Mecánica Clásica ( Partículas y Bipartículas )

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mecánica Clásica ( Partículas y Bipartículas )"

Transcripción

1 Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna Resumen Este trabajo consdera la exstenca de bpartículas y presenta una ecuacón general de movmento, que puede ser aplcada en cualquer sstema de referenca no rotante (nercal o no nercal) sn necesdad de ntroducr fuerzas fctcas. Sstema de Referenca Unversal El sstema de referenca unversal S es un sstema de referenca en el que la aceleracón å de cualquer partícula está dada por la sguente ecuacón: å = F m donde F es la fuerza resultante que actúa sobre la partícula y m es la masa de la partícula. El sstema de referenca unversal S es un sstema de referenca nercal. Por lo tanto, se puede afrmar que el sstema de referenca unversal S es tambén un sstema de referenca no rotante.

2 Ecuacón General de Movmento La ecuacón general de movmento para dos partículas A y B es: m a m b (r a r b ) = m a m b ( r a r b ) donde m a y m b son las masas de las partículas A y B, r a y r b son las poscones de las partículas A y B con respecto a un sstema de referenca no rotante S, r a y r b son las poscones de las partículas A y B con respecto al sstema de referenca unversal S. S m a m b = m ab, (r a r b ) = r ab y ( r a r b ) = r ab, entonces la ecuacón anteror queda: m ab r ab = m ab r ab La ecuacón general de movmento para un sstema de N partículas es: j> m m j (r r j ) = m m j ( r r j ) j> donde m y m j son las masas de las partículas -ésma y j-ésma, r y r j son las poscones de las partículas -ésma y j-ésma con respecto a un sstema de referenca no rotante S, r y r j son las poscones de las partículas -ésma y j-ésma con respecto al sstema de referenca unversal S. S m m j = m j, (r r j ) = r j y ( r r j ) = r j, entonces la ecuacón anteror queda: j> m j r j = m j r j j> Un sstema de partículas forma un sstema de bpartículas. Por ejemplo, el sstema de partículas A, B, y D forma el sstema de bpartículas AB, A, AD, B, BD y D.

3 Partículas y Bpartículas A partr de la ecuacón general de movmento para dos partículas A y B (ecuacón azul subrayada) se obtenen las sguentes ecuacones: BPARTÍULA PARTÍULA N E M Á T A a ab = åab a ab = å ab a a = å a a a = åa v ab = v ab v ab = v ab v a = v a v a = v a r ab = r ab r ab = r ab r a = r a r a = r a N E M Á T A D N Á M A m abr ab = m ab r ab m ab r ab = m ab r ab m a r a = m a r a m ar a = m a r a m abv ab = m ab v ab m ab v ab = m ab v ab m a v a = m a v a m av a = m a v a m aba ab = m abå ab m ab a ab = m ab å ab m a a a = m a å a m aa a = m aå a D N Á M A BPARTÍULA PARTÍULA 3

4 Las ecuacones azules son váldas en cualquer sstema de referenca no rotante, debdo a que (r ab = r ab ), (v ab = v ab ) y (a ab = å ab ) Las ecuacones rojas son váldas en cualquer sstema de referenca nercal, debdo a que (a a = å a ) Las ecuacones cnemátcas se obtenen de las ecuacones dnámcas s consderamos que todas las partículas tenen la msma masa. Por lo tanto, las ecuacones cnemátcas son un caso especal de las ecuacones dnámcas. La dnámca de partículas se obtene de la dnámca de bpartículas s sólo consderamos bpartículas que tenen la msma partícula. Por ejemplo: S consderamos un sstema de bpartículas AB, A y B, se tene: AB + A + B = AB + A + B onsderando sólo las bpartículas que tenen la partícula, sgue: A + B = A + B Aplcando la ecuacón general de movmento, se obtene: m a m c (r a r c ) + m b m c (r b r c ) = m a m c ( r a r c ) + m b m c ( r b r c ) Dervando dos veces con respecto al tempo, se deduce: m a m c (a a a c ) + m b m c (a b a c ) = m a m c (å a å c ) + m b m c (å b å c ) Dvdendo por m c, usando un sstema de referenca fjo a la partícula ( a c = 0 con respecto al sstema de referenca ) y asumendo que el sstema de referenca es nercal (a c = å c ), se obtene: m a a a + m b a b = m a å a + m b å b Susttuyendo å = F/m y reordenando, fnalmente se deduce: F a + F b = m a a a + m b a b 4

5 Ecuacón de Movmento A partr de la ecuacón general de movmento se deduce que la aceleracón a a de una partícula A con respecto a un sstema de referenca S (no rotante) fjo a una partícula S, está dada por la sguente ecuacón: a a = F a m a F s m s donde F a es la fuerza resultante que actúa sobre la partícula A, m a es la masa de la partícula A, F s es la fuerza resultante que actúa sobre la partícula S y m s es la masa de la partícula S. En contradccón con la prmera y segunda ley de Newton, de la ecuacón anteror se deduce que la partícula A puede estar acelerada aun s sobre la partícula A no actúa fuerza alguna y tambén que la partícula A puede no estar acelerada (estado de reposo o de movmento rectlíneo unforme) aun s sobre la partícula A actúa una fuerza no equlbrada. Por otro lado, de la ecuacón anteror tambén se deduce que la prmera y segunda ley de Newton son váldas en el sstema de referenca S sólo s la fuerza resultante que actúa sobre la partícula S es gual a cero. Por lo tanto, el sstema de referenca S es un sstema de referenca nercal sólo s la fuerza resultante que actúa sobre la partícula S es gual a cero. Bblografía A. Ensten, Sobre la Teoría de la Relatvdad Especal y General. E. Mach, La enca de la Mecánca. R. Resnck y D. Hallday, Físca. J. Kane y M. Sternhem, Físca. H. Goldsten, Mecánca lásca. L. Landau y E. Lfshtz, Mecánca. 5

6 Apéndce Transformacones El sstema de referenca unversal S es un sstema de referenca nercal. ualquer sstema de referenca nercal es un sstema de referenca no rotante. ualquer sstema de referenca central S cm (sstema de referenca fjo al centro de masa de un sstema de partículas) es un sstema de referenca no rotante. Se puede pasar de las coordenadas x, y, z, t de un sstema de referenca S (no rotante) a las coordenadas x, y, z, t de otro sstema de referenca S (no rotante) cuyo orgen de coordenadas O se encuentra en la poscón x o, y o, z o con respecto al sstema de referenca S, aplcando las sguentes ecuacones: x = x x o y = y y o z = z z o t = t A partr de estas ecuacones, es posble transformar en forma vectoral las poscones, velocdades y aceleracones del sstema de referenca S al sstema de referenca S, aplcando las sguentes ecuacones: r = r r o v = v v o a = a a o donde r o, v o y a o son la poscón, velocdad y aceleracón respectvamente del sstema de referenca S con respecto al sstema de referenca S. 6

7 Defncones Partículas Bpartículas Masa M = m M j = j> m j Poscón vectoral R = m r /M R j = j> m j r j /M j Velocdad vectoral V = m v /M V j = j> m j v j /M j Aceleracón vectoral A = m a /M A j = j> m j a j /M j Poscón escalar R = m r /M R j = j> m j r j /M j Velocdad escalar V = m v /M V j = j> m j v j /M j Aceleracón escalar A = m a /M A j = j> m j a j /M j Trabajo W = m a dr W j = j> mj a j dr j ( ) ( ) W = m v W j = j> m j vj Relacones ( ) M j R j = M R R ( ) M j V j = M V V ( ) M j A j = M A A S M /M j = k, entonces las ecuacones anterores con respecto al sstema de referenca central S cm quedan: R cm j V cm j A cm j = k R cm = k V cm = k A cm 7

8 Prncpos Las poscones, velocdades y aceleracones (vectoral y escalar) de un sstema de bpartículas son nvarantes bajo transformacones entre sstemas de referenca no rotantes. R j = R j = Rj cm = R j R j = R j = Rj cm = R j V j = V j = Vj cm = V j V j = V j = Vj cm = V j A j = Å j = Aj cm = A j A j = Å j = Aj cm = A j A partr del prncpo anteror se deduce que la aceleracón a a de una partícula A con respecto a un sstema de referenca no rotante S fjo a una partícula S, está dada por la sguente ecuacón: a a = F a m a F s m s donde F a es la fuerza resultante que actúa sobre la partícula A, m a es la masa de la partícula A, F s es la fuerza resultante que actúa sobre la partícula S y m s es la masa de la partícula S. Las aceleracones (vectoral y escalar) de un sstema de partículas son nvarantes bajo transformacones entre sstemas de referenca nercales. A = Å = A A = Å = A A partr del prncpo anteror se deduce que la aceleracón a a de una partícula A con respecto a un sstema de referenca nercal S, está dada por la sguente ecuacón: a a = F a m a donde F a es la fuerza resultante que actúa sobre la partícula A y m a es la masa de la partícula A. 8

9 W j = j> Trabajo y Fuerza El trabajo W j realzado por las fuerzas que actúan sobre un sstema de bpartículas con respecto a un sstema de referenca no rotante, está dado por: ( F m m j F ) j d (r r j ) m m j El trabajo W realzado por las fuerzas que actúan sobre un sstema de partículas con respecto al sstema de referenca central, está dado por: W = F dr El trabajo W realzado por las fuerzas que actúan sobre un sstema de partículas con respecto a un sstema de referenca nercal, está dado por: W = F dr onservacón de Energía nétca S las fuerzas que actúan sobre un sstema de partículas no realzan trabajo con respecto al sstema de referenca central, entonces la energía cnétca del sstema de partículas permanece constante con respecto al sstema de referenca central. S la energía cnétca del sstema de partículas permanece constante con respecto al sstema de referenca central, entonces la energía cnétca del sstema de bpartículas permanece constante con respecto a cualquer sstema de referenca no rotante. S las fuerzas que actúan sobre el sstema de partículas no realzan trabajo con respecto a un sstema de referenca nercal, entonces la energía cnétca y la cantdad de movmento (magntud) del sstema de partículas permanecen constantes con respecto al sstema de referenca nercal; aun s la tercera ley de Newton no fuese válda. 9

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Cantidad de movimiento

Cantidad de movimiento Cnétca 37 / 63 Cnétca Cantdad de momento Momento cnétco: Teorema de Koeng Energía cnétca: Teorema de Koeng Sóldo con punto fjo: Momento cnétco Sóldo con punto fjo: Energía cnétca Sóldo: Momento relato

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

EQUILIBRIO DE UN CUERPO RIGIDO

EQUILIBRIO DE UN CUERPO RIGIDO Manual e Laboratoro e ísca I C - UNMSM EQUILIBRIO E UN CUERPO RIGIO EXPERIENCIA Nº 6 Cuerpo rígdo: La dstanca entre dos puntos cualesquera del cuerpo permanece nvarante en el tempo. I. OBJETIVOS - Estudar

Más detalles

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA JRCICIOS RSULTOS D TRABAJO Y NRGÍA. Un bloque de 40 kg que se encuentra ncalmente en reposo, se empuja con una uerza de 30 N, desplazándolo en línea recta una dstanca de 5m a lo largo de una superce horzontal

Más detalles

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

MEMORIAS DEL XV CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 23 al 25 DE SEPTIEMBRE, 2009 CD. OBREGÓN, SONORA. MÉXICO A4_139

MEMORIAS DEL XV CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 23 al 25 DE SEPTIEMBRE, 2009 CD. OBREGÓN, SONORA. MÉXICO A4_139 MEMORIAS DEL XV CONGRESO INERNACIONAL ANUAL DE LA SOMIM 23 al 25 DE SEPIEMBRE, 29 CD. OBREGÓN, SONORA. MÉXICO A4_39 Cnemátca Inversa y Análss Jacobano del Robot Paralelo Hexa Vázquez Hernández Jesús, Cuenca

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Resumen TEMA 5: Dinámica de percusiones

Resumen TEMA 5: Dinámica de percusiones TEM 5: Dnámca e percusones Mecánca Resumen TEM 5: Dnámca e percusones. Concepto e percusón Impulsón elemental prouca por una fuerza: F Impulsón prouca por una fuerza en un nteralo (t, t ): F Percusón es

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

Problemas sobre números complejos -1-

Problemas sobre números complejos -1- Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Dualidad entre procesos termodinámicos y electromecánicos

Dualidad entre procesos termodinámicos y electromecánicos ENERGÍA Y COENERGÍA EN IEMA ELECROMECÁNICO REALE, DEDE PROCEDIMIENO ERMODINÁMICO CLÁICO Alfredo Álvarez García Profesor de Inenería Eléctrca de la Escuela de Inenerías Industrales de adajoz. Resumen La

Más detalles

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c. Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una

Más detalles

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c.

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c. .. TIPOS DE CORRIENTES Y DE ELEMENTOS DE CIRCUITOS Contnua: Corrente cuyo valor es sempre constante (no varía con el tempo). Se denota como c.c. t Alterna: Corrente que varía snusodalmente en el tempo.

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas COTEIDO Defncón y cálculo del cento de masas ovmento del cento de masas Fuezas ntenas y fuezas enas Enegía cnétca de un sstema de patículas Teoemas de consevacón paa un sstema de patículas B. Savon /.A.

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Rentas o Anualidades

Rentas o Anualidades Rentas o Anualdades Patrca Ksbye Profesorado en Matemátca Facultad de Matemátca, Astronomía y Físca 10 de setembre de 2013 Patrca Ksbye (FaMAF) 10 de setembre de 2013 1 / 31 Introduccón Rentas o Anualdades

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

Convertidores Digital-Analógico y Analógico-Digital

Convertidores Digital-Analógico y Analógico-Digital Convertdores Dgtal-Analógco y Analógco-Dgtal Conversón Dgtal-Analógca y Analógca-Dgtal Con estos crcutos se trata de consegur una relacón bunívoca entre una señal analógca y una dgtal o vceversa. Las magntudes

Más detalles

Dinámica de Manipuladores Robóticos

Dinámica de Manipuladores Robóticos DINAMICA DE MANIPULADORES Dnámca de Manpuladores Robótcos 1998 Andrés Jaramllo Botero 1 abla de Contendo DINÁMICA... 5 CONCEPOS GENERALES... 5 DESCRIBIENDO EL MOVIMIENO DE CADENAS SERIALES MULICUERPO...

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 0-03 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Olgopolo y competenca monopolístca.

Más detalles

9. Movimiento Circular Uniformemente Acelerado

9. Movimiento Circular Uniformemente Acelerado 9. Movmento Crcular Unormemente Acelerado Ete movmento e preenta cuando un móvl con trayectora crcular aumenta o dmnuye en cada undad de tempo u velocdad angular en orma contante, por lo que u aceleracón

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Desarrollo de sistema de control para un manipulador de seis grados de libertad

Desarrollo de sistema de control para un manipulador de seis grados de libertad Memora del Trabajo Fn de Máster realzado por Fdel Pérez Menéndez para la obtencón del título de Máster en Ingenería de Automatzacón e Informátca Industral Desarrollo de sstema de control para un manpulador

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal UNIVRSIDAD AUTÓNOMA D NUVO ÓN FACUTAD D INGNIRÍA MCANICA Y ÉCTRICA Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL:

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL: Geografía y Sstemas de Informacón Geográfca (GEOSIG). Revsta dgtal del Grupo de Estudos sobre Geografía y Análss Espacal con Sstemas de Informacón Geográfca (GESIG). Programa de Estudos Geográfcos (PROEG).

Más detalles

PRÁCTICAS DE FÍSICA I

PRÁCTICAS DE FÍSICA I GRADOS E IGEIERÍA DE TECOLOGÍAS IDUSTRIALES E IGEIERÍA QUÍMICA CURSO 04-05 PRÁCTICAS DE FÍSICA I. Estátca y dnámca: prncpo de Arquímedes y ley de Stokes.. Leyes de la dnámca: ª ley de ewton. 3. Osclacones

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA ONDAS ESFÉRCAS RADACÓN ACÚSTCA.- SEA UN MEDO FLUDO LMTADO SÓTROPO Y HOMOGÉNEO. CONSDEREMOS EN SU NTEROR UNA ESFERA DE RADO QUE SE HNCHA RÁPDAMENTE HASTA LOGRAR UN VALOR DE RADO. EL FLUDO ALREDEDOR DE LA

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

62 EJERCICIOS de NÚMEROS COMPLEJOS

62 EJERCICIOS de NÚMEROS COMPLEJOS 6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin.

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin. Capítulo II: MECÁNICA DEL SÓLIDO RÍGIDO 5ª Leccón: Sstema de fuerzas gravtatoras. Cálculo de centros de gravedad de fguras planas: teoremas de Guldn. Sstemas de fuerzas gravtatoras La deduccón parte de

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

UNNE Facultad de Ingeniería UNIDAD III: CORRIENTE ELECTRICA Y CIRCUITOS ELÉCTRICOS. Indice

UNNE Facultad de Ingeniería UNIDAD III: CORRIENTE ELECTRICA Y CIRCUITOS ELÉCTRICOS. Indice UNIDAD III: COIENTE ELECTICA Y CICUITOS ELÉCTICOS Desplazamento de cargas eléctrcas. Intensdad y densdad de corrente. Undades. esstenca y resstvdad. Ley de OHM. aracón de la resstvdad con la temperatura.

Más detalles

Diseño y Construcción de un Músculo Neumático y su Aplicación en el Control de Posición de un Dedo Robótico

Diseño y Construcción de un Músculo Neumático y su Aplicación en el Control de Posición de un Dedo Robótico Dseño y Construccón de un Músculo Neumátco y su Aplcacón en el Control de Poscón de un Dedo Robótco Fabo Abel Agurre Cerrllo *, Ernesto Cancno Cruz*, Marco Antono Olver Salazar**, Darusz Szwedowcz Wask***

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

Conservación del Momento Lineal y de la Energía

Conservación del Momento Lineal y de la Energía Conservacón del Moento Lneal y de la Energía Conservacón del Moento Lneal y de la Energía Objetvos Coprobar experentalente la conservacón del oento lneal edante choques elástcos e nelástcos. Coprobar la

Más detalles

Algoritmo para la ubicación de un nodo por su representación binaria

Algoritmo para la ubicación de un nodo por su representación binaria Título: Ubcacón de un Nodo por su Representacón Bnara Autor: Lus R. Morera González En este artículo ntroducremos un algortmo de carácter netamente geométrco para ubcar en un árbol natural la representacón

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire 4 Undad II: Análss de la combustón completa e ncompleta. 1. Are El are que se usa en las reaccones de combustón es el are atmosférco. Ya se djo en la Undad I que, debdo a que n el N n los gases nertes

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

Parte I: Propagación de ondas

Parte I: Propagación de ondas desarrollo de experencas ddáctcas 5 Anmando la Físca Parte I: Propagacón de ondas Oleg V. Nagornov, Roberto E. Calgars, Georgna B. Rodrígez y Marta G. Calgars Calqer profesor qe trate de enseñar físca

Más detalles

TEMA 3. La política económica en una economía abierta con movilidad perfecta de capitales

TEMA 3. La política económica en una economía abierta con movilidad perfecta de capitales TEMA 3. La polítca económca en una economía aberta con movldad perfecta de captales Asgnatura: Macroeconomía II Lcencatura en Admnstracón y Dreccón de Empresas Curso 2007-2008 Prof. Anhoa Herrarte Sánchez

Más detalles

Tema 3. Trabajo, energía y conservación de la energía

Tema 3. Trabajo, energía y conservación de la energía Físca I. Curso 2010/11 Departamento de Físca Aplcada. ETSII de Béjar. Unversdad de Salamanca Profs. Alejandro Medna Domínguez y Jesús Ovejero Sánchez Tema 3. Trabajo, energía y conservacón de la energía

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

Variable aleatoria: definiciones básicas

Variable aleatoria: definiciones básicas Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

Sobre La Mecánica Clásica de los Cuerpos Puntuales III

Sobre La Mecánica Clásica de los Cuerpos Puntuales III Sobre La Mecánica Clásica de los Cuerpos Puntuales III Alejandro A. Torassa Buenos Aires, Argentina, E-mail: atorassa@gmail.com Licencia Creative Commons Atribución 3.0 (11 de febrero de 2008) Resumen.

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa. Expermento 13 Versón para el alumno Dspacón de energía mecáa Objetvo general El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Objetvos partculares

Más detalles

Determinación de Puntos de Rocío y de Burbuja Parte 1

Determinación de Puntos de Rocío y de Burbuja Parte 1 Determnacón de Puntos de Rocío y de Burbuja Parte 1 Ing. Federco G. Salazar ( 1 ) RESUMEN El cálculo de las condcones de equlbro de fases líqudo vapor en mezclas multcomponentes es un tema de nterés general

Más detalles

Etáti Estática. 2.Centros de gravedad y 3.Momentos de inercia

Etáti Estática. 2.Centros de gravedad y 3.Momentos de inercia Etát Estátca.Equlbro 2.Centros de gravedad y 3.Momentos de nerca Parte de la físca que estuda el equlbro de los cuerpos Partedelafíscaqueestudalasrelaconesexstentes entre las fuerzas que actúan en un cuerpo

Más detalles

Estimación del consumo del consumo diario de gas a partir de lecturas periódicas de medidores

Estimación del consumo del consumo diario de gas a partir de lecturas periódicas de medidores Estmacón del consumo del consumo daro de gas a partr de lecturas peródcas de meddores S.Gl, 1, A. Fazzn, 3 y R. Preto 1 1 Gerenca de Dstrbucón del ENARGAS, Supacha 636- (18) CABA- Argentna Escuela de Cenca

Más detalles

Transformación de Park o D-Q

Transformación de Park o D-Q Apénce B ransformacón e Park o D-Q B.. Expresón e la matrz e transformacón La transformacón e Park o D-Q conerte las componentes 'abc' el sstema trfásco a otro sstema e referenca 'q'. El objeto e la transformacón

Más detalles

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana? Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad,

Más detalles

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO.

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. CONTENIDOS: 3.1 Intoduccón 3. Cnemátca de la otacón alededo de un eje fjo. 3.3 Momento de una fueza y de un sstema de fuezas. 3.4 Momento angula del sóldo ígdo. 3.5

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS Procedmento de Calbracón Metrología PROCEDIMIENTO DI-00 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede descargarse gratutamente

Más detalles

3ºESO TRANSMISIÓN DEL MOVIMIENTO: MECANISMOS. José Garrigós Dark 3ºESO

3ºESO TRANSMISIÓN DEL MOVIMIENTO: MECANISMOS. José Garrigós Dark 3ºESO 3ºESO TRANSISIÓN DEL OVIIENTO: EANISOS José Garrgós Dark 3ºESO ÍNDIE: TRANSISIÓN DEL OVIIENTO: EANISOS 3ºESO. INTRODUIÓN. EANISOS DE TRANSISIÓN LINEAL... LA PALANA.. OENTO DE UNA FUERZA..3. LEY DE LA PALANA..4.

Más detalles

Solución De La Ecuación De Difusión Usando El Método De Lattice-Boltzmann Y Diferencias Finitas

Solución De La Ecuación De Difusión Usando El Método De Lattice-Boltzmann Y Diferencias Finitas Revsta Colombana de Físca, Vol. 43, No. 3 de 20. Solucón De La Ecuacón De Dfusón Usando El Método De Lattce-Boltzmann Y Dferencas Fntas Soluton Of The Dffuson Equaton Usng Lattce-Boltzmann And Fnte Dfference

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Principio de D Alembert

Principio de D Alembert Capítulo 15 Prncpo de D Alembert 15.1 Prncpo de D Alembert En práctcamente cualquer sstema mecánca, además de las fuerzas que controlan su evolucón, exsten certo número de lgaduras que constrñen su movmento.

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS101M. Sección 03. José Mejía López. jmejia@puc.cl

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS101M. Sección 03. José Mejía López. jmejia@puc.cl PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS11M Seccón 3 José Mejía López jmeja@puc.cl http://www.s.puc.cl/~jmeja/docenca/s11m.html JML s11m-1 Capítulo Dnámca Trabajo y energía

Más detalles

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO. ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO..- PERSPECTIVA HISTÓRICA MATERIA { MOLÉCULAS } { ÁTOMOS}, sendo los átomos y/o moléculas estables por la nteraccón electromagnétca. Desde la perspectva electromagnétca

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

Trabajo Especial 2: Cadenas de Markov y modelo PageRank

Trabajo Especial 2: Cadenas de Markov y modelo PageRank Trabajo Especal 2: Cadenas de Markov y modelo PageRank FaMAF, UNC Mayo 2015 1. Conceptos prelmnares Sea G = (V, E, A) un grafo drgdo, con V = {1, 2,..., n} un conjunto (contable) de vértces o nodos y E

Más detalles