Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN"

Transcripción

1 Decripción Diagrama de bloue originale ONMUTATIVA AA A SUMA Diagrama de bloue euivalente 8 MOVIMIENTO A A IZUIEDA DE UN UNTO DE BIFUAIÓN DISTIBUTIVA A A SUMA 9 MOVIMIENTO A A DEEA DE UN UNTO DE BIFUAIÓN ONMUTATIVA AA A MUTIIAIÓN 0 MOVIMIENTO A A IZUIEDA DE UN UNTO DE BIFUAIÓN SOBE UN UNTO DE SUMA DISTIBUTIVA AA A MUTIIAIÓN OMENSAIÓN DE FUNIONES DE TANSFEENIA BOUES EN AAEO OMENSAIÓN DE FUNIONES DE TANSFEENIA MOVIMIENTO A A IZUIEDA DE UN UNTO DE SUMA AZO EADO A AZO ABIETO MOVIMIENTO A A DEEA DE UN UNTO DE SUMA

2 rocedimiento para trazar diagrama de bloue. Un diagrama a bloue e una repreentación matemática gráfica del modelo matemático de un itema. En muco cao, eto diagrama no permiten entender el comportamiento y conexión del itema y a u vez, eta decripción puede er programada en imuladore ue tienen un ambiente gráfico como lo e el imulink de Matlab. on el objeto de trazar un diagrama de bloue de un itema e ugiere eguir lo iguiente pao:. E neceario conocer la ecuacione diferenciale ue decriben el comportamiento dinámico del itema a analizar y la alida y entrada coniderada.. Se obtiene la tranformada de aplace de eta ecuacione, en ete cao como el diagrama a bloue on repreentacione de funcione de tranferencia, la condicione iniciale e conideran cero.. De la ecuacione tranformada e depeja auella donde eté involucrada la alida del itema.. De la ecuación obtenida e ubican la variable ue etán como entrada y ue deben de er alida de otro bloue. Se depejan ea variable de otra ecuacione. ecuerda nunca utilizar una ecuación ue ya e utilizó previamente.. egrear al pao ata ue la entrada ea coniderada y toda la variable del itema ean coniderada.. Depué de obtener la ecuacione e generan lo diagrama a bloue de cada una. Debido al procedimiento utilizado lo bloue uedan prácticamente para er conectado a partir del bloue de alida. Simplificación de un diagrama a Bloue Teniendo el diagrama a bloue en alguno cao e neceario implificarlo ata una ola función de tranferencia. ara eto exiten vario procedimiento, uno de ello e utilizando la propiedade del álgebra de bloue y otro, utilizando gráfico de flujo de eñal ue e verá ma adelante. Una regla general para implificar un diagrama de bloue conite en mover lo punto de bifurcación y lo punto uma, intercambiar lo punto uma y depué reducir la malla interna de realimentación. E importante ue no e altere la eñale involucrada en el movimiento compenando con la funcione necearia. Ejemplo: ara el iguiente itema idráulico obtenga la función de tranferencia utilizando diagrama a bloue conidere in entrada y alida. Suponga ue:,,,,,

3 ara el tanue. dt d in ara el tanue. dt d ara el tanue. dt d Tranformando para. in Tranformando para. Tranformando para. Ecuación Diagrama de bloue. in

4 Arreglo

5 Arreglo or lo tanto la función de tranferencia e: [ ] [ ][ ]

6 AFIOS DE FUJO DE SEÑA. S.J. MASON. E un diagrama ue repreenta un conjunto de ecuacione algebraica lineale imultanea, donde cada: Nodo Variable del itema. ama multiplicador ecuación de tranformada y tranmitancia. Dirección Sentido del flujo. donde: K : ganancia o tranmitancia de trayectoria de la k-éima trayectoria directa. : determinante del grafico: a bc def... a b, c d, e, f, K : ofactor del determinante de la k-éima trayectoria directa del grafico, con lo lazo ue tocan la trayectoria directa k-éima eliminado. Ejemplo. Solución : ráfico de flujo de eñal: Fórmula de ganancia de Maon: K K K

7 Ejemplo idráulico. Entrada: in Salida: rafico de Señal: Trayectoria directa: azo: Solución: Trayectori a Directa. azo. y Adjunto. :

8 . Ejemplo. rafico de flujo de eñal..

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

DIAGRAMAS DE BLOQUES. Figura 1 Elementos de un diagrama de bloques

DIAGRAMAS DE BLOQUES. Figura 1 Elementos de un diagrama de bloques DIAGRAMAS DE BOQUES 1. EEMENTOS DE UN DIAGRAMA DE BOQUES Un diagrama de bloques de un sistema es una representación gráfica de las funciones realizadas por cada componente y del flujo de las señales. os

Más detalles

Diagramas de bloques

Diagramas de bloques UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D INNIRÍA MCANICA Y LÉCTRICA Diagrama de bloque INNIRÍA D CONTROL M.C. JOSÉ MANUL ROCHA NUÑZ M.C. LIZABTH P. LARA HDZ. UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

DINÁMICA ESTRUCTURAL. Diagramas de bloques

DINÁMICA ESTRUCTURAL. Diagramas de bloques DINÁMICA ESTRUCTURAL Diagramas de bloques QUÉ ES UN DIAGRAMA DE BLOQUES? Definición de diagrama de bloques: Es una representación gráfica de las funciones que lleva a cabo cada componente y el flujo de

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 7: REGLAS DE KIRCHHOFF Comprobar experimentalmente que en un

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección Curo Báico 2003 UNIDAD 4 Conulta INTRODUCCIÓN Una conulta e una pregunta que le realizamo a una bae de dato para que no dé información concreta obre lo dato que contiene. No permiten: Etablecer criterio

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

DIAGRAMAS DE BLOQUES

DIAGRAMAS DE BLOQUES Univeridad Carlo III de Madrid Señale y Sitema DIAGRAMAS DE BLOQUES Diagrama de bloque. 1. Repreentación en diagrama de bloque. 2. Operacione con bloque. Dolore Blanco, Ramón Barber, María Malfaz y Miguel

Más detalles

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Leyes de Kirchoff Objetivos 1. Establecer la relación matemática que existe entre diferencia de potencial, resistencia y

Más detalles

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1 . Modelo Orientado al Proceo. Modelo Orientado al Proceo.. Introducción.. Mecanimo de Muetreo.3. Modelo de Modulación.3.. Modelo de un Muetreador-Retenedor 3.3.. Repueta a una entrada u: 5.3.3. Simulación

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

Tema 2. Circuitos resistivos y teoremas

Tema 2. Circuitos resistivos y teoremas Tema. Circuito reitivo y teorema. ntroducción.... Fuente independiente..... Fuente de tenión..... Fuente independiente de intenidad.... eitencia.... 4.. ociación de reitencia... 5 eitencia en erie... 5

Más detalles

Transformada de Laplace

Transformada de Laplace Tranformada de Laplace Prof. André Roldán Aranda amroldan ugr.e http : electronica.ugr.e amroldan 5 03 2009 Etudio de la tranformada de Laplace para u uo en el cálculo de la eñale de alida de circuito

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

MODELOS MATEMÁTICOS. 1. Diagrama de flujo de señal. 2. Fórmula de Mason. Flujograma. Método de Mason.

MODELOS MATEMÁTICOS. 1. Diagrama de flujo de señal. 2. Fórmula de Mason. Flujograma. Método de Mason. MODELOS MATEMÁTICOS Flujograma. Método de Mason. 1. Diagrama de flujo de señal. 2. Fórmula de Mason. ibliografía Ogata, K., "Ingeniería de control moderna", Ed. Prentice-Hall. Capítulo 3 Dorf, R.C., "Sistemas

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

Técnicas Avanzadas de Control Memoria de ejercicios

Técnicas Avanzadas de Control Memoria de ejercicios Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA. TALLER 2: Fabricación y medición de inductancias

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA. TALLER 2: Fabricación y medición de inductancias UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA TALLER : Fabricación y medición de inductancia OBJETIVO: Lograr la habilidad ara imlementar inductore de caracterítica

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

Ecuaciones de 1er Grado 2. Incógnitas. Ing. Gerardo Sarmiento Díaz de León

Ecuaciones de 1er Grado 2. Incógnitas. Ing. Gerardo Sarmiento Díaz de León Ecuaciones de 1er Grado 2 Incógnitas Ing. Gerardo Sarmiento Díaz de León 2009 Teoría sobre ecuaciones de primer grado con 2 icognitas solución por los 3 metodos CETis 63 Ameca, Jalisco Algebra Área matemáticas

Más detalles

2. Cálculo de las pérdidas de carga localizadas.

2. Cálculo de las pérdidas de carga localizadas. Cátedra de Ineniería Rural Ecuela Unieritaria de Ineniería Técnica Arícola de Ciudad Real Tema 8. Pérdida de cara localizada o accidentale. Introducción y concepto. Cálculo de la pérdida de cara localizada

Más detalles

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática Univeridad Central Del Ete U C E Facultad de Ciencia y Humanidade Ecuela de Pedagogía Mención Ciencia Fíica y Matemática Programa de la aignatura: (MAT351) Álgebra Superior Total de Crédito: 3 Teórico:

Más detalles

LABORATORIO DE ELECTROMAGNETISMO LEYES DE KIRCHHOFF

LABORATORIO DE ELECTROMAGNETISMO LEYES DE KIRCHHOFF No LABOATOO DE ELECTOMAGNETSMO LEYES DE KCHHOFF DEPATAMENTO DE FSCA Y GEOLOGA UNESDAD DE PAMPLONA FACULTAD DE CENCAS BÁSCAS Objetivos. Entender las leyes de conservación de energía eléctrica y de la conservación

Más detalles

Análisis En El Dominio De La Frecuencia

Análisis En El Dominio De La Frecuencia Análii En El Dominio De La Frecuencia.-Introducción..-Repueta en frecuencia...-diagrama cero-polar. 3.-Repreentación gráfica de la repueta en frecuencia. 3..-Diagrama de Bode. 3..-Diagrama polar (Nyquit.

Más detalles

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9 Introducción Sitema de control 67-22 verión 2003 Página 1 de 9 Según vimo en el capítulo I, al controlador ingrean la eñale R() (et-point) y B() (medición de la variable controlada ), e comparan generando

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017.

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Bloque 1. Procesos, métodos y actitudes en matemáticas. Los criterios correspondientes a este bloque son los marcador

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Sistemas de orden superior

Sistemas de orden superior 7 Sitema de orden uperior Hata ahora ólo e ha etudiado la repueta del régimen tranitorio de lo itema de primer y egundo orden imple. En ete capítulo e pretende analizar la evolución temporal de itema de

Más detalles

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad.

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad. Cinemática 103 TEST 1.- Un móvil que va con M.R.U. inicia u movimiento en x = 12 m y luego de 8 etá en x = 28 m. Hallar u velocidad. a) 2 m/ d) 6 m/ ) 8 m/ e) 7 m/ c) 4 m/ 2.- Señalar verdadero o falo

Más detalles

ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE

ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE DAVID CUEVA ERAZO daidcuea.5@hotail.co ANTHONY ENCALADA CAIZAPANTA anthony-fer@hotail.co ALPHA LANDÁZURI

Más detalles

Práctica 6.2: Circuito hidráulico para cilindro de grúa

Práctica 6.2: Circuito hidráulico para cilindro de grúa Práctica 6.: Circuito hidráulico para cilindro de grúa Una grúa de tranporte de chatarra utiliza do cilindro hidráulico para mover u brazo articulado. Se va a etudiar el circuito que irve para accionar

Más detalles

5. MODELO DE UN INTERCAMBIADOR DE CALOR

5. MODELO DE UN INTERCAMBIADOR DE CALOR 5. MODELO DE UN INERCAMBIADOR DE CALOR Para la explicación del modelo matemático de un intercambiador de calor aire agua, e neceario en primer lugar definir una erie de término. Éto aparecen en la abla

Más detalles

Tema 4: Programación lineal con variables continuas: método del Simplex

Tema 4: Programación lineal con variables continuas: método del Simplex Tema 4: Programación lineal con variable continua: método del Simple Obetivo del tema: Reolver de forma gráfica un problema de programación lineal continuo Etudiar la forma equivalente de repreentación

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO En el Capítulo e obtuvieron la ecuacione para lo flujo electrocinético en término del potencial electrotático promedio ψ() en el interior del poro cilíndrico.

Más detalles

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO XXV Jornada de Automática Ciudad Real, del 8 al de eptiembre de 4 MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO Manuel Pérez Polo, Joé Ángel Berná Galiano, Javier Gil Chica Departamento

Más detalles

Análisis del Lugar Geométrico de las Raíces (LGR) o Método de Evans

Análisis del Lugar Geométrico de las Raíces (LGR) o Método de Evans Análii del Lugar Geométrio de la Raíe (LGR) o Método de Evan La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el

Más detalles

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Ecuaciones Diferenciales y Dinámica definición de la RAE Modelo: (definición

Más detalles

2. Cuál es el precio sugerido por tu grupo por cada carro que se lava? Justifica tu respuesta.

2. Cuál es el precio sugerido por tu grupo por cada carro que se lava? Justifica tu respuesta. HOJA DE TRABAJO #1: RECAUDANDO FONDOS El Club de Matemáticas de la escuela necesita recaudar fondos para un viaje a Washington D.C. y para su baile del Día de San Valentín. Los miembros del club proponen

Más detalles

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica)

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica) MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL Con el apoyo académico de la Univeridad Católica de Lovaina y la Univeridad de Gante Bélgica PROGRAMA DE AUTOMATIZACION INDUSTRIAL Univeridad de Ibagué Marzo

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

Examen de Sistemas Automáticos Agosto 2013

Examen de Sistemas Automáticos Agosto 2013 Examen de Sitema Automático Agoto 203 Ej. Ej. 2 Ej. 3 Ej. 4 Total Apellido, Nombre: Sección: Fecha: 20 de agoto de 203 Atención: el enunciado conta de tre ejercicio práctico y un tet de repueta múltiple

Más detalles

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Resolver expresiones con números naturales con paréntesis y operaciones combinadas. 2. Reducir expresiones aritméticas y algebraicas

Más detalles

Objetivo: -Medir la potencia activa trifásica mediante el método de los dos vatímetros (Método de Aarón).

Objetivo: -Medir la potencia activa trifásica mediante el método de los dos vatímetros (Método de Aarón). Objetivo: -Medir la potencia activa trifásica mediante el método de los dos vatímetros (Método de Aarón).. Medida de la otencia La potencia demandada por una carga trifásica es igual a la suma de las potencias

Más detalles

Aplicando la Transformada de Laplace a Redes Eléctricas

Aplicando la Transformada de Laplace a Redes Eléctricas Aplicando la Tranformada de Laplace a Rede Eléctrica J.I. Huircán Univeridad de La Frontera April 5, 006 Abtract Se aplica la Tranformada de Laplace a ditinta rede eléctrica, primero excitacione báica

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática Programa de la asignatura: MAT-151 ALGEBRA LINEAL Total de Créditos: 4 Teórico:

Más detalles

Optimización de Tiempo para el Proceso de Atención al Cliente para un Restaurante Altamente Estacional

Optimización de Tiempo para el Proceso de Atención al Cliente para un Restaurante Altamente Estacional Optimización de Tiempo para el Proceo de Atención al Cliente para un Retaurante Altamente Etacional Alumna: Año Académico: 212 Profeor Guía: Contraparte: TERESA YOLANDA OLAVE QUINTEROS RODOLFO SCHMAL Ecuela

Más detalles

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Univeridad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Documento UTN Nº EA3-5- Adaptación de impedancia en amplif de RF Introducción o amplificadore de potencia e uan generalmente

Más detalles

Introducción. Alfonso Cubillos. Programa de Ing. Mecánica Universidad de Ibagué. Aplicaciones computacionales de la Mecánica de Materiales

Introducción. Alfonso Cubillos. Programa de Ing. Mecánica Universidad de Ibagué. Aplicaciones computacionales de la Mecánica de Materiales Programa de Ing. Mecánica Universidad de Ibagué Aplicaciones computacionales de la Mecánica de Materiales Agosto 2007 Cuál es la definición de Mecánica? Cuál es la definición de Mecánica? La mecánica es

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación

1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación CIRCUITOS RESISTIVOS: 1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación es un enunciado de la ley de Ohm. Un conductor cumple con la ley de Ohm sólo si su curva V-I es lineal;

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

Criterios de Evaluación MÍNIMOS

Criterios de Evaluación MÍNIMOS s 2º ESO / 2ºPAB Concreción : CE.1 Utilizar números enteros, fracciones, decimales y porcentajes sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información y resolver

Más detalles

Habilidades Digitales Matemáticas para secundaria

Habilidades Digitales Matemáticas para secundaria Habilidades Digitales Matemáticas para secundaria Qué es el producto?: 6 CD ROM para secundaria diseñados para apoyar el desarrollo de habilidades digitales en las asignaturas relacionadas con las matemáticas.

Más detalles

Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico

Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico Materia: Matemática de 5to Tema: Método de Cramer Marco Teórico El determinante se define de una manera aparentemente arbitraria, sin embargo, cuando se mira a la solución general de una matriz, el razonamiento

Más detalles

SOMI XVIII Congreso de Instrumentación ELECTRONICA VBG1885 SISTEMA DE MEDICIÓN DE SUSCEPTIBILIDAD MAGNÉTICA AC

SOMI XVIII Congreso de Instrumentación ELECTRONICA VBG1885 SISTEMA DE MEDICIÓN DE SUSCEPTIBILIDAD MAGNÉTICA AC SOMI XVIII Congreo de Intrumentión SISTEMA DE MEDICIÓN DE SUSCEPTIBILIDAD MAGNÉTICA AC E. R. Vázquez Cerón, J. A. Aguillón Armijo, A. Y. Velázquez Cadena, V. R. Barrale Guadarrama, N. Reye Ayala, E. Rodríguez

Más detalles

Versión Fecha Descripción de la modificación 01 07/10/2008 Inicial

Versión Fecha Descripción de la modificación 01 07/10/2008 Inicial CONTROL DE CAMBIOS MANUAL DE PROCESOS Y PROCEDIMIENTOS Fecha: 30/11/2012 Página: 1 de 19 Verión Fecha Decripción de la modificación 01 07/10/2008 Inicial 02 20/10/2010 Modifico etructura, objetivo, alcance,

Más detalles

Fuerza de fricción estática

Fuerza de fricción estática Laboratorio de Meánia. Experimento 10 Fuerza de friión etátia Objetivo general Etudiar la fuerza de friión etátia. Objetivo epeífio Determinar lo oefiiente de friión entre diferente pareja de materiale.

Más detalles

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

PRIMER LABORATORIO EL 7032

PRIMER LABORATORIO EL 7032 PRIMER LABORATORIO EL 7032 1.- OBJETIVOS.- 1.1.- Analizar las formas de onda y el comportamiento dinámico de un motor de corriente continua alimentado por un conversor Eurotherm Drives, 590+ Series DC

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS Práctica Nº 6 MEDID DE POTENI EN TRIFÁSI MÉTODO DE OS DOS VTÍMETROS 1. Objetivos a) Medida de la potencia activa, reactiva y el factor de potencia, en una red trifásica a tres hilos (sin neutro), utilizando

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

Tranformaciones de Funciones

Tranformaciones de Funciones Tranformaciones de Funciones Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido : Contenido Discutiremos: transformaciones algebraicas de funciones : Contenido Discutiremos: transformaciones

Más detalles

COMPARATIVA DINÁMICA DE MODELOS DEL CUERPO HUMANO

COMPARATIVA DINÁMICA DE MODELOS DEL CUERPO HUMANO UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INGENIERÍA MECÁNICA PROYECTO FIN DE CARRERA INGENIERÍA TÉCNICA INDUSTRIAL-ELECTRÓNICA INDUSTRIAL COMPARATIVA DINÁMICA DE MODELOS

Más detalles

CAPÍTULO 4 TÉCNICA PERT

CAPÍTULO 4 TÉCNICA PERT 54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

DISEÑO CURRICULAR ALGEBRA LINEAL

DISEÑO CURRICULAR ALGEBRA LINEAL DISEÑO CURRICULAR ALGEBRA LINEAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 122443 02 02 03 II PRE-REQUISITO ELABORADO

Más detalles

Ingeniero electrónico. Investigador de la Universidad Pedagógica y Tecnológica de Colombia. Sogamoso, Colombia. Contacto: landres87@hotmail.

Ingeniero electrónico. Investigador de la Universidad Pedagógica y Tecnológica de Colombia. Sogamoso, Colombia. Contacto: landres87@hotmail. Boot LENNY ANDRÉS HERNÁNDEZ FONSECA Ingeniero electrónico. Invetigador de la Univeridad Pedagógica y Tecnológica de Colombia. Sogamoo, Colombia. Contacto: landre87@hotmail.com DIEGO RICARDO GÓMEZ LEÓN

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: SEPTIEMBRE TECNOLOGÍA INDUSTRIAL II Lo alumno deberán elegir una de la do opcione. Cada ejercicio vale,5 punto. La pregunta del

Más detalles

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan

Más detalles

DISEÑO CURRICULAR ELECTRÓNICA DIGITAL

DISEÑO CURRICULAR ELECTRÓNICA DIGITAL DISEÑO CURRICULAR ELECTRÓNICA DIGITAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas. CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 116243 02 02 03 VI PRE-REQUISITO ELABORADO

Más detalles

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b

Más detalles

MODELOS LINEALES. Alejandro Vera Trejo

MODELOS LINEALES. Alejandro Vera Trejo MODELOS LINEALES Alejandro Vera Trejo Objetivo Se representará una situación determinada a través de la construcción de una o varias ecuaciones lineales. Se resolverán situaciones reales por medio de ecuaciones

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS Tema. Dispositivos Electrónicos. Análisis de Circuitos. rev TEMA DSPOSTVOS ELECTONCOS ANALSS DE CCUTOS Profesores: Germán Villalba Madrid Miguel A. Zamora zquierdo Tema. Dispositivos Electrónicos. Análisis

Más detalles

1. Bloques. Sistema. 2. Líneas. 3. Punto de suma. 4. Punto de ramificación o de reparto

1. Bloques. Sistema. 2. Líneas. 3. Punto de suma. 4. Punto de ramificación o de reparto ema 4. Diagramas de Bloque Introducción ERÍA DE NRL n diagrama de bloque es una simplificación, una representación gráfica de un sistema físico que ilustra las relaciones funcionales entre los componentes

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE JUNIO DE 2005 MATERIA: TECNOLOGÍA INDUSTRIAL II

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE JUNIO DE 2005 MATERIA: TECNOLOGÍA INDUSTRIAL II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE JUNIO DE 2005 MATERIA: TECNOLOGÍA INDUSTRIAL II P1) Dado el sistema neumático mostrado en la figura: a) Identifica los elementos -y su funcionamiento- cuya sección

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles