DETERMINACIÓN DEL COMPORTAMIENTO DE LAS POBLACIONES DE PECES E INVERTEBRADOS MEDIANTE LA VARIACIÓN DE CAUDALES A TRAVÉS UNA SIMULACIÓN EN SIMULINK

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DETERMINACIÓN DEL COMPORTAMIENTO DE LAS POBLACIONES DE PECES E INVERTEBRADOS MEDIANTE LA VARIACIÓN DE CAUDALES A TRAVÉS UNA SIMULACIÓN EN SIMULINK"

Transcripción

1 DETERMINACIÓN DEL COMPORTAMIENTO DE LA POBLACIONE DE PECE E INERTEBRADO MEDIANTE LA ARIACIÓN DE CAUDALE A TRAÉ UNA IMULACIÓN EN IMULINK ÁREA TEMÁTICA: ECOHIDRÁULICA MODALIDAD DE PREENTACIÓN: PREENTACIÓN ORAL Carlo André Peña Guzmán, David André Zamora Ávila GRUPO DE INETIGACIÓN DE ITEMA Y RECURO AMBIENTALE OTENIBLE, FACULTAD DE INGENIERÍA AMBIENTAL, UNIERIDAD MANUELA BELTRÁN, A. CIRCUNALAR NO , BOGOTÁ, COLOMBIA, TEL.: (57-) ET 959 GRUPO DE INETIGACIÓN CIENCIA E INGENIERÍA DEL AGUA Y EL AMBIENTE, FACULTAD DE INGENIERÍA, PONTIFICIA UNIERIDAD JAERIANA, CARRERA 7 NO. 40 6, BOGOTÁ, COLOMBIA, TEL.: (57-) ET El objetivo primordial del ete trabajo, e dearrollar un modelo integrado que permita identificar el comportamiento en la interaccione de poblacione de pece e invertebrado bajo la modificación en la taa de crecimiento de invertebrado y de pece al 50, 00 y 00%, adicionalmente para cada una de eta, e lleva a cabo una variabilidad a do condicione hidráulica, caudale,.3, 3.94, 7.07, 8.00 y 9.00 m 3 / y lo volúmene del canal 7.93, 75.,.3, 58.6, y m 3. Para llevar a cabo la imulación, e contruyeron 3 modelo independiente lo cuale e enlazaban entre ello, el primero hace referencia al crecimiento de biomaa acoplado con la diminución de un utrato dado, el egundo e un modelo de una población de invertebrado que etá determinada por do factore de evolución: (i) el crecimiento debido a la depredación de la biomaa y al nivel de individuo de invertebrado y (ii) la diminución por la depredación por parte del etadio adulto de lo pece, por último, un modelo de la población de pece para 4 diferente etadio larva, freza, juvenil y adulto. Todo eto dentro de 3 tranecto (tramo analizado en Phabim), lo cuale e uponen como reactore completamente mezclado. El modelo de crecimiento aumido etá dado por la ecuacione de Lotka olterra, el cual involucra el crecimiento natural de la epecie y la capacidad de ubitencia de la mima, ete modelo fue formulado por el matemático Italiano ito olterra ( ) y el biólogo Norteamericano Alfred Jame Lotka ( ), aunque el modelo tiene deficiencia e utilizado para la predicción del comportamiento de poblacione o epecie. A continuación e repreentan lo modelo de crecimiento de la biomaa, utrato en vertebrado e invertebrado al mimo tiempo el modelo de depredador prea en oftware Matlab, con el Toolbox de imulink.

2 i i i N v ve re t r i - i - N v ve r e t r N v ve re t r u t r a t o - B ii on mv e a r t e a b r a T d r o u c h a u t r a t o - B i oi n m v ea r t a e b Tr a r du oc h a u t r a t o - B I in o v m e ra t e a b r a d T o r u c h i - i - Figura : Diagrama General modelo.3 Q0 cope Q0 0 Biomaa cope i- cope Qo i- 0 utrato Figura : Ecuación utrato-biomaa La Figura repreenta el diagrama de bloque del modelo biomaa, utrato, invertebrado y vertebrado, en cuanto a la Figura, e equematiza la programación de bloque de la relación utrato biomaa con de la ecuación: () La cual repreenta la variación de la biomaa con repecto a un caudal de entrada, la taa de concentración y la taa endógena del mantenimiento de la biomaa. La Figura 3, ilutra la programación de la ecuación, que repreenta la cantidad de pece que depredan a lo invertebrado ()

3 i Nvertebrado R*I* R umof Element Integrator Pinvert Beta Beta*I*Nvert cope Figura 3: Ecuación utrato-biomaa A continuación e preenta el diagrama de la depredación prea bajo la ecuacione de Lotka- olterra, que repreenta la iguiente ecuacione: (3) (4) Taa 3 Adulto F4 cope3 F3 Pinvert Product Alfa Nvertebrado cope Freza F um of Element Larva cope cope Figura 4: Ecuación utrato-biomaa Para encontrar la curva de área hábitat para la tre etapa de pece freza, juvenil y adulto e realizó una imulación mediante el programa en Phabim, la cuale e pueden obervar en la Figura 5 (izquierda).

4 Curva de área de habitat utilizable Adulto Frea 0.9 Curva de área de habitat utilizable Adulto Frea Área (m ) Área (m ) Caudal (m 3 /) Figura 5: Curva de área hábitat para freza, juvenil y adulto (izquierda) y Curva de área hábitat normalizada para freza, juvenil y adulto (derecha) Caudal (m 3 /) Como e puede obervar, cada tipo de etapa requiere un diferente caudal para obtener una mayor área, por lo tanto eto caudale on un valor de entrada en la ecuación. Reultado La biomaa en lo 3 ecenario motró que durante el primer tranecto diminuye debido a la perdida de utrato, para lo do iguiente tranecto la biomaa aumenta rápidamente aociada al crecimiento del utrato hata encontrar u crecimiento máximo y aí diminuir, como e puede ver en la figura 6, por otra parte el aumento de caudal y de volumen generó que el crecimiento máximo de biomaa ea cada vez menor al igual que el nivel de recuperación de utrato. Figura 6: Comportamiento de biomaa (izquierda) y Comportamiento biomaa y utrato (derecha) En cuanto al comportamiento de lo invertebrado, el mayor crecimiento e preentó en el ecenario de 00% y dentro de ete donde favoreció el crecimiento fue en lo caudale.3 y 3.94 m 3 / y lo volúmene 75. y.3 m 3. E importante mencionar que el comportamiento de lo invertebrado e función del crecimiento de biomaa y de la depredación de lo pece, por lo tanto en la figura 7 e oberva como lo invertebrado decaen rápidamente aociado a la falta de biomaa, in embrago logran recuperare pero al er depredado por lo pece eta vuelve a decaer.

5 Figura 7: Comportamiento de invertebrado (izquierda) y Comportamiento de invertebrado ecenario 00% (derecha). En cuanto al comportamiento de lo 4 diferente etadio a menor caudal y volumen el crecimiento e má rápido en el tiempo in embargo e menor en cantidad, por otra parte en lo 3 ecenario e encontró que en donde e hallaron lo mejore crecimiento de toda la etapa de lo pece e en el caudal 7.07 m 3 /. De acuerdo a lo anterior, la unificación de modelo de depredación y crecimiento y caracterítica hidráulica pueden llegar determinar calcular lo caudale que permitan el mayor crecimiento de epecie, in embargo e importante mencionar que tener un único caudal y no un régimen de caudale puede determinar un crecimiento otenido pero que acabo de un tiempo puede llevará obre población que conduzca al declive y a una probable diminución de la capacidad biogenica de la ictiofauna.

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

Práctica 1: Dobladora de tubos

Práctica 1: Dobladora de tubos Práctica : Dobladora de tubo Una máquina dobladora de tubo utiliza un cilindro hidráulico para doblar tubo de acero de groor coniderable. La fuerza necearia para doblar lo tubo e de 0.000 N en lo 00 mm

Más detalles

GUIA DE PROBLEMAS. 1. El crecimiento de S. cerevisae sobre glucosa en condiciones anaeróbicas puede ser descripta por la siguiente ecuación:

GUIA DE PROBLEMAS. 1. El crecimiento de S. cerevisae sobre glucosa en condiciones anaeróbicas puede ser descripta por la siguiente ecuación: Guía de Problema GUIA DE PRBLEMA. El crecimiento de. cereviae obre glucoa en condicione anaeróbica puede er decripta por la iguiente ecuación: C6 6 + β N 0.59 C +.C + 0.06 5.74 N 0. 0.45 ( biomaa) + 0.4

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION MEDIDAS DE DISPERSION Un promedio puede er engañoo a meno que ea identicado y vaya acompañado por otra información que informe la deviacione de lo dato repecto a la medida de tendencia central eleccionada.

Más detalles

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1 DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº Análii de Etabilidad de lo Sitema

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

capítulo 10 expectativas, contratos laborales y oferta agregada de corto PlaZo

capítulo 10 expectativas, contratos laborales y oferta agregada de corto PlaZo Capítulo 1 EXECTATIVAS, CONTRATOS LABORALES OFERTA AGREGA DE CORTO LAZO 1. Comente uponiendo que a corto plazo lo precio etán fijo: a) Cuál e la diferencia entre la determinación del ingreo en el corto

Más detalles

TEMA 4: El movimiento circular uniforme

TEMA 4: El movimiento circular uniforme TEMA 4: El moimiento circular uniforme Tema 4: El moimiento circular uniforme 1 ESQUEMA DE LA UNIDAD 1.- Caracterítica del moimiento circular uniforme. 2.- Epacio recorrido y ángulo barrido. 2.1.- Epacio

Más detalles

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA RICCIÓ Capítulo VI 6.1 ITRODUCCIÓ La ricción e un enómeno que e preenta entre la upericie rugoa de do cuerpo ólido en contacto, o entre la upericie rugoa de un cuerpo ólido un luido en contacto, cuando

Más detalles

E s t r u c t u r a s

E s t r u c t u r a s t r u c t u r a epartamento de tructura de dificación cuela Técnica Superior de Arquitectura de adrid iagrama de efuerzo de una viga quebrada uo: 4,5 k/m I AA 15/16 12-4-2016 jemplo peo propio: 4,5 k/m

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5 INGENIERÍA EN AUTOMATIZACIÓN Y CONTROL INDUSTRIAL Control Automático II Má Problema UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página de 5. Control de un itema de Bola Riel La Figura muetra

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández. Noviembre, 2014

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández.  Noviembre, 2014 Hidrodinámica Elaborado por: Ing. Enriqueta Del Ángel Hernández Noviembre, 01 http://www.uaeh.edu.mx/virtual HIDRODINÁMICA Etudia el comportamiento del movimiento de lo fluido; en í la hidrodinámica e

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC

El estudio teórico de la práctica se realiza en el problema PTC PRÁCTICA LTC-1: REFLEXIONES EN UN PAR TRENZADO 1.- Decripción de la práctica a) Excitar un cable de pare de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES NRGÍA (I) CONCPTOS UNDAMNTALS IS La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido general),

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

Anexo 1.1 Modelación Matemática de

Anexo 1.1 Modelación Matemática de ELC-3303 Teoría de Control Anexo. Modelación Matemática de Sitema Fíico Prof. Francico M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/tic.html Modelación de Sitema Fíico Francico

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Fíica General Proyecto PMME - Curo 008 Intituto de Fíica Facultad de Ingeniería UdelaR TITULO Dinámica de la partícula AUTORES Aniella Bertellotti y Gimena Ortiz. ITRODUCCIÓ En nuetro proyecto utilizamo

Más detalles

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Automáca Ejercicio Capítulo.Etabilidad JoéRamónLlataGarcía EtherGonáleSarabia DámaoFernándePére CarloToreFerero MaríaSandraRoblaGóme DepartamentodeTecnologíaElectrónica eingenieríadesitemayautomáca Problema

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecanimo: PROYECTO DE TEORIA DE MECANISMOS. Análii cinemático y dinámico de un mecanimo plano articulado con un grado de libertad. 6. Cálculo de la velocidade con el método de lo centro intantáneo

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I C U R S O: FÍSICA COMÚN MATERIAL: FC-2 CINEMÁTICA I La Cinemática etudia el movimiento de lo cuerpo, in preocupare de la caua que lo generan. Por ejemplo, al analizar el deplazamiento de un automóvil,

Más detalles

EFECTO DE LA TEMPERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS

EFECTO DE LA TEMPERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS EFECTO DE LA TEMERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS Jeú Alberto Cortez Hernández (1), Francico Javier Ortega Herrera () Alfono Lozano Luna (3)

Más detalles

PARA MEJORAR CARACTERÍSTICAS DE DISEÑO EN FILTROS BICUADRÁTICOS

PARA MEJORAR CARACTERÍSTICAS DE DISEÑO EN FILTROS BICUADRÁTICOS EL USO DE LOS SFG PARA MEJORAR ARATERÍSTIAS DE DISEÑO EN FILTROS BIUADRÁTIOS - Lui Abraham Sánchez Gapariano, Joé Joel García Delgado, Arturo Prieto Fuenlabrada 3, Alejandro Díaz Sánchez,3 Intituto Nacional

Más detalles

Diagramas de bloques

Diagramas de bloques UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D INNIRÍA MCANICA Y LÉCTRICA Diagrama de bloque INNIRÍA D CONTROL M.C. JOSÉ MANUL ROCHA NUÑZ M.C. LIZABTH P. LARA HDZ. UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r Guía de Fíica I. Vectore. 1. Conidere lo vectore A ByC r r r,. Su valore y aboluto, en unidade arbitraria, on de 3, 2 y 1 repectivamente. Entonce el vector reultante r r r r D = A + B + C erá de valor

Más detalles

CAPÍTULO 2 RESPUESTA EN FRECUENCIA

CAPÍTULO 2 RESPUESTA EN FRECUENCIA CAPÍTULO RESPUESTA EN FRECUENCIA.1 GENERALIDADES Introducción Para el circuito de la figura.1, e encontrarán la funcione circuitale de admitancia de entrada y de ganancia de voltaje, la cuale e definen

Más detalles

Capítulo 3: Algoritmos Usados por el Generador de Autómatas Finitos Determinísticos

Capítulo 3: Algoritmos Usados por el Generador de Autómatas Finitos Determinísticos Capítulo 3: Algoritmo Uado por el Generador de Autómata Finito Determinítico 3.1 Introducción En ete capítulo e preentan lo algoritmo uado por el generador de autómata finito determinítico que irve como

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Tema V: BALANCES DE MATERIA

Tema V: BALANCES DE MATERIA Tema V: BLNCES DE MTERI Eta obra etá bajo una licencia Reconocimiento No comercial Compartir bajo la mima licencia 3.0 Internacional de Creative Common. Para ver una copia de eta licencia, viite http://creativecommon.org/licene/by

Más detalles

Estructuras de Materiales Compuestos

Estructuras de Materiales Compuestos Etructura de Materiale Compueto Reitencia de lámina Ing. Gatón Bonet - Ing. Critian Bottero - Ing. Marco ontana Introducción Etructura de Materiale Compueto - Reitencia de lámina La lámina de compueto

Más detalles

1. Cómo sabemos que un cuerpo se está moviendo?

1. Cómo sabemos que un cuerpo se está moviendo? EL MOVIMIENTO. CONCEPTOS INICIALES I.E.S. La Magdalena. Avilé. Aturia A la hora de etudiar el movimiento de un cuerpo el primer problema con que no encontramo etá en determinar, preciamente, i e etá moviendo

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones Aplicación de lo parámetro de diperión en la caracterización de componente y equipo de radiofrecuencia para la indutria de telecomunicacione Suana adilla Laboratorio de Analizadore de Rede padilla@cenam.mx

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

Encuesta de Remuneraciones del Sector Industrial Diciembre 2004

Encuesta de Remuneraciones del Sector Industrial Diciembre 2004 Encueta de Remuneracione del Sector Indutrial Diciembre 2004 Departamento de Etudio SOFOFA Índice del Contenido I. Antecedente Generale....3 II. Principale Reultado...4 A. Ingreo Promedio...4 B. El Ingreo

Más detalles

05/04/2011 Diana Cobos

05/04/2011 Diana Cobos Diana Cobo a cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad o auto en un autolavado 2 En general, a nadie le guta eperar. Cuando

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

Número Reynolds. Laboratorio de Operaciones Unitarias Equipo 4 Primavera México D.F., 12 de marzo de 2008

Número Reynolds. Laboratorio de Operaciones Unitarias Equipo 4 Primavera México D.F., 12 de marzo de 2008 Número Reynold Laboratorio de Operacione Unitaria Equipo 4 Primavera 2008 México D.F., 12 de marzo de 2008 Alumno: Arlette Mayela Canut Noval arlettecanut@hotmail.com Francico Joé Guerra Millán fjguerra@prodigy.net.mx

Más detalles

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A. Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo

Más detalles

Movimiento rectilíneo uniformemente variado (parte 2)

Movimiento rectilíneo uniformemente variado (parte 2) Semana (parte 1) 9 Semana 8 (parte ) Empecemo! Apreciado participante, neceitamo que tenga una actitud de éxito y dipoición de llegar hata el final, aún en medio de la dificultade, por ello perevera iempre!

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

2. Arreglo experimental

2. Arreglo experimental Efecto fotoeléctrico Diego Hofman y Alejandro E. García Roelli Departamento de Fíica, Laboratorio 5,Facultad de Ciencia Exacta y Naturale, Univeridad de Bueno Aire A lo largo de ete trabajo e etudió el

Más detalles

Se comprime aire, inicialmente a 17ºC, en un proceso isentrópico a través de una razón de

Se comprime aire, inicialmente a 17ºC, en un proceso isentrópico a través de una razón de Ejemplo 6-9 Se comprime aire, inicialmente a 7ºC, en un proceo ientrópico a travé de una razón de preión de 8:. Encuentre la temperatura final uponiendo calore epecífico contante y calore epecífico variable,

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

PRESENTACIÓN DEL PROYECTO CALENDARIO DE ACTIVIDADES

PRESENTACIÓN DEL PROYECTO CALENDARIO DE ACTIVIDADES Boletín nº1 UN PROCESO POSIBLE. UN FUTURO SOSTENIBLE. Bienvenido al primer número del boletín del proyecto METABIORESOR (LIFE08 ENV/ES/000113). El objetivo de eta publicación e dar a conocer, de mara periódica,

Más detalles

MATEMÁTICAS 3ºESO 10 de diciembre de Nombre:

MATEMÁTICAS 3ºESO 10 de diciembre de Nombre: MATEMÁTICAS ºESO de diciembre de Nombre. Una clae de leche da lo / de u peo en nata, y la nata lo / de u peo en mantequilla. Qué fracción de peo de leche repreenta el peo de mantequilla? Qué cantidad de

Más detalles

VARIABLE ALEATORIA UNIFORME

VARIABLE ALEATORIA UNIFORME VARIABLE ALEATORIA UNIFORME DEFINICIÓN Se dice que una variable X tiene una ditribución uniforme en el intervalo [a;b] i la fdp de X e: 1 i a x b f(x)= b-a 0 en otro cao Demotrar que la FDA etá dada por

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

VALIDACION EN LA PRODUCCION DE UN NUEVO METODO DE INOCULACION CON ECOMIC

VALIDACION EN LA PRODUCCION DE UN NUEVO METODO DE INOCULACION CON ECOMIC VALIDACION EN LA PRODUCCION DE UN NUEVO METODO DE INOCULACION CON ECOMIC EN EL CULTIVO DE LA PAPAYA Lui Ruiz Martínez 1, Dinorah Carvajal Sánchez 1, Ramón Rivera Epinoa 2, Jaime Simó González 1, Rolando

Más detalles

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN Decripción Diagrama de bloue originale ONMUTATIVA AA A SUMA Diagrama de bloue euivalente 8 MOVIMIENTO A A IZUIEDA DE UN UNTO DE BIFUAIÓN DISTIBUTIVA A A SUMA 9 MOVIMIENTO A A DEEA DE UN UNTO DE BIFUAIÓN

Más detalles

Reflexión. Por qué se analizan las gráficas? Las matemáticas son el alfabeto con el cual Dios ha escrito el Universo.

Reflexión. Por qué se analizan las gráficas? Las matemáticas son el alfabeto con el cual Dios ha escrito el Universo. Refleión La ateática on el alfabeto con el cual Dio ha ecrito el Univero. Galileo Galilei Por qué e analizan la gráfica? En Fíica e neceario eplicar el coportaiento de lo objeto. Para eto e utilizan la

Más detalles

ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES

ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES Hata ahora la erie etadítica etudiada etaban aociada a variable etadítica unidimenionale, e decir e etudiaba un olo carácter de la población.

Más detalles

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA QUÍMICA COMÚN QC- NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA REPRESENTACIÓN DE LOS ELECTRONES MEDIANTE LOS NÚMEROS CUÁNTICOS Como conecuencia del principio de indeterminación e deduce que no e puede

Más detalles

Práctica 5: Control de Calidad

Práctica 5: Control de Calidad Práctica 5: Control de Calidad Objetivo epecífico Al finalizar eta práctica deberá er capaz de: Contruir lo gráfico de control para la media, la deviación típica y el rango (gráfico de control por variable).

Más detalles

IMPLEMENTACIÓN Y POST - IMPLEMENTACIÓN DE SISTEMAS ESPECIFICACIÓN DETALLADA DE TAREAS (EDT) SIU-IM-0106/1 VERSIÓN 1.1 BUENOS AIRES, AÑO 2011

IMPLEMENTACIÓN Y POST - IMPLEMENTACIÓN DE SISTEMAS ESPECIFICACIÓN DETALLADA DE TAREAS (EDT) SIU-IM-0106/1 VERSIÓN 1.1 BUENOS AIRES, AÑO 2011 IMPLEMENTACIÓN Y POST - IMPLEMENTACIÓN DE SISTEMAS ESPECIFICACIÓN DETALLADA DE TAREAS (EDT) SIU-IM-0106/1 VERSIÓN 1.1 BUENOS AIRES, AÑO 2011 SIU 1 32 INDICE CONCEPTUALIZACIÓN DEL PROCESO... 3 A. INTRODUCCIÓN...

Más detalles

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS En tipo de problema, y de forma general, aplicaremo la conervación del momento angular repecto al eje fijo i lo hay (la reacción del eje, por muy grande

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

Comportamiento del nivel de líquido en un sistema de dos tanques en serie

Comportamiento del nivel de líquido en un sistema de dos tanques en serie Comportamiento del nivel de líquido en un itema de do tanque en erie Marcela Echavarria R., Gloria Lucía Orozco C., Alan Didier Pérez Á. Abtract Se deea conocer el comportamiento del nivel de un itema

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Ecuela Técnica Superior de Ingeniería Informática PRÁCTICA 4: MUESTREO DE SEÑALES Y DIGITALIZACIÓN Tecnología Báica de la Comunicacione (Ingeniería Técnica Informática de Sitema

Más detalles

Proyecto Fin de carrera Diseño de una planta piloto para la producción de bioetanol Anexo 6

Proyecto Fin de carrera Diseño de una planta piloto para la producción de bioetanol Anexo 6 Proyecto Fin de carrera Dieño de una lanta iloto ara la roducción de bioetanol Aneo 6 ANEO 6 INÉTIA 6. Introducción uando e iembran microorganimo en un medio de cultivo aroiado, lo mimo comienzan a dividire

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES DISTRIBUCIOES BIDIMESIOALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIOES BIDIMESIOALES RESULTA DE ESTUDIAR FEÓMEOS E LOS QUE PARA CADA OBSERVACIÓ SE OBTIEE U PAR DE MEDIDAS Y, E COSECUECIA,

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

Tema 3 ANOVA y tablas de contingencia (Comparación de poblaciones)

Tema 3 ANOVA y tablas de contingencia (Comparación de poblaciones) ECOLOGÍA METODOLÓGICA Y CUANTITATIVA Departamento de Ecología e Hidrología. Univeridad de Murcia Curo 008/009 Tema 3 ANOVA y tabla de contingencia (Comparación de poblacione). Introducción La Ecología

Más detalles

Tema 2. Descripción externa de sistemas

Tema 2. Descripción externa de sistemas de Sitema y Automática Tema. Decripción externa de itema Automática º Curo del Grado en Ingeniería en Tecnología Indutrial de Sitema y Automática Contenido Tema.- Decripción externa de itema:.1. Introducción.

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República Intituto de Fíica Facultad de Ingeniería Univeridad de la República do. PARCIAL - Fíica General 9 de noviembre de 007 VERSIÓN El momento de inercia de una efera maciza de maa M y radio R repecto de un

Más detalles

CEFE CEFE CEFE CEFE CEFE CEFE

CEFE CEFE CEFE CEFE CEFE CEFE BUSQUEDA DE IDEAS DE NEGOCIOS A: La hitoria Ete ejercicio imula una tarea de búqueda de información en 3 intitucione diferente, preparando a lo participante para la dificultade que encontrarán en el campo

Más detalles

1. Análisis de Sistemas Realimentados

1. Análisis de Sistemas Realimentados Análii v2.doc 1 1. Análii de Sitema Realimentado 1. Análii de Sitema Realimentado 1 1.1. INTRODUCCIÓN... 2 1.2. ESTABILIDAD... 2 1.3. ESTRUCTURAS DE REALIMENTACIÓN... 3 1.3.1. Sitema Etable e Inetable...

Más detalles

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase :

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase : Aj j... j z z zm G( j). (3.6) r ( j) j j... j p p p n G( j) 0log G( j) db 0 log A 0 log j/ z 0 log j/ z... 0 log j/ zm 0r log j 0 log j/ p... 0 log j/ p. 4. Obtener expreión del ángulo de fae : G( j) A(

Más detalles

ANÁLISIS DE FLUCTUACIONES SIN TENDENCIA CON ONDELETAS APLICADO A IMÁGENES PARA DETECTAR PROPIEDADES DE ESCALA EN SU TEXTURA

ANÁLISIS DE FLUCTUACIONES SIN TENDENCIA CON ONDELETAS APLICADO A IMÁGENES PARA DETECTAR PROPIEDADES DE ESCALA EN SU TEXTURA ANÁLISIS DE FLUCTUACIONES SIN TENDENCIA CON ONDELETAS APLICADO A IMÁGENES PARA DETECTAR PROPIEDADES DE ESCALA EN SU TEXTURA C. Varga Olmo a, J. S. Murguía a,b a Intituto de Invetigación en Comunicación

Más detalles

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado? CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura

Más detalles

TRANSFERENCIA DE CALOR DE ESTADO INESTABLE EN FORROS PARA FRENOS

TRANSFERENCIA DE CALOR DE ESTADO INESTABLE EN FORROS PARA FRENOS TRANSFERENCIA DE CALOR DE ESTADO INESTABLE EN FORROS PARA FRENOS RESUMEN Ete artículo preenta una metodología para analizar el comportamiento térmico de forro para freno, elemento que operan bajo proceo

Más detalles

Herramientas Matemáticas Computacionales aplicadas en la enseñanza de la Física

Herramientas Matemáticas Computacionales aplicadas en la enseñanza de la Física Herramienta Matemática Computacionale aplicada en la eneñanza de la Fíica Zambrano, Juan C. 1 Sanabria Irma Z. 2 1 jzambra@unet.edu.ve (Principal), 2 irmaa66@hotmail.com Decanato de Invetigación. Univeridad

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

Capítulo I Disposiciones Generales

Capítulo I Disposiciones Generales El Conejo Univeritario de la Univeridad Centroccidental "Liandro Alvarado", en uo de u atribucione legale y reglamentaria, en u eión N 1991, Ordinaria, celebrada, el día nueve de diciembre del año do mil

Más detalles

Examen ordinario de Junio. Curso

Examen ordinario de Junio. Curso Examen ordinario de Junio. uro 3-4. ' punto La eñal xtco[ω tω t] tiene: a Una componente epectral a la pulación ω ω b omponente epectrale en todo u armónico. c Do componente epectrale en la pulacione ω

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA DE CONTROL PRACTICA N 9 ANÁLISIS DE SISTEMAS DE CONTROL POR LUGAR GEOMÉTRICO DE LAS RAÌCES OBJETIVO Hacer uo del

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

5. MODELO DE UN INTERCAMBIADOR DE CALOR

5. MODELO DE UN INTERCAMBIADOR DE CALOR 5. MODELO DE UN INERCAMBIADOR DE CALOR Para la explicación del modelo matemático de un intercambiador de calor aire agua, e neceario en primer lugar definir una erie de término. Éto aparecen en la abla

Más detalles

MOVIMIENTO PARABÓLICO = =

MOVIMIENTO PARABÓLICO = = MOVIMIENTO PARABÓLICO Un cuerpo poee oviiento parabólico cuando e lanzado dede la uperficie terretre forando cierto ngulo con la horizontal. El oviiento parabólico e copone de do oviiento: Moviiento de

Más detalles

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: 978 83 33 06 TRABAJO Y ENERGÍA

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: 978 83 33 06 TRABAJO Y ENERGÍA Cl. Miguel leta, Tel/ax: 978 83 33 06 www.academia-nipho.e TRABAJO Y NRGÍA La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en

Más detalles

Capítulo 2. Principios del control directo del par (DTC)

Capítulo 2. Principios del control directo del par (DTC) Capítulo Principio del control directo del par (DTC). Introducción Debido a u robutez, la máquina eléctrica de inducción on en la actualidad uno de lo elemento má importante en lo accionamiento eléctrico

Más detalles

DETERMINACIÓN DE LOS ÁNGULOS DE VISIÓN. Permiten establecer las coordenadas para que la antena de la estación terrena se comunique con el satélite

DETERMINACIÓN DE LOS ÁNGULOS DE VISIÓN. Permiten establecer las coordenadas para que la antena de la estación terrena se comunique con el satélite DETERMINCIÓN DE LOS ÁNGULOS DE VISIÓN Permiten etablecer la coordenada para que la antena de la etación terrena e comunique con el atélite ngulo de Elevación (El): e mide dede el horizonte local hata la

Más detalles

Tema 2. Circuitos resistivos y teoremas

Tema 2. Circuitos resistivos y teoremas Tema. Circuito reitivo y teorema. ntroducción.... Fuente independiente..... Fuente de tenión..... Fuente independiente de intenidad.... eitencia.... 4.. ociación de reitencia... 5 eitencia en erie... 5

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS 2

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS 2 Etructura de la Materia Grupo 1, Semetre 013- Prof. Iidoro García Cruz EERCICIOS 1. a) Predecir el numero de ubcapa que hay en la cuarta capa, para n4. b) Epecifique la deignación de cada una de ea ubcapa.

Más detalles

Aforador Parshall

Aforador Parshall aforador Parhall de cuo uo e tiene maor número de referencia calibracione má precia. El aforador Khafagi e en general má difícil de contruir el rango de gato que puede medir má retringido. 6.3.. Aforador

Más detalles

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p)

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p) . Obtenga la función de tranferencia de un filtro pao de banda que cumpla la iguiente epecificacione: a) Banda paante máximamente plana en f 45, khz con atenuación A p db. b) Banda de rechazo máximamente

Más detalles