ACTIVIDAD 2: La distribución Normal

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ACTIVIDAD 2: La distribución Normal"

Transcripción

1 Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la que pretende mostrar con ejemplos el hecho de que la distribución normal es muy útil a la hora de describir el comportamiento de muchas variables fisiológicas de los seres vivos. Así, p.e., se sospecha que la longitud de una determinada planta sigue un comportamiento aproximadamente normal con media µ = 64 cm y desviación estándar σ = 3,1 cm. El Dr. Saigí pretende comparar los resultados obtenidos en una práctica de campo, en la que sus alumnos midieron 60 plantas de la especie anterior, con una simulación por ordenador realizada a partir de una normal. 1. Simular con Minitab la medición de 60 plantas de la especie anterior. A fin de que todos obtengamos los mismos datos, usar como base para la generación de datos aleatorios provenientes de una normal el número 333. Seleccionamos Calc > Set Base : Ahora usamos la opción Calc > Random Data > Normal : A2-1

2 Estadística Aplicada con Minitab Habremos generado 60 valores aleatorios procedentes de una distribución normal con los parámetros indicados. 2. Mostrar un resumen descriptivo y gráfico (histograma + gráfico de normalidad) de los datos obtenidos en el apartado anterior mediante simulación. Seleccionar Stat > Basic Statistics > Display Descriptive Statistics > Graphs : El programa nos dará el siguiente output: Descriptive Statistics Variable N Mean Median TrMean StDev SE Mean SIMULADO 60 64,584 64,523 64,635 2,931 0,378 Variable Minimum Maximum Q1 Q3 SIMULADO 58,051 70,316 62,734 66,640 Histogram of SIMULADOS, with Normal Curve 10 Frequency SIMULADOS A2-2

3 Actividad 2: La distribución Normal Ahora queremos un gráfico de normalidad: Stat > Basic Statistics > Normality Test: Normal Probability Plot Probability,999,99,95,80,50,20,05,01, Av erage: 64,5844 Anderson-Darling Normality Test StDev : 2,93060 A-Squared: 0,236 N: 60 P-Value: 0, SIMULADOS 70 Observar que los puntos se aproximan bastante a la línea roja, lo cual era de esperar puesto que esto ocurrirá siempre que los datos sean aproximables por una distribución normal (y de hecho estos datos provienen de una normal). A2-3

4 Estadística Aplicada con Minitab 3. Hacer lo mismo que en el apartado 2 pero ahora con los datos obtenidos en el campo, los cuales se encuentran en el archivo campo.mtw. Qué podrían concluir los alumnos del Dr. Saigí?. Repitiendo los pasos anteriores con estos nuevos datos, obtendremos los siguientes resultados: Descriptive Statistics Variable N Mean Median TrMean StDev SE Mean Longitud 60 65,357 66,000 65,402 3,472 0,448 Variable Minimum Maximum Q1 Q3 Longitud 57,200 71,300 62,425 68,225 Histogram of Longitud, with Normal Curve Frequency Longitud Normal Probability Plot,999,99,95 Probability,80,50,20,05,01,001 Av erage: 65,3567 StDev : 3,47155 N: Longitud 70 W-test for Normality R: 0,9853 P-Value (approx): > 0,1000 Si bien ahora los puntos se alejan más que antes de la línea roja, siguen estando lo suficientemente próximos a la misma como para que consideremos que se distribuyen de forma aproximadamente normal. Parece pues que los dos conjuntos de datos son bastante similares. A2-4

5 Actividad 2: La distribución Normal CASO 2-2: SALARIOS MEDIOS Según viene publicado en una prestigiosa revista de economía, el salario semanal medio de los profesores universitarios europeos es de 406,15. Se estima además que la desviación estándar de dichos salarios es de 55,50. Supongamos ahora que pretendemos tomar una muestra aleatoria de 100 profesores para estudiar sus salarios. Calcular las siguientes probabilidades referentes a la media de dicha muestra: 1. La probabilidad de que la media de la muestra sea menor de 400. En primer lugar, observar lo siguiente: como n = 100 >> 30, por el Teorema Central del Límite tendremos que la distribución de las medias muestrales X se podrá aproximar por una normal con media 406,15 y desviación estándar 5,50. Hemos de hallar P ( X < 400) : Seleccionamos: Calc > Probability Distributions > Normal : Cumulative Distribution Function Normal with mean = 406,150 and standard deviation = 5,55000 x P( X <= x) 400,0000 0,1339 A2-5

6 Estadística Aplicada con Minitab 2. La probabilidad de que la media de la muestra esté entre 400 y 410. Sabemos que P ( 400 < X < 410) = P( X < 410) P( X < 400). La segunda de éstas probabilidades ya la hemos calculado en el apartado anterior. Para calcular la primera se razona análogamente, obteniendo que: Cumulative Distribution Function Normal with mean = 406,150 and standard deviation = 5,55000 x P( X <= x) 410,0000 0,7561 Por tanto, tendremos: P ( 400 < X < 410) = P( X < 410) P( X < 400) = 0, La probabilidad de que la media de la muestra sea mayor de 415. En este caso, P ( X > 415) = 1 P( X < 415). Hemos de calcular pues esta última probabilidad, lo cual haremos de forma análoga a los apartados anteriores. Obtendremos lo siguiente: Cumulative Distribution Function Normal with mean = 406,150 and standard deviation = 5,55000 x P( X <= x) 415,0000 0,9446 Por consiguiente, P ( X > 415) = 1 P( X < 415) = 0, Hallar el valor del salario medio c tal que P( X < c) = 0,95. Seleccionamos nuevamente: Calc > Probability Distributions > Normal, pero ahora elegiremos la opción Inverse Cumulative Probability, con lo que obtendremos : Inverse Cumulative Distribution Function Normal with mean = 406,150 and standard deviation = 5,55000 P( X <= x) x 0, ,2789 A2-6

7 Actividad 2: La distribución Normal CASO 2-3: APROXIMACIÓN NORMAL A UNA BINOMIAL Para muchas combinaciones de n y p es posible aproximar bastante bien una distribución binomial B(n,p) mediante una distribución normal de media µ = np y varianza σ 2 = np(1-p). Generalmente, esta aproximación tiende a ser tanto mejor cuanto mayor es el número de pruebas n. 1. Introducir en la columna C1 de una hoja de trabajo los números 0, 1, 2,..., 16. En la columna C2 calcular P(X = 0), P(X = 1),..., P(X = 16), siendo X una binomial de parámetros n = 16 y p = 0,5. Seleccionamos: Calc > Make Patterned Data > Simple Set of Numbers : Ahora hacemos: Calc > Probability Distributions > Binomial : A2-7

8 Estadística Aplicada con Minitab El resultado será el siguiente: Data Display Row C1 C , , , , , , , , , , , , , , , , , Introducir en la columna C3 el valor de la función de densidad de probabilidad (f.d.p.) asociada a los valores de la C1 para una distribución normal que aproxime a la binomial anterior. Observar que: µ = n*p = 8 y σ 2 = n*p*(1-p) = 4 Hacemos: Calc > Probability Distributions > Normal : A2-8

9 Actividad 2: La distribución Normal 3. Dibujar un diagrama de barras con los datos de las columnas C1 (en eje x) y C2 (en eje y). Superpuesto a él, dibujad la función de densidad que se obtiene a partir de las columnas C1 (en eje x) y C3 (en eje y). Qué observas?. A fin de superponer ambos gráficos, elegimos la opción: Graph > Layout : Seleccionamos: Graph > Chart : Finalmente hacemos: Graph > Plot : A2-9

10 Estadística Aplicada con Minitab Para representar los gráficos superpuestos basta con hacer: Graph > End Layout : Aproximación normal a una binomial 0,2 C2 y C3 0,1 0,0 binomial fdp normal C A partir del gráfico anterior se comprende mejor el hecho de que podemos aproximar la probabilidad de que una variable binomial tome un determinado valor mediante la f.d.p. de una distribución normal. Así, p.e., podemos estimar P(X = 7) (área en azul) por P(6,5 < X < 7,5) (área comprendida entre la curva roja y ambos puntos). En el primer caso estamos considerando que la variable X es binomial, mientras que en el segundo consideramos que es normal (y por tanto hacemos uso de la aproximación por continuidad, puesto que para cualquier variable continua la probabilidad puntual es cero). A2-10

ACTIVIDAD 3: Intervalos de Confianza para 1 población

ACTIVIDAD 3: Intervalos de Confianza para 1 población ACTIVIDAD 3: Intervalos de Confianza para 1 población CASO 3-1: REAJUSTE DE MÁQUINAS Trabajamos como supervisores de una máquina dedicada a la producción de piezas metálicas cuya longitud sigue una distribución

Más detalles

1. Muestras aleatorias de las distribuciones usuales

1. Muestras aleatorias de las distribuciones usuales UNIVERSIDAD DE MURCIA DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Estadística. I.T.I. Sistemas. Curso 2006-07 Prácticas con Minitab 14 Profesora: Dra. Josefa Marín Fernández Práctica 3: Probabilidad.

Más detalles

Práctica de SIMULACIÓN

Práctica de SIMULACIÓN 1 Práctica de SIMULACIÓN 1. Objetivos En esta práctica vamos a simular datos procedentes de diversos modelos probabilísticos. En la sección 2, comprobaremos visualmente que los datos que simulamos se ajustan

Más detalles

LA DISTRIBUCIÓN NORMAL

LA DISTRIBUCIÓN NORMAL LA DISTRIBUCIÓN NORMAL Autores: Ángel A. Juan (ajuanp@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS CARACTERÍSTICAS Y REPRESENTACIÓN DE UNA DISTRIBUCIÓN

Más detalles

Solución ESTADÍSTICA. Prueba de evaluación continua 1 - PEC1

Solución ESTADÍSTICA. Prueba de evaluación continua 1 - PEC1 Semestre sep04 - feb05 Módulos: 1-11 Prueba de evaluación continua 1 - PEC1 Solución Presentación y objetivos Enunciados: descripción teórica de las prácticas a realizar Materiales Criterios de evaluación

Más detalles

Figura 1. Generación de variables aleatorias.

Figura 1. Generación de variables aleatorias. PRÁCTICA 3. Ingeniería Técnica Industrial (2º) - Mecánica. Profesores: Javier Faulín y Francisco Ballestín 1. Generación de variables aleatorias. El programa nos permite generar variables aleatorias especificando

Más detalles

Intervalos de confianza con STATGRAPHICS

Intervalos de confianza con STATGRAPHICS Intervalos de confianza con STATGRAPHICS Ficheros empleados: TiempoaccesoWeb.sf3 ; TiempoBucle.sf3; 1. Ejemplo 1: Tiempo de acceso a una página Web Se desean construir intervalos de confianza para la media

Más detalles

DISTRIBUCIONES MUESTRALES

DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Distribuciones muestrales Autores: Ángel A. Juan (ajuanp@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS CARACTERÍSTICAS DE LA

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

Análisis de la Capacidad o Aptitud de un proceso ( Capítulo 8 ) Control Estadístico de Calidad

Análisis de la Capacidad o Aptitud de un proceso ( Capítulo 8 ) Control Estadístico de Calidad Análisis de la Capacidad o Aptitud de un proceso ( Capítulo 8 ) Control Estadístico de Calidad Introducción Cuantificar la variabilidad de un proceso. Analizar esta variabilidad en relación con los requisitos

Más detalles

Práctica de MODELOS DE PROBABILIDAD

Práctica de MODELOS DE PROBABILIDAD Práctica de MODELOS DE PROBABILIDAD 1 1. Objetivos: Los objetivos que persigue esta práctica son: Representar distribuciones de probabilidad conocidas e interpretar sus parámetros. Generar variables aleatorias

Más detalles

a) La probabilidad de que haya exactamente dos zurdos. b) P(x 2) c) P(x < 2) d) P(1 x 4)

a) La probabilidad de que haya exactamente dos zurdos. b) P(x 2) c) P(x < 2) d) P(1 x 4) Probabilidad Binomial 1.- Supóngase que el 24 por ciento de cierta población tiene sangre tipo B. A partir de una muestra de 20 individuos extraída esa población, calcular la probabilidad: p = 0.24 n =

Más detalles

CAPÍTULO 5 ANÁLISIS 1. AJUSTE DE FLUJOS DE EFECTIVO A UNA DISTRIBUCIÓN CONOCIDA

CAPÍTULO 5 ANÁLISIS 1. AJUSTE DE FLUJOS DE EFECTIVO A UNA DISTRIBUCIÓN CONOCIDA CAPÍTULO ANÁLISIS. AJUSTE DE FLUJOS DE EFECTIVO A UNA DISTRIBUCIÓN CONOCIDA A continuación se realizarán las pruebas de bondad de ajuste para determinar si los flujos de efectivo siguen una distribución

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9)

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9) PROBABILIDAD Y ESTADÍSTICA Sesión 6 (A partir de tema 5.9) 5.9 Muestreo: 5.9.1 Introducción al muestreo 5.9.2 Tipos de muestreo 5.10 Teorema del límite central 5.11 Distribución muestral de la media 5.12

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con Hasta ahora hemos supuesto que conocemos o podemos calcular la función/densidad de probabilidad (distribución) de las variables aleatorias. En general, esto no es así. Más bien se tiene una muestra experimental

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Modelos de Probabilidad con Statgraphics

Modelos de Probabilidad con Statgraphics Modelos de Probabilidad con Statgraphics 1. Objetivos Representar funciones de probabilidad/densidad y de distribución de diferentes modelos de variables aleatorias discretas/continuas Calcular probabilidades

Más detalles

Práctica 4 TEOREMA CENTRAL DEL LÍMITE

Práctica 4 TEOREMA CENTRAL DEL LÍMITE Práctica 4. Teorema Central del Límite 1 Práctica 4 TEOREMA CENTRAL DEL LÍMITE Objetivos: En esta práctica utilizaremos el paquete SPSS para ilustrar el Teorema Central del Límite. Además calcularemos

Más detalles

VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.

VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS. VARIABLE ALEATORIA CONTINUA VARIABLES ALEATORIAS CONTINUAS º Bto. CC.SS. Una variable aleatoria es continua si puede tomar, al menos teóricamente, todos los valores comprendidos en un cierto intervalo

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E un número real: X: E Ejemplo: Consideremos el experimento

Más detalles

ANEXO.- DISTRIBUCIÓN BINOMIAL. DISTRIBUCIÓN NORMAL

ANEXO.- DISTRIBUCIÓN BINOMIAL. DISTRIBUCIÓN NORMAL ANEXO.- DISTRIBUCIÓN BINOMIAL. DISTRIBUCIÓN NORMAL. VARIABLES ALEATORIAS Consideremos el experimento de lanzar 3 monedas. Tenemos que su espacio muestral es E CCC, CCX, CXC, XCC, CXX, XCX, XXC, XXX Donde

Más detalles

Tema 1: Distribuciones en el muestreo

Tema 1: Distribuciones en el muestreo Tema 1: Distribuciones en el muestreo 1 (transparencias de A. Jach http://www.est.uc3m.es/ajach/) Muestras aleatorias Estadísticos Concepto de distribución muestral Media muestral Distribución muestral

Más detalles

Tema 6: Modelos probabilísticos

Tema 6: Modelos probabilísticos Tema 6: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Cuál es el campo de estudio de la prueba de hipótesis?

Cuál es el campo de estudio de la prueba de hipótesis? ESTIMACIÓN Establecer generalizaciones acerca de una población a partir de una muestra es el campo de estudio de la inferencia estadística. La inferencia estadística se divide en estimación y prueba de

Más detalles

CONTROL DE CALIDAD UNIDAD IV TEORÍA DE DIMENSIÓN ESTADÍSTICA

CONTROL DE CALIDAD UNIDAD IV TEORÍA DE DIMENSIÓN ESTADÍSTICA CONTROL DE CALIDAD UNIDAD IV TEORÍA DE DIMENSIÓN ESTADÍSTICA 1 (4.1) DISTRIBUCIÓN NORMAL 2 4.1.1- ASPECTOS GENERALES: Al graficarse los diferentes valores obtenidos de una variable X se obtiene una distribución

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel SIMULACIÓN DE SISTEMAS Guía práctica #1 Determinar la Distribución de los datos de una Simulación Prof.: MSc. Julio Rito Vargas A. Grupo: Ingeniería Industrial

Más detalles

APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL

APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL Autor: Mª Isabel Conde Collado APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL Mediante el estudio de dos ejemplos concretos de distribuciones se intentará un acercamiento al ajuste de distribuciones a una distribución

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:

Más detalles

Tema 4: Modelos probabilísticos

Tema 4: Modelos probabilísticos Tema 4: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved

Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved Capítulo 37 Distribución de probabilidad normal 2010 Pearson Prentice Hall. All rights 2010 reserved Pearson Prentice Hall. All rights reserved La distribución de probabilidad uniforme Hasta ahora hemos

Más detalles

Representación gráfica de esta función de densidad

Representación gráfica de esta función de densidad Distribución normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Se ha usado en una gran variedad de aplicaciones prácticas en las

Más detalles

Teorema del límite central

Teorema del límite central TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución

Más detalles

Distribuciones de Probabilidad.

Distribuciones de Probabilidad. Práctica núm. 3 1 Distribuciones de Probabilidad. 3.1. Distribuciones de Probabilidad en Statgraphics El estudio de las distribuciones de probabilidad en Statgraphics se puede realizar en el menú Descripción/Distribuciones/Distribuciones

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Prácticas de Fiabilidad

Prácticas de Fiabilidad Prácticas de Fiabilidad Práctica : Objetivo: El objetivo de esta práctica es conocer y aprender a manejar las herramientas que nos van a permitir decidir si nuestros datos de supervivencia se comportan

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

Cap. 5 : Distribuciones muestrales

Cap. 5 : Distribuciones muestrales Cap. 5 : Distribuciones muestrales Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 18 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de

Más detalles

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student

Más detalles

Práctica 4: Variables Aleatorias y Simulación

Práctica 4: Variables Aleatorias y Simulación Práctica 4: Variables Aleatorias y Simulación Objetivos específicos Al finalizar esta práctica deberás ser capaz de: Calcular las funciones de probabilidad y distribución de las variables discretas Bernoulli,

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 5 Simulación ORGANIZACIÓN DEL TEMA Sesiones: Introducción Ejemplos prácticos Procedimiento y evaluación de resultados INTRODUCCIÓN Simulación: Procedimiento

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

ESTADÍSTICA CON EXCEL

ESTADÍSTICA CON EXCEL ESTADÍSTICA CON EXCEL 1. INTRODUCCIÓN La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre 2011-1 Profesor: Jaime Soto PRUEBA DE HIPÓTESIS Ejemplo El jefe de la Biblioteca de la URBE manifiesta

Más detalles

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Distribuciones de probabilidad con R Commander

Distribuciones de probabilidad con R Commander Distribuciones de probabilidad con R Commander En el menú Distribuciones podemos seleccionar Distribuciones discretas Distribuciones continuas Las distribuciones discretas que aparecen en R Commander son

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

07 Estimación puntual e introducción a la estadística inferencial

07 Estimación puntual e introducción a la estadística inferencial 07 Estimación puntual e introducción a la estadística inferencial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Qué es la estadística inferencial?

Más detalles

Normalidad. y si no qué pasa? por: Aarón O. Lemus Bernal

Normalidad. y si no qué pasa? por: Aarón O. Lemus Bernal Normalidad y si no qué pasa? por: Aarón O. Lemus Bernal Marzo 2010 Introducción Cuando en un proyecto de mejora nos encontramos con variables de tipo continuo, la mayoría de las veces necesitamos aplicar

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

Estadística Inferencial. Sesión 2. Distribuciones muestrales

Estadística Inferencial. Sesión 2. Distribuciones muestrales Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Econometría I. Ejercicios de repaso de estadística

Econometría I. Ejercicios de repaso de estadística Poblaciones y parámetros Econometría I Ejercicios de repaso de estadística 1. Considera una variable aleatoria Z que solo puede tomar cinco valores, todos ellos con la misma probabilidad: Z = {Z 1,, Z

Más detalles

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2 Curso de nivelación Estadística y Matemática Cuarta clase: Distribuciones de probablidad continuas Programa Técnico en Riesgo, 2016 Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria

Más detalles

Pág. 1 de 16 SEXO SINTOMAS DIAS_DURACION F FIEBRE 3 F MAREO 4 M DOLOR 5 M CONGESTION 5 M DOLOR 8 F CONGESTION 4 M DOLOR 5 M MAREO 3

Pág. 1 de 16 SEXO SINTOMAS DIAS_DURACION F FIEBRE 3 F MAREO 4 M DOLOR 5 M CONGESTION 5 M DOLOR 8 F CONGESTION 4 M DOLOR 5 M MAREO 3 Pág. 1 de 16 EPI-INFO- ANALISIS SIMPLE DE DATOS DIGITADOS EN EXCEL E IMPORTADOS A EPI-INFO Abrir Microsoft Excel 2010. Digitar los siguientes datos, a partir del 1er cuadro de Excel (no dejar líneas en

Más detalles

ACTIVIDAD 5: Correlación y Regresión Lineal

ACTIVIDAD 5: Correlación y Regresión Lineal Actividad 5: Correlación y Regresión Lineal ACTIVIDAD 5: Correlación y Regresión Lineal CASO 5-1: RELACIONES ENTRE VARIABLES A continuación se muestran cuatro variables y seis valores (observaciones) asociados

Más detalles

Estadísticas Elemental Medidas de dispersión 3.1-1

Estadísticas Elemental Medidas de dispersión 3.1-1 Estadísticas Elemental Medidas de dispersión 3.1-1 Medidas de dispersión La variación entre los valores de un conjunto de datos se conoce como dispersión. Cuando la dispersión es grande, los valores se

Más detalles

EXAMEN DE ESTADÍSTICA Septiembre 2011

EXAMEN DE ESTADÍSTICA Septiembre 2011 EXAMEN DE ESTADÍSTICA Septiembre 2011 Apellidos: Nombre: DNI: GRUPO: 1. De una clase de N alumnos se tiene la siguiente información sobre las calificaciones obtenidas del 1 al 8 en una cierta asignatura

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS

ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS Jorge Fallas jfallas56@gmail.com 2010 1 Temario Datos experimentales y distribuciones de referencia Una media poblacional Hipótesis nula, alternativa y nivel de

Más detalles

Tests de Hipótesis. Métodos no paramétricos ESTADÍSTICA (Q) Algunas consideraciones sobre las inferencias sobre la media de una población Normal

Tests de Hipótesis. Métodos no paramétricos ESTADÍSTICA (Q) Algunas consideraciones sobre las inferencias sobre la media de una población Normal 148 Algunas consideraciones sobre las inferencias sobre la media de una población Normal 1. Los tests e intervalos de confianza para la media de una población Normal utilizan un estadístico que tiene distribución

Más detalles

UN TAMAÑO DE MUESTRA PRELIMINAR EN LA ESTIMACION DE LA MEDIA, EN POBLACIONES CON DISTRIBUCIONES UNIFORMES Y TRIANGULARES

UN TAMAÑO DE MUESTRA PRELIMINAR EN LA ESTIMACION DE LA MEDIA, EN POBLACIONES CON DISTRIBUCIONES UNIFORMES Y TRIANGULARES Revista Colombiana de Estadística Volumen 24 (2001) N o 1, páginas 27 a 32 UN TAMAÑO DE MUESTRA PRELIMINAR EN LA ESTIMACION DE LA MEDIA, EN POBLACIONES CON DISTRIBUCIONES UNIFORMES Y TRIANGULARES CARLOS

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 6 Teoremas ĺımite Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST. Tema

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

ESTADÍSTICA INFERENCIAL. Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas

ESTADÍSTICA INFERENCIAL. Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas ESTADÍSTICA INFERENCIAL Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas que toman estrictamente valores enteros,

Más detalles

CAPÍTULO 5. 5.3 La Distribución Normal

CAPÍTULO 5. 5.3 La Distribución Normal CAPÍTULO 5 5.3 La Distribución Normal Si una variable aleatoria X tiene una distribución Normal y queremos calcular la probabilidad de que X caiga entre dos valores a y b entonces, debemos hallar el área

Más detalles

CAPÍTULO 4 CAPACIDAD DEL PROCESO

CAPÍTULO 4 CAPACIDAD DEL PROCESO APÍTULO 4 APAIDAD DEL PROESO APÍTULO 4 APAIDAD DEL PROESO En este capítulo se hace una evaluación de la situación actual de la producción de la tapa de las guanteras para el coche modelo Jetta A4. Para

Más detalles

DISTRIBUCIÓN DE ESTADÍSTICOS MUESTRALES

DISTRIBUCIÓN DE ESTADÍSTICOS MUESTRALES Ensayo de Rendimiento DISTRIBUCIÓN DE ESTADÍSTICOS MUESTRALES Muestreo Laura A. Gonzalez Objetivo: conocer características de una población a partir de una muestra Características Parámetros Los estadísticos

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

MATEMÁTICAS APLICADAS A LAS CC. SS. I

MATEMÁTICAS APLICADAS A LAS CC. SS. I DISTRIBUCIÓN NORMAL Carl Friedrich Gauss (1777-1855), físico y matemático alemán, uno de los pioneros en el estudio de las propiedades y utilidad de la curva normal. MATEMÁTICAS APLICADAS A LAS CC. SS.

Más detalles

2. Distribuciones de Muestreo

2. Distribuciones de Muestreo 2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Intervalos de confianza Álvaro José Flórez 1 Escuela de Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

MODELOS DE PROBABILIDAD

MODELOS DE PROBABILIDAD MODELOS DE PROBABILIDAD Modelos de probabilidad Autores: Angel Juan (ajuanp@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Alicia Vila (avilag@uoc.edu), José Francisco Martínez (jmartinezbos@uoc.edu), Anna

Más detalles

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD A partir de un experimento aleatorio cualquiera, se obtiene su espacio muestral E. Se llama variable aleatoria a una ley (o función) que a cada elemento del espacio

Más detalles

Tema 8. Muestreo. Indice

Tema 8. Muestreo. Indice Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

DISTRIBUCION NORMAL ESTANDAR

DISTRIBUCION NORMAL ESTANDAR Probabilidad Cap 6 DISTRIBUCION NORMAL ESTANDAR Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 La distribución normal estándar 2 Variable aleatoria normal estandarizada Podemos

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2000-2.001 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro

Más detalles