TRABAJO PRACTICO Nº 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRABAJO PRACTICO Nº 1"

Transcripción

1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de ecoomía y estadística, tato e sus aspectos coceptuales e istrumetales, los coocimietos adquiridos de demada y oferta de trasporte. Recordado coceptos básicos: COSTOS DE TRANSPORTE Costos a Corto Plazo: - Costos Fijos (CF): costos de los factores fijos de la empresa y, por lo tato, a corto plazo, so idepedietes del ivel de producció. - Costos Variables (CV): depede de la catidad empleada de los factores variables y, por tato, del ivel de producció Costos Totales (CT) = CF + CV - Costos medios, uitarios o promedios: so los costos por uidad de producció. Este cocepto se puede aplicar a los coceptos ateriores CFP: cociete etre el costo fijo y el ivel de producció CVP: cociete etre el costo variable y el ivel de producció CTP: cociete etre el costo total y el ivel de producció - Costo Margial (CM): el icremeto del costo total que es ecesario para producir ua uidad adicioal del bie Estimació de costos de empresas: debe cosiderarse los costos (fijos, variables) de los recursos (termiales, vehículos, mao de obra, combustible, seguros, admiistrativos, etc.) que iterviee e el proceso productivo para dar por resultado determiada catidad de uidades de producció (pas-km, t-km, veh-.km, etc.) Métodos: estadísticos, de igeiería 1

2 ELASTICIDAD DE LA DEMANDA Elasticidad precio de la demada: mide el grado e que la catidad demadada respode a las variacioes del precio de mercado. El coeficiete de elasticidad precio de la demada E p, es la razó etre la variació porcetual de la catidad demadada de u bie y la variació de su precio e 1%, mateiédose costates todos los demás factores que afecta a la catidad demadada. Demada elástica: si la elasticidad precio de la demada (e valor absoluto) es mayor que 1. Demada ielástica: si la elasticidad precio de la demada (e valor absoluto) es meor que 1. Demada de elasticidad uitaria: si la elasticidad precio de la demada (e valor absoluto) es igual a 1. Elasticidad cruzada de la demada: medida de la sesibilidad de la catidad demadada de u bie ate las variacioes de los precios de los biees relacioados co él. AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Aálisis de Regresió: técica estadística para modelar e ivestigar la relació etre dos o más variables y * = a + bx a = y i - b x i b = x i y i - x i y / i x i 2 - ( xi) 2 / R 2 = 1 - V(e)/ V(y) V(e) = (y i - y * i ) 2 V(y) = (y i - y ) 2 V(e) : variaza residual V(y) : variaza de la variable y Esquema resolució Regresió Lieal Dato xi yi l x = X l y = Y xi 2 Yi 2 xi Yi yi*= a + b xi (yi - yi*) , , , , , , , , , , , , , SUM 6, , ,4100 2, , , ,3748 2

3 I) Aplicació a ua empresa de trasporte de turismo de pasajeros La empresa TURISMO S.A. que brida servicio de turismo e localidades de las sierras, es propietaria de 10 uidades co capacidad para 35 pasajeros cada ua. Co el fi de hacer más eficiete su fucioamieto se está realizado u estudio de sus costos de operació. El área cotable ha proporcioado la iformació que muestra el Cuadro 1. Para los diferetes iveles de producció medidos e vehículos kilómetros recorridos por año, se cooce los costos totales (CT) y los costos fijos (CF) expresados e pesos auales. Se desea determiar los costos variables (CV), los costos totales promedio (CTP), los costos variables promedio (CVP) y los costos margiales (CM) co el fi de estudiar cómo se comporta a los diferetes iveles de producció. E sítesis se pide calcular los costos mecioados y realizar dos gráficos, el primero mostrado los CT, CF y CV y el segudo CTP, CVP y CM, todo e fució de las catidades producidas. Se pide además iterpretar las curvas graficadas y señalar aquellos putos que presete algua particularidad. CUADRO 1 PRODUCCIÓN CT CF CV CTP CVP CM (veh-km/año) ($/año) ($/año) $/año ($/veh-km) ($/veh-km) ($/veh-km) II) Aplicació a u servicio de trasporte metropolitao de pasajeros La empresa TURISMO S.A. compite co u servicio ferroviario e u sector de su recorrido y está evaluado el comportamieto de la demada que utiliza su servicio frete a variacioes del precio del boleto. El estudio se realiza utilizado el cocepto de elasticidad de la demada. La iformació es la del Cuadro 2, y preseta la demada de pasajeros trasportados a distitos iveles de tarifas. 3

4 CUADRO 2 Precio Demada ($) (pas/ día) , , , , , , , Se pide resolver los siguietes putos: 1. A partir del ajuste de la fució demada (V= a. p b ) co u aálisis de regresió lieal, determie el valor de la elasticidad precio de la demada, b. 2. Idique si la demada es elástica o ielástica, justifique su respuesta y extraiga y fudamete sus coclusioes. 3. Co la iformació de elasticidades directas y cruzadas del Cuadro 3 aalice e primera istacia si ésta correspode a viajes de tipo persoal o de egocios. Complete el cuadro co la elasticidad b calculada e el puto a). La compañía quiere aalizar además sus posibilidades de establecer estrategias para icremetar la captació de demada y sus igresos, a partir de comparar el comportamieto de la demada frete a cambios e el precio y e el tiempo de viaje, tato de la oferta de su servicio como cosiderado escearios de cambios e el ferrocarril como medio alterativo. Se cooce que: El costo de viaje actual para los pasajeros de la compañía de ómibus es de $ 5,4 y el tiempo de viaje es de 40 miutos, mietras que la demada de viajes e FFCC es de pasajeros co u tiempo de viajes de 30 miutos y ua tarifa de $ 5. TURISMO S.A. ha aalizado su estructura de costos y operativa, cocluyedo e que puede reducir su tarifa a o meos de $5,20 o reducir el tiempo de viaje a 37 miutos mateiedo el precio actual del boleto. Por otro lado existe la posibilidad de que el cocesioario del servicio ferroviario icremete su tarifa a $ 5,5 debido a lo previsto e cláusulas del cotrato del servicio público. Calcule y explique: 4. El volume de viajes actual e el y el igreso para la empresa TURISMO S.A. 5. Qué estrategia acosejaría para maximizar el volume de la demada e ómibus? 6. Qué estrategia acosejaría para maximizar el Igreso de la empresa TURISMO S.A.? Le coviee a la empresa esperar a ver si se cocreta la situació de icremeto de la tarifa ferroviaria? 4

5 CUADRO 3 Medio Elasticidad de la demada de viajes directa o cruzada co respecto a: Costo Costo FFCC Tiempo Tiempo FFCC b 0,09-1,18 0,12 FFCC 0,2-1,07 0,38-1,96 b= valor de la elasticidad precio de la demada de viajes e ómibus. Obteida del aálisis aterior 7. Costruya u Cuadro 4 e cual esaye valores de elasticidades precio y tiempo, directas y cruzadas, para ua demada de viajes por motivo opuesto al ecotrado para el Cuadro 3. CUADRO 4 Medio FFCC Elasticidad de la demada de viajes directa o cruzada co respecto a: Costo Tiempo Tiempo Costo FFCC FFCC 5

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Económicas Guía de Ejercicios No. 2 DET 385, Métodos Cuantitativos III

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Económicas Guía de Ejercicios No. 2 DET 385, Métodos Cuantitativos III : Derivadas de orde superior: Elaborada por: Wilfredo Saravia M Uiversidad Nacioal Autóoma de Hoduras Facultad de Ciecias Ecoómicas Guía de Ejercicios No DET 85, Métodos Cuatitativos III E los ejercicios

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

UNIDAD 3: ANÁLISIS DE SERIES DE TIEMPO

UNIDAD 3: ANÁLISIS DE SERIES DE TIEMPO UNIDAD 3: ANÁLISIS DE SERIES DE TIEMPO Ua serie de tiempo establece las variacioes existetes etre ciertas magitudes. El aálisis de series temporales es u método cuatitativo que se utiliza para detectar

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

7. LA DETERMINACIÓN DEL TAMAÑO

7. LA DETERMINACIÓN DEL TAMAÑO 7. LA DEERMINACIÓN DEL AMAÑO E tre los factores que determia el tamaño de u proyecto se ecuetra ua gra catidad de variables tales como: demada, dispoibilidad de isumos, localizació y pla estratégico comercial

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Económicas Guía de Ejercicios No. 2 DET 385, Métodos Cuantitativos III

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Económicas Guía de Ejercicios No. 2 DET 385, Métodos Cuantitativos III .: Derivadas de orde superior: La seguda derivada: Uiversidad Nacioal Autóoma de Hoduras Facultad de Ciecias Ecoómicas Guía de Ejercicios No. DET 85, Métodos Cuatitativos III La derivada f '( ) es ua fució

Más detalles

C. INDICADORES DE EVALUACION DE PROYECTOS

C. INDICADORES DE EVALUACION DE PROYECTOS C. INDICADORES DE EVALUACION DE PROYECTOS 1. Matemáticas Fiacieras 1.1 Iterés simple e iterés compuesto Iterés simple es aquel que se calcula siempre sobre el capital origial, y por tato excluye itereses

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Ayudantía 2. Fecha : 25 de septiembre de 2017 Semestre Primavera Repaso Producto Interno Bruto (PIB) y Producto Nacional Bruto (PNB)

Ayudantía 2. Fecha : 25 de septiembre de 2017 Semestre Primavera Repaso Producto Interno Bruto (PIB) y Producto Nacional Bruto (PNB) Ayudatía 2 Curso: EAE021 Secció 4 Macroecoomía 1 Fecha : 25 de septiembre de 2017 Semestre Primavera 2017 Repaso Producto Itero Bruto (PIB) y Producto Nacioal Bruto (PNB) Nivel de actividad ecoómica: lo

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: CORRIGIÓ:REVISÓ: 4 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Escena 5 Planificación contra stock

Escena 5 Planificación contra stock Método de Plaificació propuesto 67 Escea 5 Plaificació cotra stock Ua vez coocidos los protagoistas la escea busca ordear los pedidos de la forma más eficiete, respetado los requisitos del cliete. Es e

Más detalles

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2.

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2. Guía de Ejercicios Ejercicio El circuito RC de la figura es excitado por ua señal de ruido blaco co desidad espectral de potecia costate e igual a N /. R w(t) C v(t) Calcule y grafique la desidad espectral

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION DEPARTAMENTO DE HIDRAULICA

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION DEPARTAMENTO DE HIDRAULICA UNIERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION DEPARTAMENTO DE HIDRAULICA LABORATORIO DE HIDRAULICA II PRACTICA # TEMA: DETERMINACION DEL COEFICIENTE DE RUGOSIDAD DE MANNING

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

TEMA 8 ANÁLISIS DE REGRESIÓN SIMPLE

TEMA 8 ANÁLISIS DE REGRESIÓN SIMPLE TEMA 8 ANÁLII DE REGREIÓN IMPLE Itroducció - aalizar la relació etre dos variales cuatitativas, expresada mediate ua fució matemática - predecir los valores de ua variale (depediete) a partir de los valores

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació DIRPE Metodología Diseño Estadístico Ecuesta Sobre Ambiete y Desempeño Istitucioal Departametal

Más detalles

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco Capítulo 4 (Cotiuació MÉTODOS ESTADÍSTICOS Autor: José María García Palaco Técicas Eperimetales Medida de magitudes 4.8 Métodos Estadísticos Ya hemos visto e los apartados ateriores, que u procedimieto

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Divisió de Plaificació, Estudios e Iversió MIDEPLAN Curso: Preparació y Evaluació de Proyectos EVALUACIÓN DE PROYECTOS: Coceptos Básicos Temario Matemáticas

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

EJERCICIO 1 EJERCICIO 2

EJERCICIO 1 EJERCICIO 2 EJERCICIO 1 U sociólogo ha proosticado, que e ua determiada ciudad, el ivel de absteció e las próximas eleccioes será del 40% como míimo. Se elige al aar ua muestra aleatoria de 00 idividuos, co derecho

Más detalles

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas.

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas. ESUEL UNIVERSIRI DE INGENIERÍ ÉNI INDUSRIL UNIVERSIDD POLIÉNI DE MDRID Roda de Valecia, 3 80 Madrid www.euiti.upm.es sigatura: Igeiería de la Reacció Química Se platea ua serie de cuestioes y ejercicios

Más detalles

AUTÓMATAS Y SISTEMAS DE CONTROL

AUTÓMATAS Y SISTEMAS DE CONTROL º ITT SISTEMAS ELECTRÓNICOS º ITT SISTEMAS DE TELECOMUNICACIÓN º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA 7: SISTEMAS DE SEGUNDO ORDEN. FUNCIÓN DE TRANSFERENCIA La fució

Más detalles

- A h h+1 n-1 n

- A h h+1 n-1 n 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 TEM Nº 9: SELECCIÓN DE INVERSIONES 1. DIMENSIÓN FINNCIER DE UN PROYECTO DE INVERSIÓN Desde el puto de vista fiaciero, es decir, moetario, cualquier proyecto

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

8. Modelos de transporte y análisis de redes

8. Modelos de transporte y análisis de redes 8. Modelos de trasporte y aálisis de redes Problema de trasporte Problema de asigació Aálisis de redes. Redes de actividades: método CPM Problemas de trasporte. Eiste m orígees que cotiee diversas catidades

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Procesamiento de los datos de precipitación

Procesamiento de los datos de precipitación GUIA DEL TRABAJO PRACTICO Nº 2 Procesamieto de los datos de precipitació Calcular la PRECIPITACIÓN MEDIA sobre la cueca para la tormeta dato La determiació del volume de agua precipitado sobre u área dada

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Uiversidad de Atofagasta Fac. de Ciecias Básicas Depto. de Matemáticas A. Alarcó, L. Media, E. Rivero, R. Zuñiga Segudo Semestre 204 Sistema de ecuacioes lieales El sistema de ecuacioes lieales a, + a,2

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla ETUDIO OBRE EL EXCEO DE AMPLITUD EN LA CONTRUCCIÓN DE INTERVALO DE CONFIANZA PARA LA MEDIA POBLACIONAL CON VARIANZA DECONOCIDA EN UNA POBLACIÓN NORMAL Luis Gozález Abril y Luis M. áchez-reyes {luisgo,

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Los métodos o modelos de predicción pueden ser de naturaleza cualitativa o cuantitativa.

Los métodos o modelos de predicción pueden ser de naturaleza cualitativa o cuantitativa. PREDICCIÓN E INCERTIDUMBRE EN ADMINISTRACIÓN Jesús Alberto Zeballos, María Rosa Rodríguez y Sadra Noemí Fraco (Facultad Ciecias Ecoómicas Uiversidad Nacioal de Tucumá).- Itroducció E la admiistració de

Más detalles

Unidad 3. Construcción de números índice y aplicaciones al análisis económico

Unidad 3. Construcción de números índice y aplicaciones al análisis económico Uidad 3. Costrucció de úmeros ídice y aplicacioes al aálisis ecoómico Los úmeros ídices, utilizados co frecuecia e Ecoomía, Demografía y diferetes campos de la estadística aplicada, so valores coveietes

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

Parámetros de tiempo para

Parámetros de tiempo para Parámetros de tiempo para cotrol y diagóstico INTRODUCCIÓN. Ua de las actividades importates a ivel de sistemas que se debe desarrollar e toda etidad que cuete co u recurso computacioal de soporte para

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión Itroducció a las Fiazas 3º Curso de Direcció y Admiistració de Empresas TEMA 0: La programació lieal como istrumeto para la toma de decisioes de iversió E la empresa existe ua serie de restriccioes (recursos,

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

TEMA-9- ANÁLISIS DE LA INFORMACIÓN CONTABLE.

TEMA-9- ANÁLISIS DE LA INFORMACIÓN CONTABLE. Ecoomía de la Empresa TEMA-9- ANÁLISIS DE LA INFORMACIÓN CONTABLE. 1. LAS RELACIONES ENTRE EL ACTIVO, EL PATRIMONIO NETO Y EL PASIVO La iformació que la Cotabilidad proporcioa es la base para la toma de

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS "Toda cosa grade, majestuosa y bella e este mudo, ace y se forja e el iterior del hombre". Gibrá Jalil Gibrá. Uidad : PROCESOS INFINITOS Y LA NOCIÓN

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 3, Parte II, Opció A Juio, Ejercicio 3, Parte II, Opció B Reserva

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

17.3 Intervalos de predicción para el promedio de m observaciones futuras

17.3 Intervalos de predicción para el promedio de m observaciones futuras 4 7.3 Itervalos de predicció para el promedio de m oservacioes futuras Para reducir la icerteza de las prediccioes o alcaza co aumetar idefiidamete el tamaño de la muestra e la que se asa el ajuste. Si

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Multiplicadores de gasto en un modelo insumo-producto

Multiplicadores de gasto en un modelo insumo-producto Multiplicadores de gasto e u modelo isumo-producto Horacio Erique Sobarzo Fimbres 1 Itroducció Como resultado de la reciete crisis mudial, u aálisis por países parece sugerir que os ecotramos e u mometo

Más detalles

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis.

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis. TEMA 8. Cotrastes de hipótesis. E este capítulo se epodrá el cotraste o test de hipótesis estadísticas, que está muy relacioado co la «estimació por itervalos» del capítulo aterior. Va a defiirse importates

Más detalles

max E f e,c,s.a. Eu f e,c v e U (RP)

max E f e,c,s.a. Eu f e,c v e U (RP) Itroducció E el modelo de riesgo moral, el pricipal o observa las accioes tomadas por el agete durate el desarrollo de la relació cotractual. Por ejemplo, si el agete puede ejercer varios iveles de esfuerzo

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles