Valores Booleanos Interpretación #t Cierto #f Falso

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Valores Booleanos Interpretación #t Cierto #f Falso --------------------------------------------------------------------"

Transcripción

1 Valores Booleanos Interpretación #t Cierto #f Falso Números Pueden ser Complejos Reales Racionales Enteros Predicados relativos a números Interpretación Tipos objeto Cualquier objeto Scheme (number? objeto) (complex? objeto) (real? objeto) (rational? objeto) (integer? objeto) Es objeto un número? Es objeto un número complejo? Es objeto un número real? Es objeto un número racional? Es objeto un número entero? Comparaciones n1 n2 r1 r2 Números Números reales (= n1 n2) Es n1 igual a n2? (< r1 r2) Es r1 menor que r2? (> r1 r2) Es r1 mayor que r2? (<= r1 r2) Es r1 menor que o igual a r2? (>= r1 r2) Es r1 mayor que o igual a r2? 1

2 Signo de números reales. Paridad de enteros. n Número r Número real e Número entero (zero? n) Es cero el número n? (positive? r) Es positivo el número real r? (negative? r) Es negativo el número real r? (odd? e) Es impar el número entero e? (even? e) Es par el número entero e? Procedimientos aritméticos básicos generales n n1 n2 Números (add1 n) n+1 (sub1 n) n-1 (+ n1 n2) n1+n2 (* n1 n2) n1xn2 (- n1 n2) n1-n2 (- n) -n [opuesto de n] (/ n1 n2) n1/n2 (/ n) 1/n [inverso de n, n distinto de cero] 2

3 Aritmética entera e e1 e2 Números enteros e2 0 (quotient e1 e2) q = Cociente de la división entera (remainder e1 e2) r = Resto de la división entera Los resultados q y r son tales que e1=e2xq+r, 0 <= abs(r) < abs(e2) y el signo de r coincide con el signo de e1 (modulo e1 e2) m = e1 mod e2 El signo de m coincide con el signo de e2 Ejemplos: (quotient 17 11) ==> 1 (remainder 17 11) ==> 6 (quotient ) ==> -1 (remainder ) ==> -6 (quotient 17-11) ==> -1 (remainder 17-11) ==> 6 (quotient ) ==> 1 (remainder ) ==> -6 (modulo 17 11) ==> 6 (modulo ) ==> 5 (modulo 17-11) ==> -5 (modulo ) ==>

4 Condicional if predicado expresion (if predicado expresion) (if predicado expresion1 expresion2) Ejemplos (if (= 2 2) 1) ==> 1 (if (= 2 3) 1) ==> (if (= 2 2) 1 0) ==> 1 (if (= 2 3) 1 0) ==> 0 if es una forma especial Un predicado una expresión Evalúa predicado si predicado se evalúa a #t [cierto], entonces evalúa expresion y devuelve su valor; si predicado se evalúa a #f [falso], entonces no evalúa expresion y devuelve nada (void) Evalúa predicado si predicado se evalúa a #t [cierto], entonces evalúa expresion1 y devuelve su valor; si predicado se evalúa a #f [falso], entonces evalúa expresion2 y devuelve su valor. (display expresion) Escribe el valor de expresion en la terminal No devuelve nada o devuelve un valor no especificado (newline) Produce un salto de línea en la terminal No devuelve nada o devuelve un valor no especificado (if (= 2 2) (display 1)) Escribe 1 (if (= 2 3) (display 1)) No escribe nada (if (= 2 2) (display 1) (display 0)) Escribe 1 (if (= 2 3) (display 1) (display 0)) Escribe 0 4

5 Definición de procedimientos Define es una forma especial (define (nombre-del-procedimiento par1 par2... parn) cuerpo) (define nombre-del-procedimiento (lambda (x y) cuerpo)) Ejemplo (define (cos-suma x y) (cos (+ x y))) (define cos-suma-otro (lambda (x y) (cos (+ x y)))) Uso (cos-suma ) ==> (cos-suma-otro ) ==>

6 Operadores de composición lógica: conjunciones Versión simplificada p p1 p2 (and p1 p2) (or p1 p2) (not p) Ejemplos (define (entero-par? x) (and (integer? x) (even? x))) (define (menor-que-a-o-mayor-que-b x a b) (or (< x a) (> x b))) (define (no-cero? x) (not (zero? x))) predicados Si ambos p1 y p2 se evalúan a #t, devuelve #t; en otro caso devuelve #f Si ambos p1 y p2 se evalúan a #f, devuelve #f; en otro caso devuelve #t Si p se evalúa a #t, devuelve #f; en otro caso devuelve #t

7 Condicional cond predicado i expresion i expresion ij cond es una forma especial predicados expresiones expresiones (cond (predicado 1 expresion 1 ) (predicado 2 expresion 2 ) (predicado n expresion n ) ) evalúa predicado 1 si predicado 1 se evalúa a #t [cierto] entonces evalúa expresion 1 y devuelve su valor si predicado 1 se evalúa a #f [falso] entonces evalúa predicado 2 etc... si todos los predicados se evalúan a #f [falso] entonces la forma cond devuelve nada [ (void) ] sin haber evaluado ninguna de las expresiones (cond (predicado 1 expresion 1 ) (predicado 2 expresion 2 ) ) (predicado n 1 expresion n 1 ) (else expresion n ) 7

8 (cond (predicado 1 expresion expresion 1m ) (predicado 2 expresion expresion 2m ) ) (predicado n 1 expresion [n 1]1... expresion [n 1]m ) (else expresion n1... expresion nm ) Ejemplo: el signo de un número real x es -1 si x<0 0 si x=0 1 si x>0 (define (signo-con-mensaje x) (if (not (real? x)) (error "signo-con-mensaje: el argumento debe ser de tipo real pero se le dio: " x)) (cond ((< x 0) (display "negativo") (newline) -1) ((= x 0) (display "cero") (newline) 0) (else (display "positivo") (newline) 1))) 8

Tema 3.- Predicados y sentencias condicionales

Tema 3.- Predicados y sentencias condicionales UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DE CÓRDOBA DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO PROGRAMACIÓN DECLARATIVA INGENIERÍA INFORMÁTICA ESPECIALIDAD DE COMPUTACIÓN CUARTO CURSO PRIMER

Más detalles

OPERADORES LÓGICOS Y DE COMPARACIÓN EN PHP. PRIORIDADES. EJEMPLOS. EJERCICIOS RESUELTOS. (CU00818B)

OPERADORES LÓGICOS Y DE COMPARACIÓN EN PHP. PRIORIDADES. EJEMPLOS. EJERCICIOS RESUELTOS. (CU00818B) APRENDERAPROGRAMAR.COM OPERADORES LÓGICOS Y DE COMPARACIÓN EN PHP. PRIORIDADES. EJEMPLOS. EJERCICIOS RESUELTOS. (CU00818B) Sección: Cursos Categoría: Tutorial básico del programador web: PHP desde cero

Más detalles

GUÍA BÁSICA DE SCHEME v.4

GUÍA BÁSICA DE SCHEME v.4 Esta guía básica pretende ser una introducción elemental al lenguaje de programación Scheme. Se presenta como una guía de comienzo rápido de tal forma que permita conocer de una forma muy esquemática los

Más detalles

Abstracción de Datos y

Abstracción de Datos y Capítulo 3 Abstracción de Datos y Números El cómputo numérico ha sido tradicionalmente ignorado por la comunidad de Lisp. Hasta antes del Common Lisp nadie había ideado una estrategia detallada para ordenar

Más detalles

Tema 7: Programación con Matlab

Tema 7: Programación con Matlab Tema 7: Programación con Matlab 1. Introducción Matlab puede utilizarse como un lenguaje de programación que incluye todos los elementos necesarios. Añade la gran ventaja de poder incorporar a los programas

Más detalles

Manual de Lisp para IACS (Curso 91 92)

Manual de Lisp para IACS (Curso 91 92) Dpto. de Álgebra, Computación, Geometría y Topología Universidad de Sevilla Manual de Lisp para IACS (Curso 91 92) Sevilla, 1992 Contenido 1 Introducción 1 1.1 Introducción............................

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Comencemos a programar con. Entrega 09

Comencemos a programar con. Entrega 09 Comencemos a programar con VBA - Access Entrega 09 Estructuras de Control Eduardo Olaz 09-2 Estructuras de Control. Las estructuras de control son segmentos de código que nos permiten tomar decisiones

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

4.7 Operaciones sobre Objetos en Scheme

4.7 Operaciones sobre Objetos en Scheme 4.7 Operaciones sobre Objetos en Scheme Equivalencias y predicados de tipos, listas, números, caracteres, strings y vectores Ejemplos de Equivalencia (eq? a a) ;=> #t (eq? 3.1 3.1) ;=> () (eq? (cons a

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

Práctica 4: Estructuras selectivas

Práctica 4: Estructuras selectivas Fonaments d Informàtica 1r curs d Enginyeria Industrial Práctica 4: Estructuras selectivas Objetivos de la práctica Estudiar la implementación de las diferentes estructuras selectivas en MATLAB. Implementar

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

Sistemas de Numeración Operaciones - Códigos

Sistemas de Numeración Operaciones - Códigos Sistemas de Numeración Operaciones - Códigos Tema 2 1. Sistema decimal 2. Sistema binario 3. Sistema hexadecimal 4. Sistema octal 5. Conversión decimal binario 6. Aritmética binaria 7. Complemento a la

Más detalles

Guía de estudio. Para la primera evaluación de álgebra octavo 2015

Guía de estudio. Para la primera evaluación de álgebra octavo 2015 Guía de estudio Para la primera evaluación de álgebra octavo 2015 Encontrará una serie de ejercicios que tienen como finalidad hacer un breve repaso sobre lo abordado durante este periodo en clase de álgebra,

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA NOMBRE DEL PROFESOR: Ing. Héctor Manuel Quej Cosgaya NOMBRE DE LA PRÁCTICA: Operadores y Expresiones PRÁCTICA NÚM. [ 3 ] LABORATORIO: MATERIA: UNIDAD: TIEMPO: Centro de Ingeniería Computacional Lenguaje

Más detalles

Tema 2. El lenguaje de programación Java (Parte 1)

Tema 2. El lenguaje de programación Java (Parte 1) Programación en Java Tema 2. El lenguaje de programación Java (Parte 1) Luis Rodríguez Baena Facultad de Informática Elementos del lenguaje (I) El juego de caracteres. No utiliza ASCII, sino Unicode de

Más detalles

RESUMEN DE CONCEPTOS BASICOS DE PROGRAMACION JAVA

RESUMEN DE CONCEPTOS BASICOS DE PROGRAMACION JAVA UNED Centro Asociado de Cádiz RESUMEN DE CONCEPTOS BASICOS DE PROGRAMACION JAVA 1. OBJETOS Cualquier elemento del programa es un objeto. Un programa es un conjunto de objetos que se comunican entre sí

Más detalles

3.2 Operaciones aritmético-lógicas en Pascal

3.2 Operaciones aritmético-lógicas en Pascal 3.2 Operaciones aritmético-lógicas en Pascal Operadores Los operadores sirven para combinar los términos de las expresiones. En Pascal, se manejan tres grupos de operadores : 1. ARITMÉTICOS 2. RELACIONALES

Más detalles

Operaciones y Expresiones METATRADER, CONCEPTOS BÁSICOS DE PROGRAMACIÓN III

Operaciones y Expresiones METATRADER, CONCEPTOS BÁSICOS DE PROGRAMACIÓN III Operaciones y Expresiones METATRADER, CONCEPTOS BÁSICOS DE PROGRAMACIÓN III Introducción Operaciones y Expresiones. Operadores Aritméticos Operadores de Asignación Operadores de Relación Operadores Lógicos

Más detalles

Operaciones Aritméticas en Números con Signo

Operaciones Aritméticas en Números con Signo Operaciones Aritméticas en Números con Signo M. en C. Erika Vilches Parte 3 Multiplicación sin Signo Reglas básicas para multiplicar bits: 0x0 = 0 0x1 = 0 1x0 = 0 1x1 = 1 Ejemplos en números sin signo:

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS UNIDAD 1 Números racionales e irracionales 2º ESO Contenidos, objetivos y criterios de evaluación ÍNDICE DE LA UNIDAD 1. El conjunto de los números racionales. 1.1. Operaciones con fracciones. 1.1.1 Suma

Más detalles

Curso PHP Módulo 1 R-Luis

Curso PHP Módulo 1 R-Luis Lenguaje PHP Introducción Archivos HTML y PHP: Crear un archivo php es tan sencillo como cambiarle la extensión a un archivo html, por ejemplo podemos pasar de index.html a index.php sin ningún inconveniente.

Más detalles

Aritmética del computador. Departamento de Arquitectura de Computadores

Aritmética del computador. Departamento de Arquitectura de Computadores Aritmética del computador Departamento de Arquitectura de Computadores Contenido La unidad aritmético lógica (ALU) Representación posicional. Sistemas numéricos Representación de números enteros Aritmética

Más detalles

Informática y Programación Escuela de Ingenierías Industriales y Civiles Curso 2010/2011

Informática y Programación Escuela de Ingenierías Industriales y Civiles Curso 2010/2011 Módulo 2. Fundamentos de Programación Informática y Programación Escuela de Ingenierías Industriales y Civiles Curso 2010/2011 1 CONTENIDO Tema 1. Conceptos generales de algorítmica Tema 2. Sentencias

Más detalles

Introducción a la Computación TFA

Introducción a la Computación TFA Introducción a la Computación TFA Departamento de Informática Facultad de Ciencias Físico, Matemáticas y Naturales- UNSL Lenguaje de Diseño de Algoritmos Estructura de Control Condicional Simple y Múltiple

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional.

1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional. 1. Encontrar el dominio de la función racional. h(x) x 2 3x 1 (x 2 4)(x 2 + 11x + 24) Para encontrar el dominio de una función racional debemos encontrar los valores de la variable que hacen cero el denominador.

Más detalles

OPERADORES Y EXPRESIONES

OPERADORES Y EXPRESIONES OPERADORES Y EXPRESIONES Una expresión es una combinación de variables, literales y operadores, que representan un valor Operadores aritméticos Operador Función + suma - resta * producto / división % operador

Más detalles

Tema 4: Definición de funciones

Tema 4: Definición de funciones Programación declarativa (2009 10) José A. Alonso Jiménez Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla Constantes como patrones Variables como

Más detalles

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU)

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU) Agenda 0 Tipos de datos 0 Sistemas numéricos 0 Conversión de bases 0 Números racionales o Decimales 0 Representación en signo-magnitud 0 Representación en complemento Unidad Central de Procesamiento (CPU)

Más detalles

9.1 Primeras definiciones

9.1 Primeras definiciones Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación

Más detalles

Tecnologías en la Educación Matemática. Expresiones. Datos. Expresiones Aritméticas. Expresiones Aritméticas 19/08/2014

Tecnologías en la Educación Matemática. Expresiones. Datos. Expresiones Aritméticas. Expresiones Aritméticas 19/08/2014 Tecnologías en la Educación Matemática jac@cs.uns.edu.ar Dpto. de Ciencias e Ingeniería de la Computación UNIVERSIDAD NACIONAL DEL SUR 1 Datos Los algoritmos combinan datos con acciones. Los datos de entrada

Más detalles

Capítulo 2 Números Reales

Capítulo 2 Números Reales Introducción Capítulo Números Reales La idea de número aparece en la historia del hombre ligada a la necesidad de contar objetos, animales, etc. Para lograr este objetivo, usaron los dedos, guijarros,

Más detalles

ALGORITMICA Y PROGRAMACION POR OBJETOS I

ALGORITMICA Y PROGRAMACION POR OBJETOS I ALGORITMICA Y PROGRAMACION POR OBJETOS I Nivel 2 Definiendo situaciones y manejando casos Marcela Hernández Hoyos Qué vamos a aprender en este nivel: Diferencia entre clase y objeto Modelar características

Más detalles

CÁLCULO CON wxmaxima

CÁLCULO CON wxmaxima CÁLCULO CON wxmaxima AUTORÍA JUAN JOSÉ MUÑOZ LEÓN TEMÁTICA MATEMÁTICAS, NUEVAS TECNOLOGÍAS ETAPA ESO Resumen En este artículo, se proporciona una herramienta de trabajo para los alumnos del primer ciclo

Más detalles

ESTRUCTURAS CONDICIONALES EN PHP: SWITCH, CASE, BREAK. EJEMPLOS DE USO Y EJERCICIOS RESUELTOS. (CU00820B)

ESTRUCTURAS CONDICIONALES EN PHP: SWITCH, CASE, BREAK. EJEMPLOS DE USO Y EJERCICIOS RESUELTOS. (CU00820B) APRENDERAPROGRAMARCOM ESTRUCTURAS CONDICIONALES EN PHP: SWITCH, CASE, BREAK EJEMPLOS DE USO Y EJERCICIOS RESUELTOS (CU00820B) Sección: Cursos Categoría: Tutorial básico del programador web: PHP desde cero

Más detalles

PHP HypertextPreProcessor

PHP HypertextPreProcessor PHP PHP HypertextPreProcessor PHP 1. Introducción 2. Comentarios 3. Variables 4. Operadores 5. Desplegar(output) 6. Arrays o matrices 7. Estructuras de control 8. Funciones 9. Manejo de strings Introducción

Más detalles

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial

Más detalles

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin

Más detalles

Tema 2. La Información y su representación

Tema 2. La Información y su representación Tema 2. La Información y su representación 2.1 Introducción. Un ordenador es una máquina que procesa información. La ejecución de un programa implica la realización de unos tratamientos, según especifica

Más detalles

Introducción al lenguaje de especificación JML

Introducción al lenguaje de especificación JML Introducción al lenguaje de especificación JML Elena Hernández Pereira Óscar Fontenla Romero Tecnología de la Programación Octubre 2006 Departamento de Computación Facultad de Informática Universidad de

Más detalles

Organización del Computador. Prof. Angela Di Serio

Organización del Computador. Prof. Angela Di Serio Punto Flotante Muchas aplicaciones requieren trabajar con números que no son enteros. Existen varias formas de representar números no enteros. Una de ellas es usando un punto o coma fijo. Este tipo de

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

Excel Macros. Pedro Chávez Lugo mailto:pchavezl74@gmail.com webpage:http://lsc.fie.umich.mx/ pedro. 17 de enero de 2014

Excel Macros. Pedro Chávez Lugo mailto:pchavezl74@gmail.com webpage:http://lsc.fie.umich.mx/ pedro. 17 de enero de 2014 mailto:pchavezl74@gmail.com webpage:http://lsc.fie.umich.mx/ pedro 17 de enero de 2014 1 Introducción 2 3 4 5 6 Introducción Microsoft Excel es una herramienta muy eficaz que se puede usar para manipular,

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97 SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Elementos léxicos del lenguaje de programación Java

Elementos léxicos del lenguaje de programación Java Elementos léxicos del lenguaje de programación Java Elementos léxicos del lenguaje de programación Java Palabras reservadas Identificadores Literales Operadores Delimitadores Comentarios Apéndices Operadores

Más detalles

Introducción a Python. Cecilia Manzino

Introducción a Python. Cecilia Manzino Características del lenguaje Es un lenguaje de programación multiparadigma, soporta la programación orientada a objetos, imperativa y, en menor medida, funcional. Es un lenguaje multiplataforma, puede

Más detalles

Materia Introducción a la Informática

Materia Introducción a la Informática Materia Introducción a la Informática Unidad 1 Sistema de Numeración Ejercitación Prof. Alejandro Bompensieri Introducción a la Informática - CPU Ejercitación Sistemas de Numeración 1. Pasar a base 10

Más detalles

Funciones Reales en una Variable

Funciones Reales en una Variable Funciones Reales en una Variable Contenidos Concepto función Grafica de una función Dominio y Recorrido de una función Clasificación de la funciones Función Inversa Paridad de las Funciones Operaciones

Más detalles

Raíces cuadradas y radicales

Raíces cuadradas y radicales Raíces cuadradas y radicales Raíz cuadrada - la raíz cuadrada de x, donde x, es igual a c (donde c si c 2 = x. Se usa la notación para representar la raíz cuadrada principal de x. Al símbolo se le llama

Más detalles

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS SUMA REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES (N) 1. Características: Axiomas de Giuseppe Peano (*): El 1 es un número natural. Si n es un número natural, entonces el sucesor (el siguiente

Más detalles

FUNCIONES ARITMÉTICAS Y

FUNCIONES ARITMÉTICAS Y Tema 3 FUNCIONES ARITMÉTICAS Y LÓGICAS 3.. INTRODUCCIÓN Hasta ahora hemos visto como se podían minimizar funciones booleanas, y como se podían implementar a partir de puertas discretas. En los temas siguientes

Más detalles

Metodología, Técnica Y Tecnología Para Solucionar Un Problema

Metodología, Técnica Y Tecnología Para Solucionar Un Problema La Esencia de la Lógica de Programación Omar Ivan Trejos Buriticá 89 Capítulo 6 Metodología, Técnica Y Tecnología Para Solucionar Un Problema Hasta este momento tenemos una metodología para solucionar

Más detalles

TEMA 5. CONTROL DE FLUJO DEL PROGRAMA. Sentencia Instrucción Expresión Operadores + Operandos Sintaxis: Sentencia ;

TEMA 5. CONTROL DE FLUJO DEL PROGRAMA. Sentencia Instrucción Expresión Operadores + Operandos Sintaxis: Sentencia ; TEMA 5. CONTROL DE FLUJO DEL PROGRAMA 5.1 Sentencias Una sentencia es una expresión seguida de un punto y coma. Sentencia Instrucción Expresión Operadores + Operandos Sintaxis: Sentencia ; El ; es obligatorio

Más detalles

Departamento de Sistemas e Informática

Departamento de Sistemas e Informática Departamento de Sistemas e Informática Programación en Assembler - Clase 1 Digital II Presentación de Docentes y Material Docentes: Ing. Andrés Capalbo Ing. Diego Alegrechi Ing. Esteban Almirón Material

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0.

Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0. NÚMEROS COMPLEJOS. INTRO. ( I ) Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0. Si bien esto no era un problema

Más detalles

Scripting en el cliente: Javascript. Tecnologías Web

Scripting en el cliente: Javascript. Tecnologías Web Scripting en el cliente: Javascript Tecnologías Web Motivación Por qué usar JavaScript? Permite crear efectos atractivos visualmente Permite crear sitios WEB que se visualicen de la misma manera en distintos

Más detalles

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

ACTIONSCRIPT (AS) Proyectos II. Audiovisuales. Dpto. Escultura. UPV. [sintaxis elemental]

ACTIONSCRIPT (AS) Proyectos II. Audiovisuales. Dpto. Escultura. UPV. [sintaxis elemental] ACTIONSCRIPT (AS) Proyectos II. Audiovisuales. Dpto. Escultura. UPV. [sintaxis elemental] Action script es el lenguaje de programación que lleva incorporado el software de creación multimedia Macromedia

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

Prácticas: Introducción a la programación en Java. Informática (1º Ingeniería Civil) Curso 2011/2012

Prácticas: Introducción a la programación en Java. Informática (1º Ingeniería Civil) Curso 2011/2012 Prácticas: Introducción a la programación en Java Informática (1º Ingeniería Civil) Índice Introducción a Java y al entorno de desarrollo NetBeans Estructura de un programa Tipos de datos Operadores Sentencias

Más detalles

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER Manual del Alumno ASIGNATURA: Matemática I PROGRAMA: S3C Lima-Perú SESION 1 SISTEMAS DE NUMERACION DEFINICION : Es un conjunto de reglas y principios que nos

Más detalles

Ejemplos de conversión de reales a enteros

Ejemplos de conversión de reales a enteros Ejemplos de conversión de reales a enteros Con el siguiente programa se pueden apreciar las diferencias entre las cuatro funciones para convertir de reales a enteros: program convertir_real_a_entero print

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2010 Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 01/01/2010 . INDICE: 01. APARICIÓN DE LAS FRACCIONES. 02. CONCEPTO DE FRACCIÓN. 03.

Más detalles

Tema 3 Elementos básicos de programación

Tema 3 Elementos básicos de programación Representación de Datos y Aplicaciones Tema 3 Elementos básicos de programación Natividad Martínez Madrid nati@it.uc3m.es Objetivos del tema 3 Conocer la estructura básica de un programa Java Comprender

Más detalles

Estructura de Datos y de la Información. Pilas y expresiones aritméticas

Estructura de Datos y de la Información. Pilas y expresiones aritméticas Estructura de Datos y de la Información Pilas y expresiones aritméticas LIDIA Laboratorio de Investigación y desarrollo en Inteligencia Artificial Departamento de Computación Universidade da Coruña, España

Más detalles

Introducción a la Programación 11 O. Humberto Cervantes Maceda

Introducción a la Programación 11 O. Humberto Cervantes Maceda Introducción a la Programación 11 O Humberto Cervantes Maceda Recordando En la sesión anterior vimos que la información almacenada en la memoria, y por lo tanto aquella que procesa la unidad central de

Más detalles

Álgebra y Matemática Discreta Sesión de Prácticas 1

Álgebra y Matemática Discreta Sesión de Prácticas 1 Álgebra y Matemática Discreta Sesión de Prácticas 1 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 16 Sep 2013-22 Sep 2013 Estructuras Algebraicas La Estructura como Variable Tenemos una gran

Más detalles

Programación Funcional Lisp-DrScheme Primera Parte. Dr. Oldemar Rodríguez Rojas Escuela de Informática Universidad de Nacional

Programación Funcional Lisp-DrScheme Primera Parte. Dr. Oldemar Rodríguez Rojas Escuela de Informática Universidad de Nacional Programación Funcional Lisp-DrScheme Primera Parte Dr. Oldemar Rodríguez Rojas Escuela de Informática Universidad de Nacional Programación Funcional! La programación funcional es un paradigma de programación

Más detalles

2. Estructuras condicionales

2. Estructuras condicionales 2. Estructuras condicionales Fundamentos de Informática Dpto. Lenguajes y Sistemas Informáticos Curso 2012 / 2013 Índice Estructuras condicionales 1. Ej07: Cond. simple 2. Ej08: Cond. doble 3. Ej09: Cond.

Más detalles

TIPOS DE VARIABLES EN PHP. DECLARACIÓN Y ASIGNACIÓN. LA INSTRUCCIÓN ECHO PARA INSERTAR TEXTO O CÓDIGO. (CU00816B)

TIPOS DE VARIABLES EN PHP. DECLARACIÓN Y ASIGNACIÓN. LA INSTRUCCIÓN ECHO PARA INSERTAR TEXTO O CÓDIGO. (CU00816B) APRENDERAPROGRAMAR.COM TIPOS DE VARIABLES EN PHP. DECLARACIÓN Y ASIGNACIÓN. LA INSTRUCCIÓN ECHO PARA INSERTAR TEXTO O CÓDIGO. (CU00816B) Sección: Cursos Categoría: Tutorial básico del programador web:

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

UNIDAD DE APRENDIZAJE IV

UNIDAD DE APRENDIZAJE IV UNIDAD DE APRENDIZAJE IV Saberes procedimentales 1. Interpreta y utiliza correctamente el lenguaje simbólico ara el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones

Más detalles

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA 2010

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA 2010 Detalles de Matlab MATLAB utiliza la aritmética del punto flotante, la cual involucra un conjunto finito de números con precisión finita. Esta limitación conlleva dos dificultades: los números representados

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (

Más detalles

Actividades de Divulgación del Centro Atómico Bariloche. Qué hay detrás de un programa de computadora? Daniela Arnica Pablo E. Argañaras.

Actividades de Divulgación del Centro Atómico Bariloche. Qué hay detrás de un programa de computadora? Daniela Arnica Pablo E. Argañaras. Actividades de Divulgación del Centro Atómico Bariloche Qué hay detrás de un programa de computadora? Expositores: Daniela Arnica Pablo E. Argañaras División Mecánica Computacional Gerencia de Investigación

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

Sentencias o instrucciones en Visual BASIC

Sentencias o instrucciones en Visual BASIC Tecnología a de la Informació Sentencias o instrucciones en Visual BASIC REM Tecnología a de la Informació REM es una sentencia no ejecutable y permite introducir comentarios en los programas. A esta práctica

Más detalles

PHP: Lenguaje de programación

PHP: Lenguaje de programación Francisco J. Martín Mateos Carmen Graciani Diaz Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Tipos de datos Enteros Con base decimal: 45, -43 Con base octal: 043, -054

Más detalles

Sebastián García Galán Sgalan@ujaen.es

Sebastián García Galán Sgalan@ujaen.es Universidad de Jaén E.U.P. Linares Dpto. Telecomunicaciones Área de Ingeniería Telemática Sebastián García Galán Sgalan@ujaen.es TEMA 2: 2.1 CODIFICACIÓN 2.2 SISTEMAS DE NUMERACIÓN BASES DE NUMERACIÓN

Más detalles

TEMA 6 ARITMÉTICA BINARIA Y CIRCUITOS ARITMÉTICOS

TEMA 6 ARITMÉTICA BINARIA Y CIRCUITOS ARITMÉTICOS TEMA 6 ARITMÉTICA BINARIA Y CIRCUITOS ARITMÉTICOS . ARITMÉTICA BINARIA. Aritmética binaria básica a) Suma binaria.sea C i el acarreo (carry) generado al sumar los bits A i B i (A i +B i ) 2. Sea i= y C

Más detalles

Organización del Computador I 1er. Parcial 17-Mayo-2005. Turno:

Organización del Computador I 1er. Parcial 17-Mayo-2005. Turno: Nota: En el parcial se puede tener la cartilla de Assembler y la de seguimiento (formatos de instrucción) pero no se pueden compartir. Para aprobar el parcial, son necesarios 6(seis) puntos. Para promocionar,

Más detalles

Tema: FUNCIONES, PROCEDIMIENTOS Y RECURSIVIDAD.

Tema: FUNCIONES, PROCEDIMIENTOS Y RECURSIVIDAD. Programación I, Guía 6 1 Facultad : Ingeniería Escuela : Computación Asignatura: Programación I Tema: FUNCIONES, PROCEDIMIENTOS Y RECURSIVIDAD. Objetivos Utilizar la sintaxis de las funciones definidas

Más detalles

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por.

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por. 2. Nociones sobre Teoría de Conjuntos y Lógica Para llevar a cabo nuestro propósito de especificar formalmente los problemas y demostrar rigurosamente la correctitud de nuestro programas, introduciremos

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

Comencemos a programar con. Entrega 10. Estructuras de Control II

Comencemos a programar con. Entrega 10. Estructuras de Control II Comencemos a programar con VBA - Access Entrega 10 Estructuras de Control II Eduardo Olaz 10-2 Estructuras de Control, segunda parte Las Instrucciones While - - - Wend La estructura de bucle For Contador

Más detalles

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales.

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. Definir los conceptos básicos del Algebra Elemental. Conocer los procedimientos para sumar,

Más detalles

Introducción a la Programación en MATLAB

Introducción a la Programación en MATLAB Introducción a la Programación en MATLAB La programación en MATLAB se realiza básicamente sobre archivos M, o M-Files. Se los denomina de esta forma debido a su extensión.m. Estos archivos son simple archivos

Más detalles

Lenguaje C Bucles, Condicionales, operadores y Algoritmos.

Lenguaje C Bucles, Condicionales, operadores y Algoritmos. Lenguaje C Bucles, Condicionales, operadores y Algoritmos. Omar Andrés Zapata Mesa Grupo de Fenomenología de Interacciones Fundamentales, (Gfif) Universidad de Antioquia Operadores Los operadores son aquellos

Más detalles

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA DEPARTAMENTO DE ELECTRONICA Programación Avanzada en C

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA DEPARTAMENTO DE ELECTRONICA Programación Avanzada en C Rutinas de conversión. De enteros a caracteres. Ltoa. Long to Ascii. Pasar de un número en representación interna a una secuencia de caracteres, permite desplegar en la salida los valores de las variables

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles