MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN"

Transcripción

1 MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de la palabra griega polyedron que literalmente significa muchas caras. Los poliedros son en esencia formas 3D que están compuestos de varios polígonos los cuales son las llamadas caras de este. Por definición, las caras de un poliedro son siempre planas. Por esto mismo, los conos o cilindros NO son poliedros sino que son llamados cuerpos redondos. Los componentes de un poliedro son: Donde tenemos lo siguiente: Caras: son los planos de los polígonos que conforman el poliedro. Aristas: son los segmentos que cortan las caras del poliedro. Vértices: son los puntos donde se intersecan o cortan las aristas del poliedro.

2 Al igual que en el caso de los polígonos, los poliedros pueden ser cóncavos o convexos. Serán convexos si todas las caras pueden apoyarse en el plano horizontal (debido a sus ángulos convexos) y si alguna no lo hace, el poliedro será cóncavo. Poliedro Cóncavo Poliedro Convexo Tipos de Poliedros Los tipos de poliedros son los siguientes: Prismas: un prisma es un tipo de poliedro en el cual se cumplen las siguientes relaciones:

3 a) tener dos caras basales paralelas con polígonos iguales. b) tener tantas caras laterales de tipo paralelogramo, como aristas tenga este polígono. A los prismas se les clasifica según el número de lados que tengan las caras basales, por lo tanto podremos clasificarlos según el siguiente criterio: Los prismas pueden ser regulares, si sus polígonos basales están conformados por polígonos de tipo regular (imagen de arriba), o irregulares si sus bases son polígonos irregulares. Otra característica importante de los prismas es que además poseen una altura. Si esta coincide con las aristas laterales del prisma entonces este será un prisma recto, en caso contrario será un prisma oblicuo, de acuerdo a la imagen de abajo:

4 Desarrollo 2D de Prismas Todos los prismas tienen la particularidad de ser desarrollables, es decir, que todas sus caras pueden representarse en un plano bidimensional y mediante plegados puede ser construido de forma tridimensional. El desarrollo de un prisma recto es bastante simple ya que está compuesto por sus caras basales y un rectángulo que tiene por medida la cantidad de divisiones de las caras laterales. La imagen de abajo ilustra el desarrollo de tres tipos de prismas regulares: En el caso del desarrollo de un prisma oblicuo, este dependerá del grado de inclinación y de las caras rectas visibles, aunque en el caso

5 que la inclinación sea hacia un solo lado debemos repetir la cara oblicua mediante un efecto espejo. Prismas Paralelepípedos Un paralelepípedo es un prisma en el cual todas sus caras son paralelógramos (caras opuestas iguales y paralelas). Como todos los prismas, pueden ser rectos u oblicuos y siempre son prismas cuadrangulares. Los paralelepípedos son los siguientes: En el caso del Ortoedro, sus caras son rectángulos. En el caso del Cubo, sus caras son cuadrados. En el caso del Romboedro, sus caras son rombos. En el caso del Romboiedro, sus caras son romboides. Pirámides

6 Una pirámide es un tipo de poliedro en el cual se cumplen las siguientes relaciones: a) tener una base la cual es un polígono. b) tener tantas caras triangulares como lados tenga la base. El punto donde convergen las caras triangulares se denomina cúspide. Las pirámides pueden ser cóncavas o convexas dependiendo del tipo de polígono de su base. Al igual que en el caso de los prismas, las pirámides cual se define desde el vértice a la base. Sin embargo derá del centro de gravedad del polígono base. Si la cide con este la pirámide será oblicua. Si el centro altura la pirámide será recta. poseen altura la la altura depenaltura no coincoincide con la Pirámides regulares Una pirámide es regular si todas las caras laterales son iguales, formadas por triángulos isósceles.

7 La altura de cada una de estas caras es denominada apotema. Podremos calcularla mediante el teorema de Pitágoras, usando la medida del punto medio de la base del triángulo hasta el centro y la altura de la pirámide como catetos, de acuerdo a la siguiente fórmula: C2 = a2 + b2 Desarrollo 2D de Pirámides Al igual que en el caso de los prismas, todas las pirámides tienen la particularidad de ser desarrollables, es decir, que todas sus caras pueden representarse en un plano bidimensional y mediante plegados puede ser construido de forma tridimensional. El desarrollo de una pirámide recta está compuesto por su base y las proyecciones de los triángulos isósceles de las caras laterales, unidas por sus aristas mayores.

8 Desarrollo de una pirámide de bases Hexagonal y Rectangular Poliedros regulares Un Poliedro es regular si todas sus caras son iguales. También son conocidos como sólidos platónicos ya que en la antigua Grecia fueron estudiados por Platón. Sólo existen 5 poliedros regulares los cuales son: Tetraedro, pirámide formada por triángulos equiláteros. Cubo, paralelepípedo formado por cuadrados. Octaedro, formado por ocho triángulos equiláteros.

9 Dodecaedro, formado por doce pentágonos regulares. Icosaedro, formado por veinte triángulos equiláteros. Desarrollo 2D de poliedros regulares al igual que en los casos snteriores, todas los poliedros regulares tienen la particularidad de ser desarrollables, es decir, que todas sus caras pueden representarse en un plano bidimensional y mediante plegados puede ser construido de forma tridimensional. A continuación se muestra el desarrollo de los 5 poliedros ya mencionados. Desarrollo de un Tetraedro: Desarrollo de un Cubo:

10 Desarrollo de un Octaedro:

11 Desarrollo de un Dodecaedro: Desarrollo de un Icosaedro:

12 Cuerpos redondos Definiremos como cuerpo redondo a un cuerpo geométrico tridimensional que posee al menos una cara cuya superficie es curva. Estos cuerpos suelen ser generados mediante las rotaciones de sus caras en torno a un eje determinado. Los cuerpos redondos típicos son los siguientes: El cilindro

13 Un cilindro es un cuerpo redondo que se genera a partir de la rotación de un rectángulo en torno a uno de sus lados el cual es a su vez el eje de revolución. Los tres lados restantes del rectángulo son la generatriz de este. En el cilindro distinguimos la superficie curva como superficie lateral y posee dos bases paralelas formadas por un círculo en la parte superior e inferior. Ambas bases son exactamente iguales. En un cilindro recto podremos distinguir la altura la cual será la distancia entre las dos bases, y que coincide con la Generatriz. Al igual que en el caso de los prismas y las pirámides, los cilindros pueden ser rectos u oblicuos. Desarrollo 2D del cilindro recto Los cilindros tienen la particularidad de ser desarrollables, es decir, que todas sus caras pueden representarse en un plano bidimensional y mediante plegados puede ser construido en el espacio 3D. En el desarrollo 2D del cilindro, la bases serán círculos iguales y la superficie curva será lograda a partir de un rectángulo el cual tendrá por altura la Generatriz y cuyo largo será el perímetro de uno de los círculos de las bases el cual se calcula con la conocida fórmula de cálculo de perímetro: L = 2 x? x R

14 El cono Un cono es un cuerpo redondo que se genera a partir de la rotación de una recta inclinada la cual se intersecta con el eje de revolución y siguiendo a una base redonda como directriz. En el cono distinguimos la superficie curva como superficie lateral y la base, formada por un círculo. El punto donde convergen todas las generatrices se conoce como vértice.

15 En un cono recto podremos distinguir la altura la cual será la distancia entre el vértice y la base, y que coincidirá con el eje de revolución. Al igual que en el caso de los prismas y las pirámides, los cilindros pueden ser rectos u oblicuos. Desarrollo 2D del cono recto Los conos tienen la particularidad de ser desarrollables, es decir, que todas sus caras pueden representarse en un plano bidimensional y mediante plegados puede ser construido de forma tridimensional. En el desarrollo 2D del cono, la base será un círculo y la superficie curva será lograda a partir de un sector circular con el radio de la generatriz, y la sección será determinada por la longitud del arco o perímetro de la directriz mediante la conocida fórmula de cálculo de perímetro: L = 2 x? x R Para calcular el ángulo del sector circular del desarrollo (y así poder dibujarlo) debemos usar la siguiente fórmula: A = Radio de la base / Generatriz x 360

16 La esfera La esfera es un cuerpo redondo que se genera a partir de la rotación de un semicírculo en torno a un eje de revolución el cual es a la vez

17 el diámetro de este. En este caso, el diámetro es el eje y el semicírculo la Generatriz. Este cuerpo redondo es el único que no puede desarrollarse en el plano 2D ya que todo su volumen es curvo. Ejercicios propuestos Construir en cartón forrado los siguientes poliedros, tomando medidas arbitrarias: El cubo. El tetraedro. El Octaedro. El dodecaedro. El Icosaedro. El Cilindro. El Cono. Un prisma de Base Hexagonal. Una pirámide de base Pentagonal. Solución: primero debemos dibujar los polígonos necesarios según las técnicas de dibujo vistas en el apunte sobre polígonos. Luego estos polígonos deberán ser recortados para ser ocupados como molde para dibujar el desarrollo de los poliedros en el cartón.

18 Finalmente recortamos los moldes y plegamos las aristas para pegarlas y construir las formas. NOTA: debemos considerar pestañas extras para poder pegar las aristas. Para el caso de los cuerpos redondos bastará dibujar directamente los desarrollos en el cartón. En el caso del cilindro se deberán dibujar líneas verticales paralelas a la altura de modo que se puedan doblar para formar el cuerpo de este, el cono será ejecutado de manera similar pero las líneas serán radiales a igual distancia y partirán desde la cúspide hasta la base.

19 Debemos recordar que dominar la construcción de poliedros y cuerpos redondos es fundamental para el desarrollo de estructuras y formas 3D en maquetería.

IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos

IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos Cuerpos geométricos Contenidos 1. Poliedros Definición Elementos de un poliedro 2. Tipos de poliedros Prismas Prismas regulares Desarrollo de un prisma recto Paralelepípedos Pirámides Pirámides regulares

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos. CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio. CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos.

10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Impreso por Juan Carlos Vila Vilariño Centro PASTORIZA (Nº 3) Sumario 1 Los poliedros... 3 1.1

Más detalles

MATEMÁTICAS (GEOMETRÍA)

MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica

Más detalles

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro 8 Cuerpos geométricos. Objetivos En esta quincena aprenderás a: Identificar que es un poliedro. Determinar los elementos de un poliedro: Caras, aristas y vértices. Clasificar los poliedros. Especificar

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

Cuerpos geométricos. Volúmenes

Cuerpos geométricos. Volúmenes 4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:

Más detalles

Trabajo de Investigación Cuerpos Geométricos

Trabajo de Investigación Cuerpos Geométricos Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado.

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado. Cuenca, 11 de noviembre de 2013 Clase 13 Geometría del espacio Figuras geométricas en el espacio Definiciones: Geometría del espacio: Rama de las matemáticas encargada de las propiedades y medida de las

Más detalles

SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL

SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL G3D1: Sólidos convexos y cóncavos SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL Pon tres ejemplos de objetos cotidianos que sean convexos: Pon tres ejemplos de objetos cotidianos que sean cóncavos: G3D2: Caracterización

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

Conceptos geométricos II

Conceptos geométricos II Conceptos geométricos II Ángulo Ángulos Consecutivos Ángulos Alternos y Ángulos Correspondientes Polígono Polígono Regular Polígono Irregular Triángulo Cuadrilátero Superficie Círculo Superficie reglada

Más detalles

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES OJETIVO 1 CONOCER Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro son: Caras:

Más detalles

Qué son los cuerpos geométricos?

Qué son los cuerpos geométricos? Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS DE REDONDOS Poliedros. o Elementos de un poliedro y desarrollo plano. Prismas. o Elementos y tipos de prismas. Pirámides. o Elementos y tipos de

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes MÓDULO Nº 4 Nivelación Matemática 2005 Módulo Nº4 Contenidos Circunferencia y Círculo Volúmenes Nivelación Circunferencia y Círculo Circunferencia. Es una línea curva cerrada, cuyos puntos tienen la propiedad

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

Diferencias entre Figuras y

Diferencias entre Figuras y 10 Lección Refuerzo Matemáticas Diferencias entre Figuras y Cuerpos Geométricos APRENDO JUGANDO Competencia Aplica conocimientos acerca de las principales características de polígonos y cuerpos geométricos.

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15 LOS POLIEDROS Los poliedros son cuerpos geométricos que tienen todas sus caras formadas por polígonos. Muchos objetos de nuestro alrededor tienen forma de poliedro: Los elementos de un poliedro son caras,

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 12 Figuras planas y espaciales Recuerda lo fundamental Curso:... Fecha:... TRIÁNGULOS Mediana de un triángulo es un segmento que...... Las tres medianas de un triángulo se cortan en el...... Las mediatrices

Más detalles

MATEMÁTICAS (TIC) REPASO BIMESTRAL (3P) TALLER DE REPASO PARA EL BIMESTRAL 3P

MATEMÁTICAS (TIC) REPASO BIMESTRAL (3P) TALLER DE REPASO PARA EL BIMESTRAL 3P COLEGIO COLOMBO BRITANICO Formación en la Libertad y para la Libertad MATEMÁTICAS (TIC) REPASO BIMESTRAL (3P) GRADO:7 O DOCENTES: Natalia A. Gil V. Nubia E. Niño C. FECHA: 18 / 08 /15 Taller Adicional

Más detalles

ELEMENTOS Y CLASES DE ÁNGULOS

ELEMENTOS Y CLASES DE ÁNGULOS Apellidos: Curso: Grupo: Nombre: Fecha: ELEMENTOS Y CLASES DE ÁNGULOS Dos rectas que se cortan forman 4 regiones llamadas ángulos. Las partes de un ángulo son: los lados: son las semirrectas que lo forman.

Más detalles

Geometría en el espacio. Poliedros

Geometría en el espacio. Poliedros Geometría en el espacio. Gemma Hermida Granado Trinidad Gómez Ramírez 28 de junio de 2006 Geometría en el espacio. 1 Programación de la unidad Objetivos didácticos Conceptos Procedimientos Actitudes Criterios

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

Poliedro cóncavo: es aquel que no cumple la propiedad anterior. Una recta puede cortarlo por más de dos puntos.

Poliedro cóncavo: es aquel que no cumple la propiedad anterior. Una recta puede cortarlo por más de dos puntos. El sistema diédrico D13 El prisma Poliedros Poliedro es un cuerpo geométrico limitado por polígonos. Caras del poliedro son los polígonos que lo limitan. Vértices son los vértices de las caras. Aristas

Más detalles

Problemas geométricos

Problemas geométricos Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de

Más detalles

Poliedros regulares Cuerpos de revolución

Poliedros regulares Cuerpos de revolución Poliedros regulares Cuerpos de revolución Poliedro. Un poliedro es un cuerpo limitado por caras poligonales. Ángulo diedro. Ángulo poliedro Se llama ángulo diedro de un poliedro el que está formado por

Más detalles

Created with novapdf Printer (www.novapdf.com)

Created with novapdf Printer (www.novapdf.com) GEOMETRÍA LONGITUDES Longitud de la circunferencia Es una línea curva cerrada que equidistan todos sus puntos del centro. Radio Centro: punto situado a igual distancia de todos los puntos de la circunferencia.

Más detalles

CUERPOS GEOMÉTRICOS. Clases de cuerpos geométricos. Los poliedros. Los poliedros regulares.

CUERPOS GEOMÉTRICOS. Clases de cuerpos geométricos. Los poliedros. Los poliedros regulares. CUERPOS GEOMÉTRICOS. Se denominan cuerpos geométricos a aquellos elementos que, ya sean reales o ideales - que existen en la realidad o pueden concebirse mentalmente - ocupan un volumen en el espacio desarrollándose

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles

11 POLIEDROS EJERCICIOS. 6 Cuántas caras, vértices y aristas hay en los siguientes poliedros? a) b) c)

11 POLIEDROS EJERCICIOS. 6 Cuántas caras, vértices y aristas hay en los siguientes poliedros? a) b) c) 11 POLIEROS EJERIIOS 1 ibuja una línea recta en tu cuaderno. escribe algún segmento real en el techo de la clase que se cruce con la línea que has dibujado. 6 uántas caras, vértices y aristas hay en los

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

open green road Guía Matemática CUERPOS GEOMÉTRICOS tutora: Jacky Moreno .co

open green road Guía Matemática CUERPOS GEOMÉTRICOS tutora: Jacky Moreno .co Guía Matemática CUERPOS GEOMÉTRICOS tutora: Jacky Moreno.co 1. Geometría en el espacio Al observar nuestro alrededor podemos notar una infinidad de objetos que ocupan un lugar en el espacio físico en el

Más detalles

CENTRO EDUCATIVO PAULO FREIRE TALLER

CENTRO EDUCATIVO PAULO FREIRE TALLER CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

Piden: Dato: Piden: Dato: Piden: Dato:

Piden: Dato: Piden: Dato: Piden: Dato: SEMANA 1 PRISMAS Y PIRÁMIDE 1. Calcule el número de caras de un prisma donde el número de vértices más el número de aristas es 50. A) 10 B) 0 C) 0 D) 1 E) 18 Sea n el número de lados de la base del prisma:

Más detalles

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad VOLUMENES Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad POLIEDROS Un poliedro es un cuerpo limitado por polígonos Los polígonos que limiten el poliedro, se llaman

Más detalles

RESUMEN DE FORMULAS EJERCICIOS de APLICACIÓN POLIEDROS

RESUMEN DE FORMULAS EJERCICIOS de APLICACIÓN POLIEDROS RESUMEN DE FORMULAS EJERCICIOS de APLICACIÓN POLIEDROS. 1.-Calcule la superficie total de un tetraedro cuya arista mide 2 (12 3 ) 2.- Se tiene un tetraedro cuya arista mide 6 3 cm. Calcular.- 2.1.-La superficie

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

Los poliedros y sus elementos

Los poliedros y sus elementos Los poliedros y sus elementos De las siguientes figuras, rodea las que sean poliedros o tengan forma de poliedro. Dibuja y escribe el nombre de tres objetos que tengan forma de poliedro. espuesta libre

Más detalles

DE PRISMAS Y POLIEDROS. A LA BÚSQUEDA DEL CUBOIDE PERFECTO

DE PRISMAS Y POLIEDROS. A LA BÚSQUEDA DEL CUBOIDE PERFECTO DE PRISMAS Y POLIEDROS. A LA BÚSQUEDA DEL CUBOIDE PERFECTO De poliedros En el espacio euclídeo tridimensional podemos resumir algunas nociones básicas de geometría clásica Un poliedro es la zona espacial

Más detalles

geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia

geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia CBC TALLER DE DIBUJO Cátedra Arq. VÍCTOR MURGIA 2008 3 INTRODUCCIÓN AL LENGUAJE GEOMÉTRICO línea recta Este texto trata sobre conceptos básicos

Más detalles

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características.

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características. 826464 _ 0385-0396.qxd /2/07 09:27 Página 385 Cuerpos geométricos INTRODUCCIÓN Esta unidad completa la serie dedicada a la Geometría y afianza su comprensión mediante la descripción y desarrollo de las

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

Tema 10: Cuerpos geométricos y transformaciones geométricas

Tema 10: Cuerpos geométricos y transformaciones geométricas Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS

Más detalles

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS Se llaman poliedros todos los cuerpos geométricos que tienen todas sus caras planas. Los cuerpos redondos son aquellos que tienen alguna de sus superficies

Más detalles

Problemas geométricos

Problemas geométricos 8 Problemas geométricos Objetivos En esta quincena aprenderás a: Aplicar las razones trigonométricas para estudiar las relaciones que existen entre los ángulos y los lados de las figuras planas. Calcular

Más detalles

Uso no comercial 12.4 CUERPOS REDONDOS

Uso no comercial 12.4 CUERPOS REDONDOS 1.4 CUERPOS REDONDOS Designamos en general como cuerpos redondos el conjunto de puntos del espacio obtenido cuando una figura gira alrededor de una recta, de tal forma que cada punto de la figura conserva,

Más detalles

1. ESQUEMA - RESUMEN Página. 2. EJERCICIOS DE INICIACIÓN Página. 3. EJERCICIOS DE DESARROLLO Página. 4. EJERCICIOS DE AMPLIACIÓN Página

1. ESQUEMA - RESUMEN Página. 2. EJERCICIOS DE INICIACIÓN Página. 3. EJERCICIOS DE DESARROLLO Página. 4. EJERCICIOS DE AMPLIACIÓN Página 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 7 4. EJERCICIOS DE AMPLIACIÓN Página 9 5. EJERCICIOS DE REFUERZO Página 12 6. EJERCICIOS RESUELTOS

Más detalles

Los Cuerpos Geométricos

Los Cuerpos Geométricos 06 Lección Apertura Matemáticas Los Cuerpos Geométricos APRENDO JUGANDO Competencia Describe qué son e identifica las características de los cuerpos geométricos. Diseño instruccional El maestro comenta

Más detalles

CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS. Según los lados. Triángulos. Según los ángulos. Paralelogramo. Cuadriláteros.

CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS. Según los lados. Triángulos. Según los ángulos. Paralelogramo. Cuadriláteros. CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS Equilátero Polígonos Según los lados Isósceles Figuras geometrícas Nombre según los lados 3-Triángulo 4-Cuadrilátero 5-Pentágono 6-Hexágono 7-Heptágono

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10.2 Completa la siguiente tabla. Caras (C ) Vértices (V ) Aristas (A) C V A 2 Tetraedro 4

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso. Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

11 Cuerpos geométricos

11 Cuerpos geométricos 89485 _ 0369-0418.qxd 1/9/07 15:06 Página 369 Cuerpos geométricos INTRODUCCIÓN Los poliedros, sus elementos y tipos ya son conocidos por los alumnos del curso anterior. Descubrimos y reconocemos de nuevo

Más detalles

GEOMETRIA 8 AÑO 2011 1. Nombre:.Curso:

GEOMETRIA 8 AÑO 2011 1. Nombre:.Curso: GEOMETRIA 8 AÑO 2011 1 GUÍA DE APOYO AL TEMA : GEOMETRÍA Prof. Juan Schuchhardt E. Nombre:.Curso: UNIDAD #4 GEOMETRIA Tema # 2: Cuerpos geométricos En esta unidad aprenderás a: Identificar cuerpos poliédricos,

Más detalles

Los cuerpos geométricos

Los cuerpos geométricos Los cuerpos geométricos Se denominan cuerpos geométricos a aquellos elementos que, ya sean reales o ideales que existen en la realidad o pueden concebirse mentalmente ocupan un volumen en el espacio desarrollándose

Más detalles

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior? Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos

Más detalles

Liceo N 1 Javiera Carrera 8 años 2011

Liceo N 1 Javiera Carrera 8 años 2011 GUIA DE ESTUDIO : Cuerpos geométricos Prof. Juan Schuchhardt E. DEFINICIÓN: Los poliedros son aquellos cuerpos geométricos que están limitados por superficies planas y de contorno poligonal. Un poliedro

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

Sistemas de Representación y Dibujo Técnico Año 2015. Geometría Básica

Sistemas de Representación y Dibujo Técnico Año 2015. Geometría Básica EL PUNTO Geometría Básica El punto es la entidad geométrica más pequeña y finita. Se puede definir por intersección de 2 rectas. En un plano, se puede definir por medio de 2 coordenadas. En el espacio,

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

Áreas de cuerpos geométricos

Áreas de cuerpos geométricos 9 Áreas de cuerpos geométricos Objetivos En esta quincena aprenderás a: Calcular el área de prismas rectos de cualquier número de caras. Calcular el área de pirámides de cualquier número de caras. Calcular

Más detalles

Nº caras. Nº vértices

Nº caras. Nº vértices Tipo De Caras (Ángulo Interior) Triángulo Equilátero (60º) Cuadrado (90º) Pentágono (108º) Hexágono (10º) Nº caras por vértice Suma de los ángulos de cada vértice Nº caras Nº vértices Nº aristas C + V

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M.

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.4.2 Análisis de las características de los cuerpos que se generan al girar sobre un eje, un triángulo

Más detalles

Clasificación de los triángulos

Clasificación de los triángulos Página 213 Clasificación de los triángulos 1. Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes: A B C D A isósceles y obtusángulo. C equilátero y acutángulo. B escaleno y acutángulo.

Más detalles

CUERPOS GEOMÉTRICOS. POLIEDROS

CUERPOS GEOMÉTRICOS. POLIEDROS INTRODUCCIÓN CUERPOS GEOMÉTRICOS - POLIEDROS Este texto te servirá para que estudies los contenidos sobre poliedros que fueron desarrollados por los distintos grupos en clases y tiene como objetivos que

Más detalles

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos: MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de

Más detalles

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo.

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo. PRISMAS Y PIRÁMIDES. 06 1 Comprende la relación que existe entre el volumen de un prisma con respecto al volumen de una pirámide que tienen la misma base y altura. En Presentación de Contenidos para explicar

Más detalles

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I).

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). Al final deberás haber aprendido... El examen tratará sobre... Describir los cuerpos geométricos del espacio e identificar sus elementos. Deducir las fórmulas para

Más detalles

Cuerpos geométricos. 2.1 Poliedros. El desarrollo del prisma pentagonal está formado por: ' ' "'-^ ^, Dos pentágonos congruentes.

Cuerpos geométricos. 2.1 Poliedros. El desarrollo del prisma pentagonal está formado por: ' ' '-^ ^, Dos pentágonos congruentes. Cuerpos geométricos Un cuerpo geométrico o sólido es una porción del espacio limitada por superficies planas o curvas llamadas caras. 2.1 Poliedros Los poliedros son cuerpos geométricos limitados por cuatro

Más detalles

Introducción a la geometría

Introducción a la geometría Introducción a la geometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (217 temas)

Más detalles

Los cuerpos geométricos

Los cuerpos geométricos Los cuerpos geométricos Los poliedros y sus elementos Clasifica estos cuerpos en poliedros y no poliedros. A B C D E F G poliedros> B, D, E, F A, C, G no poliedros > Cuenta las caras, los vértices y las

Más detalles