo de ECTS a reconocer: Nº máximo de ECTS a reconocer: 24 Criterio para realizar el reconocimiento: Se coniderarán lo título con contenido afine al aquí preentado Reconocimiento de ECTS por Acreditación de Experiencia Laboral y Profeional Nº mínimo de ECTS

Más detalles