1. Derivadas de funciones de una variable. Recta tangente.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Derivadas de funciones de una variable. Recta tangente."

Transcripción

1 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias variables basada en la inerpreación de la derivada como la pendiene de la reca angene a la gráfica de una función en un puno. Para una función f : (a, b) R se define la derivada en un puno 0 (a, b) como el ĺımie f() f( 0 ) lim = f ( 0 ) 0 0 f() (, f()) ( 0,f( 0 )) f( 0 ) α α 0

2 Derivadas Geoméricamene, los cocienes f() f( 0) = an α son las pendienes de las recas secanes a la gráfica de f por los punos ( 0, f( 0 )) y (, f()). La exisencia de la derivada se 0 inerprea como la exisencia de una posición ĺımie de las recas secanes, cuando iende a 0, que es la reca de pendiene an α = f ( 0 ). Esa reca ĺımie de las secanes es por definición la reca angene a la gráfica de f en 0, o mejor dicho, en ( 0, f( 0 )), y su ecuación será y = f( 0 ) + f ( 0 )(x 0 ) Esa definición de la reca angene se generaliza de forma inmediaa a funciones vecoriales de una variable: Sea F : (a, b) R m, y 0 un puno de (a, b). Para oro puno (a, b) podemos esudiar la reca secane a la imagen de F que pasa por F ( 0 ) y por F (). Si esas recas ienden a una posición ĺımie cuando iende a 0, ésa será la reca angene a la imagen de F en F ( 0 ).

3 Derivadas 0 F F () F ( 0 ) Un vecor direcor de la reca secane que pasa por F ( 0 ) y por F () sería F () F ( 0 ), pero ese verificaría, si F es una función coninua, que el ĺımie cuando iende a 0 es cero. Consideramos enonces los vecores F () F ( 0), que ienen la misma dirección, ya que son 0 proporcionales a los aneriores.

4 Definición (Derivadas de funciones de una variable. Reca angene.). Sea F : (a, b) R m y 0 (a, b). Se define la derivada de F en 0 como Derivadas F ( 0 ) = lim 0 F () F ( 0 ) 0 R m si ese ĺımie exise. Se llama reca angene a la imagen de F en F ( 0 ) a la reca que pasa por F ( 0 ) y iene vecor direcor F ( 0 ). Su ecuación, en forma paramérica, es x = F ( 0 ) + λf ( 0 ) (donde x es un vecor de R m ) Observaciones: λ R 1) Si escribimos las componenes de F, F = (f 1,..., f m ), f i : (a, b) R enonces ( F () F ( 0 ) f1 () f 1 ( 0 ) =,..., f ) m() f m ( 0 ) y por ano, si exise la derivada de F en 0, será F ( 0 ) = (f 1( 0 ),..., f m( 0 ))

5 En paricular, por ejemplo para que F sea derivable, cada componene f i debe ser derivable, y por ano coninua, luego F ienen que ser coninua en 0 Derivadas 2) Volvamos a considerar funciones reales f : (a, b) R. La gráfica de f se puede describir como la imagen de la función F : (a, b) R 2 definida por F () = (, f()). F f() (, f()) a b Aparenemene endríamos dos definiciones de la reca angene a la gráfica de f en ( 0, f( 0 )): por un lado, a b y = f( 0 ) + f ( 0 )(x 0 ) y por oro lado (x, y) = F ( 0 ) + λf ( 0 )

6 Pero susiuyendo en esa ecuación F ( 0 ) y F ( 0 ) por su valor, (x, y) = ( 0, f( 0 )) + λ(1, f ( 0 )) Derivadas es decir x = 0 + λ y = f( 0 ) + λf ( 0 ) de donde despejando λ en la primera ecuación y susiuyendo en la segunda se obiene de nuevo la misma ecuación de la reca angene que ya eníamos. Ejemplo 1. Trayecorias: Uno de los ejemplos más uilizados de ese ipo de funciones vecoriales son las rayecorias: cuando un cuerpo se mueve por el plano o por el espacio, podemos represenar su rayecoria mediane una función del iempo, que nos indique en cada insane la posición del móvil, mediane sus coordenadas, F : (a, b) R 2, F () = (x(), y()), o F : (a, b) R 3, F () = (x(), y(), z()). En esos casos, el vecor F () represena la velocidad del móvil en el insane, y su norma F () es la magniud de la velocidad (unidad de longiud enre unidad de iempo) Si el móvil que describe la rayecoria F () se libera de la fuerza que lo guía por ella en un insane 0, en ese momeno coninuaría su movimieno por la reca angene a la curva F ()

7 en el puno F ( 0 ), y con velocidad consane F ( 0 ). La ecuación de esa nueva rayecoria a lo largo de la reca angene es Derivadas G() = F ( 0 ) + F ( 0 )( 0 ), > 0 F ( 0 ) F ( 0 ) Ejemplo 2. Hallar la velocidad a que se mueve un puno fijo en el borde de un disco de radio R que rueda sobre una reca, sabiendo que la velocidad a que se desplaza el cenro del disco es V m/seg. En qué punos la velocidad es cero?

8 2. Derivadas direccionales. Reca angene en una dirección. Derivadas Consideremos ahora funciones reales de dos variables, f : R 2 R El concepo de derivada que hemos definido anes no iene senido en ese caso, ya que no se puede definir la proporción enre la variación de f y el crecimieno de la variable. El cociene f() f( 0 ) 0 no iene senido, ya que el denominador es un vecor. Lo que sí podemos hacer es, de forma semejane a las écnicas de cálculo de ĺımies de funciones de varias variables, escoger una dirección en el dominio de f y esudiar el comporamieno de la función al movernos sólo en esa dirección. A parir de un puno x 0 R n, escogemos un vecor v R n, v 0, y consideramos la función f sobre la reca que pasa por x 0 y iene dirección v, f(x 0 + v) = g(). Eso define una función g de una variable, con g(0) = f(x 0 ), y iene senido esudiar si es derivable en = 0. Se llama derivada direccional de f en x 0 en la dirección de v a d v f(x 0 ) = lim 0 f(x 0 + v) f(x 0 ) = g (0)

9 Derivadas f(x 0 ) f(x 0 + v) x 0 v x = x 0 + v El hecho de que esa derivada exisa se raduce mene en el hecho de que la gráfica de f enga en el puno (x 0, f(x 0 ) una reca angene en la dirección del vecor v. Para enender el significado geomérico de ese número, consideremos el plano verical que coniene a la reca x 0 + v, a la gráfica de f sobre esa reca, a las secanes y a la reca angene.

10 Derivadas f(x 0 ) f(x 0 + v) x 0 v x = x 0 + v f(x 0 + v) f(x 0 ) α α x 0 v x 0 + v La pendiene de la reca secane que pasa por (x 0, f(x 0 )) y por (x 0 + v, f(x 0 + v)) es el cociene an α = f(x 0 + v) f(x 0 ) v y su ĺımie cuando iende a cero es la pendiene de la reca angene an α = lim 0 an α = lim 0 f(x 0 + v) f(x 0 ) v = 1 v d vf(x 0 )

11 Derivadas Es decir, la derivada direccional d v f(x 0 ) es el produco de la norma del vecor v por la pendiene de la reca angene a la gráfica de f en x 0 en la dirección de v. Si v = 1, el número d v f(x 0 ) es jusamene la pendiene de la reca angene a la gráfica de f en x 0 en la dirección de v (la angene del ángulo que forma la reca con el plano horizonal) Por ano un vecor direcor de la reca angene será ( v, d v f(x 0 )) R n+1. La ecuación de la reca angene a la gráfica de f en ( x 0, f(x 0 )) en la dirección de v queda enonces ( x, x n+1 ) = ( x 0, f(x 0 )) + λ( v, d v f(x 0 )), (λ R) En el caso n = 2, (x, y, z) = (x 0, y 0, f(x 0, y 0 )) + λ(v 1, v 2, d v f(x 0, y 0 )) Resumiendo, enemos la siguiene definición: Definición (Derivadas direccionales). Sea U un abiero de R n y f : U R. Sea v R n un vecor no nulo. Se define la derivada direccional de f en un puno x 0 de U en la dirección de v como d v f(x 0 ) = lim 0 f(x 0 + v) f(x 0 ) si es que ese ĺımie exise. R

12 Derivadas La definición de las direccionales se puede hacer para el caso general de funciones vecoriales de la misma manera: Definición (Derivadas direccionales de funciones vecoriales). Sea U un abiero de R n y F : U R m. Sea v R n un vecor no nulo. Se define la derivada direccional de F en un puno x 0 de U en la dirección de v como d v F (x 0 ) = lim 0 F (x 0 + v) F (x 0 ) R m si es que ese ĺımie exise. Por las propiedades de los ĺımies, si F = (f 1,..., f m ), enonces d v F (x 0 ) = (d v f 1 (x 0 ),..., d v f m (x 0 )) Ejemplo 3. Hallar la derivada direccional en (0, 0), de la función { x 2 y si (x, y) (0, 0) f(x, y) = x 2 +y 2 0 si (x, y) = (0, 0) en la dirección de los vecores v = (1, 1) y w = (2, 1) v, Esudiamos la función f sobre los punos de la reca que pasa por (0, 0) y iene vecor direcor g() = f((0, 0) + (1, 1)) = f(, ) = { si 0 0 si = 0 = 2

13 Derivadas Enonces y d v f(0, 0) = g (0) = 1 2 En la dirección de w enemos g() = f((0, 0) + (2, 1)) = f(2, ) = 43 5 = d w f(0, 0) = 4 5

14 3. Derivadas Enre las direccionales de una función, juegan un papel fundamenal las en las direcciones de los ejes de coordenadas: Definición (Derivadas Parciales). Sea U un abiero de R n, y f : U R. Se llama derivada parcial i-ésima de f en un puno x 0 de U a la derivada de f en x 0 en la dirección del vecor e i de la base canónica de R n, y se escribe df f(x 0 + e i ) f(x 0 ) (x 0 ) = d ei f(x 0 ) = lim dx i 0 Si F es una función vecorial, F : U R m, la definición es análoga, aunque el resulado será un vecor de R m df F (x 0 + e i ) F (x 0 ) (x 0 ) = d ei F (x 0 ) = lim dx i 0 R R m Uilizando las componenes de F, df dx i (x 0 ) = ( df1 dx i (x 0 ),..., df m dx i (x 0 ) )

15 Los vecores e i ienen norma uno, así que para funciones reales f : U R esas son las pendienes de las recas angenes a la gráfica de f en x 0 en las direcciones de los ejes de coordenadas. Derivadas f(x 0 ) x 0 e 1 e 2 Si esas exisen, es decir, si exisen esas recas angenes, sus vecores direcores ( e i, df dx i (x 0 )) son linealmene independienes. En el caso de funciones de dos variables, eso significa que deerminan un plano, cuya ecuación

16 Derivadas sería es decir (x, y, z) = (x 0, y 0, f(x 0, y 0 )) + λ(1, 0, df dx (x 0, y 0 )) + µ(0, 1, df dy (x 0, y 0 )) x = x 0 + λ y = y 0 + µ z = f(x 0, y 0 ) + λ df dx 0, y 0 ) + µ df dy 0, y 0 ) o simplemene, despejando λ y µ en las dos primeras ecuaciones, y susiuyendo en la ercera, z = f(x 0, y 0 ) + df dx (x 0, y 0 )(x x 0 ) + df dy (x 0, y 0 )(y y 0 ) Pariendo de la idea de la relación enre derivada y reca angene en el caso de funciones de una variable, se planea ahora si hay un plano angene a la gráfica de f en x 0. Para ello no basa que exisan las dos recas angenes en las direcciones de los ejes, y por ano que deerminen un plano; haría fala que exisieran odas las recas angenes en odas las direcciones, y que odas esuvieran conenidas en el mismo plano. Hay que enconrar una condición anaĺıica que exprese esa propiedad.

17 Derivadas Esa función no iene plano angene en (0, 0, 0) En el caso de funciones de una variable, podemos volver a expresar la relación enre la derivada y la reca angene de la siguiene forma: f : (a, b) R derivable en x 0, equivale a que lim x x 0 f(x) f(x 0 ) x x 0 = f (x 0 )

18 Derivadas lo que a su vez equivale a que f(x) f(x 0 ) f (x 0 )(x x 0 ) lim x x 0 x x 0 = lim x x0 f(x) y(x) x x 0 = 0 donde y(x) = f(x 0 ) + f (x 0 )(x x 0 ) es la ecuación de la reca angene a la gráfica de f en x 0. En el caso de funciones de dos variables, para que el plano generado por las recas angenes en las direcciones de los ejes sea de verdad un plano angene a la gráfica de f en x 0 se necesia que f(x, y) f(x 0, y 0 ) df lim (x dx 0, y 0 )(x x 0 ) df (x dy 0, y 0 )(y y 0 ) (x,y) (x 0,y 0 ) (x, y) (x 0, y 0 ) Esa fórmula se puede generalizar para funciones vecoriales de n variables, buscando la ecuación de un subespacio afín de dimensión n en R m, que pase por F ( x 0 ) que sea angene a F. La ecuación del subespacio es de la forma x = F ( x 0 ) + L( x x 0 ), donde L : R n R m es una aplicación lineal, y la condición de que sea angene es que F ( x) F ( x 0 ) L( x x 0 ) lim x x 0 x x 0 = 0 Esa condición dará lugar a la definición de las funciones diferenciables, que veremos en el siguiene capíulo. = 0

19 Ejemplo 4. Calcular las parciales en el origen de la función Derivadas f(x, y) = { x 3 x 2 +y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

20 En la dirección del eje x, Derivadas df f((0, 0) + (1, 0)) f(0, 0) (0, 0) = lim dx 0 = lim 0 En la dirección del eje y = lim 0 = 1 3 df f(0, ) f(0, 0) (0, 0) = lim dy 0 = lim = lim 0 f(, 0) f(0, 0) Ejemplo 5. Calcular las parciales de f en (0, 0), y en un puno cualquiera (x, y) f(x, y) = (x 2 + y 2 ) sen(x) cos(y) Para calcular las parciales de f en (0, 0) podemos uilizar cualquiera de los méodos de cálculo que hemos viso en el capíulo anerior: Podemos calcular df f((0, 0) + (1, 0) f(0, 0) (0, 0) = lim dx = lim = 0 0 = 0 = lim 0 f(, 0) f(0, 0) = =

21 O podemos definir la función g() = f((0, 0) + (1, 0)) = f(, 0) y calcular Derivadas df dx (0, 0) = g (0) En ese caso y g() = 2 sen() g () = 2 sen() + 2 cos() de donde se deduce g(0) = 0. Análogamene df f(0, ) f(0, 0) (0, 0) = lim dy 0 = lim Para calcular las parciales en un puno (x, y) cualquiera, es más cómodo uilizar el siguiene méodo: Para calcular la derivada de f respeco de x en (x, y) hay que esudiar el comporamieno de f sobre la reca horizonal que pasa por (x, y), es decir, consideramos la función = 0 h(x) = f(x, y)

22 Derivadas con y consane. Enonces df dx (x, y) = h (x): para comprobarlo basa escribir la definición de esa derivada h (x) = h(x + ) h(x) lim = 0 = f(x +, y) f(x, y) lim = 0 = f((x, y) + (1, 0)) f(x, y) lim 0 = df (x, y) dx En nuesro caso, h(x) = (x 2 +y 2 ) sen(x) cos(y), es una función derivable en R, y su derivada se puede calcular mediane las reglas de derivación de la suma y el produco de funciones, de modo que h (x) = 2x sen(x) cos(y) + (x 2 + y 2 ) cos(x) cos(y) = df (x, y) dx Análogamene, para calcular la derivada respeco de y, basa considerar x consane y derivar f sólo respeco de y df dy (x, y) = 2y sen(x) cos(y) (x2 + y 2 ) sen(x) sen(y)

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

By C 10. SEGMENTARIA GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES. Esta forma se obtiene a partir de la forma general. Ejemplo:

By C 10. SEGMENTARIA GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES. Esta forma se obtiene a partir de la forma general. Ejemplo: GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES Prof: F. Lópe- D. Legal: M-0006/009 0. SEGMENTARIA Esa forma se obiene a parir de la forma general. 0 B C Y A C C B C A C B A C B A Ejemplo: 0 Los denominadores

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por

Más detalles

Funciones trigonométricas

Funciones trigonométricas 0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS.

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. Espacios vesoriales euclídeos. Proyecciones orogonales. Mínimos cuadrados. 5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.-

Más detalles

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( ) 5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición.

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición. 1.. urvas paraméricas. Definición. Sean x 1, x,, xn funciones coninuas de R R para un inervalo [ ab, ] definidas como con [ a, b]. ( ( ( x1 = f1, x = f,, xn = fn El conjuno de punos ( x1, x,, xn = ( f1(,

Más detalles

Tema 3. Circuitos capacitivos

Tema 3. Circuitos capacitivos Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...

Más detalles

DERIVADAS INTRODUCCIÓN 1. MEDIDA DEL CRECIMIENTO DE UNA FUNCIÓN 1.1. TASA DE VARIACIÓN MEDIA

DERIVADAS INTRODUCCIÓN 1. MEDIDA DEL CRECIMIENTO DE UNA FUNCIÓN 1.1. TASA DE VARIACIÓN MEDIA INTRODUCCIÓN DERIVADAS La observación de un fenóeno, un cabio, conduce a una función. Observaos, por ejeplo, la inflación a lo largo del iepo en una econoía paricular. Observaos en un ebalse coo el nivel

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

prepara TU SElECTIVIDAD

prepara TU SElECTIVIDAD prepara TU SElECTIVIDAD Se considera la función f ( ) = ( + a) e a siendo a un parámero real. a) Razone a qué es igual el dominio de f ( ). b) Deermine el valor de a para que la gráfica de f() pase por

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

2) Hallar las coordenadas del vértice D del paralelogramo ABCD sabiendo que A(1, 0), B(2, 3) y C(3, -2).

2) Hallar las coordenadas del vértice D del paralelogramo ABCD sabiendo que A(1, 0), B(2, 3) y C(3, -2). Álgebra Geomería Analíica Prof. Gisela Saslas Vecores en R en R. Recas planos en el espacio Verifique los resulados analíicos mediane la resolución gráfica usando un sofware de Maemáica. ) Sabiendo que

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera CINEMTIC Inroducción Cinemáica es la pare de la física que esudia el movimieno de los cuerpos, aunque sin ineresarse por las causas que originan dicho movimieno. Un esudio de las causas que lo originan

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

Capítulo 11A Movimiento Angular SAI JORGE

Capítulo 11A Movimiento Angular SAI JORGE Capíulo 11A Movimieno Angular SAI JOGE 01 Las TUBINAS DE VIENTO como ésas pueden generar energía significaiva en una forma que es ambienalmene amisosa y renovable. Los concepos de aceleración roacional,

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas

Más detalles

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables) Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +

Más detalles

1-Características generales del movimiento

1-Características generales del movimiento 1-Caracerísicas generales del movimieno La pare de la física que se encarga de esudiar los movimienos de los cuerpos se llama Cinemáica. 1.1-Sisema de referencia, posición y rayecoria. Decimos que un cuerpo

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

FUNCIONES VECTORIALES DE UNA VARIABLE REAL

FUNCIONES VECTORIALES DE UNA VARIABLE REAL FUNCIONES VECTORIALES DE UNA VARIABLE REAL [Versión preliminar] Prf. Isabel Arraia Z. Cálcul III - Funcines vecriales de una variable real 1 Una función vecrial es cualquier función que iene n cm imagen

Más detalles

La transformada de Laplace

La transformada de Laplace Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

Funciones linealmente independientes. Juan-Miguel Gracia

Funciones linealmente independientes. Juan-Miguel Gracia Juan-Miguel Gracia Definición 1 Sean f 1 (), f 2 (), f 3 () funciones reales definidas en un inervalo I. Diremos que esas funciones son linealmene independienes en I si la relación: Para odo I α 1 f 1

Más detalles

Primera ley de Maxwell o ley de Gauss para el campo Eléctrico

Primera ley de Maxwell o ley de Gauss para el campo Eléctrico CUACION D MAW as leyes experimenales de la elecricidad y del magneismo se resumen en una serie de expresiones conocidas como ecuaciones de Maxwell. sas ecuaciones relacionan los vecores inensidad de campo

Más detalles

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales.

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales. Solución y crierios de corrección. Examen de mayores de años.. Maemáicas aplicadas a las ciencias sociales. BLOQUE A En un cenro de ocio hay salas de cine: A, B y. A una deerminada sesión han acudido personas.

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Acividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD. Dibuja las gráficas x- y v- de los movimienos que corresponden a las siguienes ecuaciones: a) x = +. b) x = 8. c) x = +. Calcula la

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

ECONOMETRÍA EMPRESARIAL II ADE

ECONOMETRÍA EMPRESARIAL II ADE 4 Bernardí Cabrer Economería Empresarial II Tema 8 ECONOMETRÍA EMPRESARIAL II ADE TEMA 8 MODELOS LINEALES SIN ESTACIONALIDAD I ( Modelos regulares 4 Bernardí Cabrer Economería Empresarial II Tema 8 8.

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

Capítulo 4: Derivada de una función

Capítulo 4: Derivada de una función Capítulo 4: Derivada de una función Geovany Sanabria Contenido Razones de cambio 57 Definición de derivada 59 3 Cálculo de derivadas 64 3. Propiedadesdederivadas... 64 3.. Ejercicios... 68 3. Derivadasdefuncionestrigonométricas...

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

SUPERFICIES Y CURVAS EN EL ESPACIO

SUPERFICIES Y CURVAS EN EL ESPACIO SUPERFICIES Y CURVAS EN EL ESPACIO Es ese maerial se presenan algunas gráficas confeccionadas con el sofware MAPLE A coninuación de cada una se indica la senencia uiliada para obenerla Tenga en cuena que:

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 EREHOS ÁSIOS E PRENIZJE Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7+ 7 7 7 7 7 0 Realiza conversiones de unidades de una magniud

Más detalles

Tema 5: Diferenciabilidad: Aplicaciones

Tema 5: Diferenciabilidad: Aplicaciones Prof. Susana López 1 UniversidadAuónomadeMadrid Tema 5: Diferenciabilidad: Aplicaciones 1 Funciones compuesas y Regla de la cadena Recordemos que la regla de la cadena para funciones de una sola variable

Más detalles

MMII_L3_C5: Problema de la cuerda finita: Métodos directo y de las imágenes. Guión:

MMII_L3_C5: Problema de la cuerda finita: Métodos directo y de las imágenes. Guión: MMII_L_C5: Problema de la cuerda finia: Méodos direco y de las imágenes. Guión: En esa lección se esudia el problema de una cuerda finia, por lo ano, es el problema con dos condiciones de conorno. Como

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido.

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido. EJERCICIOS FUNCIONES 4º OPCIÓN B 1 De las siguienes funciones decir cuál de ellas son funciones, en ese caso indica el dominio el recorrido. a) b) c) Aplicando el es de la línea verical se observa que

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

7 Lugares geométricos en el espacio

7 Lugares geométricos en el espacio 7 Lugare geomérico en el epacio ACTIVIDADES INICIALES 7.I Ecribe una ecuacione paramérica de la reca que paa por lo puno A(,, ) B(,, ). Calcula, ademá, un par de ecuacione implícia que la deerminen. AB

Más detalles

TEMA I: FUNCIONES ELEMENTALES

TEMA I: FUNCIONES ELEMENTALES TEMA I: FUNCIONES ELEMENTALES. Función Logarimo Todos conocemos la definición de logarimo en base b, siendo b un número enero posiivo disino de. u = log b x x = b u y la propiedad fundamenal log b (xy)

Más detalles

Curvas de descarga de un condensador

Curvas de descarga de un condensador Curvas de descarga de un condensador Fundameno Cuando un condensador esá cargado y se desea descargarlo muy rápidamene basa hacer un corocircuio enre sus bornes. Esa operación consise en poner enre los

Más detalles

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras Maemáica - EL MAESTRO EN CASA PIRÁMIDE Una pirámide es un poliedro cuya superficie esá formada por una base que es un polígono cualquiera y caras laerales riangulares que confluyen en un vérice que se

Más detalles

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero D o de Economía Aplicada Cuaniaiva I Basilio Sanz Carnero PROCESOS ESTOCÁSTICOS Un proceso esocásico «Z» considera «n» variables aleaorias, Z n, en momenos de iempo sucesivos, cada una de esas «n» variables

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad.

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad. Geomeía del espacio Ángulos, disancias Obseación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Seleciidad.. Calcúlese la disancia del oigen al plano que pasa po A(,,

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que

Más detalles

Propiedades de la igualdad

Propiedades de la igualdad Propiedades de la igualdad El álgebra es la rama de las maemáicas que se dedica al esudio de las propiedades de objeos maemáicos. Un objeo maemáico puede ser un número, una ecuación, un vecor, ec. Por

Más detalles

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

0,05 (0,02 0,16 5) 0,129 v

0,05 (0,02 0,16 5) 0,129 v L Campo Magnéico III 01. Una bobina circular de 0 espiras y radio 5 cm se coloca en un campo magnéico perpendicular al plano de la bobina. El campo magnéico aría con el iempo de acuerdo con la expresión:

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS ECONÓMICAS (Universidad del Perú, Decana de América)

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS ECONÓMICAS (Universidad del Perú, Decana de América) César Anúnez. I Noas de Crecimieno Económico UNIVERSIDAD NACIONA MAOR DE SAN MARCOS FACUTAD DE CIENCIAS ECONÓMICAS (Universidad del Perú, Decana de América) En esa pare esudiaremos el amaño del obierno,

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

Resumen sobre mecánica analítica

Resumen sobre mecánica analítica Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula

Más detalles

5. MODELOS DE FLUJO EN REACTORES REALES

5. MODELOS DE FLUJO EN REACTORES REALES 5. MODLOS D FLUJO N RACTORS RALS 5.1 INTRODUCCIÓN n el caso de los reacores homogéneos isoérmicos, para predecir el comporamieno de los mismos deben enerse en cuena dos aspecos: - La velocidad a la cual

Más detalles

Luis H. Villalpando Venegas,

Luis H. Villalpando Venegas, 2007 Luis H. Villalpando Venegas, [SIMULACIÓN DE PRECIOS DEL PETROLEO BRENT ] En ese rabajo se preende simular el precio del peróleo Bren, a ravés de un proceso esocásico con reversión a la media, con

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE.

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. Invesigación y écnicas de Mercado Previsión de Venas ÉCNICAS CUANIAIVAS ELEMENALES DE PREVISIÓN UNIVARIANE. (II) écnicas elemenales: Modelos Naive y Medias Móviles. Medición del error de previsión. Profesor:

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

DERIVADAS. Lim. y Lim. y Lim

DERIVADAS. Lim. y Lim. y Lim DERIVADAS En maemáicas la erivaa e una función es uno e los os concepos cenrales el cálculo. El oro concepo es la anierivaa o inegral; ambos concepos esán relacionaos por el eorema funamenal el cálculo.

Más detalles

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco.

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco. Diciembre 9, 2011 nsrucciones Nombre Ese examen iene 3 secciones: La Sección consa de 10 pregunas en el formao de Falso-Verdadero y con un valor de 20 punos. La Sección es de selección múliple y consa

Más detalles

Lenguaje de las ecuaciones diferenciales

Lenguaje de las ecuaciones diferenciales Prof. Enrique Maeus Nieves Docorando en Educación Maemáica. Lenguaje de las ecuaciones diferenciales pare. Soluciones de una EDO Para ese curso a esamos familiarizamos con los érminos función eplicia función

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

INTRODUCCIÓN A LOS MODELOS DINÁMICOS

INTRODUCCIÓN A LOS MODELOS DINÁMICOS INTRODUCCIÓN A LOS MODELOS DINÁMICOS Modelos maemáicos y eorías Un modelo consiuye una represenación absraca de un ciero aspeco de la realidad. En su esrucura inervienen, por una pare, los elemenos que

Más detalles

Cálculo de Derivadas

Cálculo de Derivadas Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada

Más detalles

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.

Más detalles