ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS"

Transcripción

1 ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS A. 1 Conjuntos. A. TEORÍA DE CONJUNTOS. Un conjunto o colección lo forman unos elementos de la misma naturaleza, es decir, elementos diferenciados entre sí pero que poseen en común ciertas propiedades o características, y que pueden tener entre ellos, o con los elementos de otros conjuntos, ciertas relaciones. Un conjunto puede tener un número finito o infinito de elementos, en matemáticas es común denotar a los elementos mediante letras minúsculas y a los conjuntos por letras mayúsculas, así por ejemplo: C = {a, b, c, d, e, f, g, h} En ocasiones un conjunto viene expresado por la propiedad (o propiedades) que cumplen sus elementos, por ejemplo: es el conjunto de los números reales comprendidos entre el 1 y el 2 ( incluidos ambos). Dos conjuntos A y B son iguales, expresado A = B, solamente cuando constan de los mismos elementos. A. 2 Diversos conjuntos numéricos. En Matemáticas empleamos diversos conjuntos de números, los más elementales son: N = {0, 1, 2, 3, 4, 5,... }. El conjunto de los números naturales, o números que sirven para contar. Z = {..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,... }. El conjunto de los números enteros, o números que sirven para designar cantidades enteras (positivas o negativas). Q = {..., -7/2,..., -7/3,..., -5/4,... -5/1,...0,..., 2/133,... 4/7... }. El conjunto de los números racionales, o números que pueden ser expresados como un cociente (quotient) entre dos enteros, fracción, p/q. Observen que algunos números con infinitos decimales tal como el 2, pertenece a este conjunto, puesto que: 2, = 7/3. No obstante, en Q no se hallan algunos números como 1, (raíz cuadrada de 2), o el 3, (el número ) que poseen infinitos decimales pero no pueden expresarse en la forma p/q. A estos números se les llama "números irracionales". 1

2 R = Q U {"números irracionales"}. El conjunto de los números reales, formado por la unión de Q y de todos los números irracionales. Este conjunto suele denominarse recta real, pues los puntos de una recta pueden ponerse en correspondencia con los infinitos números de R. Segmento de una recta, [a, b], son todos los números reales comprendidos entre a y b, es decir, los números x tales que son mayores (o iguales) a "a" y menores (o iguales) a "b". Para un número real, x, llamamos valor absoluto de este número, expresado x, al número real que queda cuando se le considera positivo. Por ejemplo = 7, = 5, 31 (para los números positivos se les deja como están, para los negativos se les cambia de signo). Las propiedades del valor absoluto son: Para un número real, sea x, llamamos parte entera de este número, expresado [x], al número entero que queda cuando se le suprimen todos sus decimales. Por ejemplo: [3,1416] = 3, [-2,189] = -2 A. 3 Subconjuntos de un conjunto. Dado un conjunto C y una propiedad P de un elemento genérico de C, los elementos de C que poseen esa propiedad forman un nuevo conjunto S llamado subconjunto de C, y se expresa: Por ejemplo, para el conjunto de los números reales, R, podemos fijarnos en la propiedad siguiente: 2

3 x = [x] La propiedad de que un número coincida con su parte entera, dicha propiedad sólo la cumplen los números enteros, por eso podemos expresar: Todo conjunto C es subconjunto de sí mismo, por otra parte el conjunto vacío (el que no posee ningún elemento), expresado por, es subconjunto de cualquier otro conjunto. Así podemos expresar: A un subconjunto de C también se le llama parte de C. A. 4 Notaciones con conjuntos. En teoría de conjuntos, y más generalmente en el ámbito de las matemáticas, se utilizan unas determinadas notaciones que conviene indicar desde el principio. Sea un conjunto con unos ciertos elementos, consideremos el conjunto N de los números naturales N = {0, 1, 2, 3, 4, 5,... }. Para expresar que un determinado elemento pertenece a N se utiliza el símbolo " " (igual que el símbolo del euro pero con una sola raya central ). Este mismo símbolo pero tachado se interpreta como que "el elemento no pertenece al conjunto". Por ejemplo podemos expresar: * Los cuantificadores : Estos dos símbolos sirven para aludir a la cantidad de los elementos del conjunto, el primero hace referencia a "al menos uno", el segundo se refiere a "todos sin excepción". Por ejemplo: Se lee: " existe al menos un elemento n perteneciente al conjunto N tal que (la coma se lee aquí "tal que") n es mayor que 1000". En realidad, hay muchos elementos en N mayores que 1000, pero con este símbolo nos referimos a que hay por lo menos uno, es decir, negamos que no haya ninguno con la propiedad que viene a continuación.. Se lee: " cualquiera que sea el elemento n del conjunto N se tiene que (aquí la coma se lee "se tiene que") n es mayor o igual a 0". [NOTA: las comas son separadores entre símbolos en una definición, y se leen como a uno le dé la gana siempre que completen el significado a la frase). 3

4 A. 5 Unión e intersección de conjuntos. Dados dos conjuntos A y B, se define unión de los conjuntos A y B, formado por los elementos que pertenecen a A ó a B., al conjunto Dados dos conjuntos A y B, se define intersección de los conjuntos A y B, formado por los elementos que pertenecen a la vez a A y a B., al conjunto Si la intersección de dos conjuntos es el conjunto vacío, entonces se dice que estos dos conjuntos son disjuntos (también llamados, quizás más apropiadamente, "disyuntos"). Algunas propiedades: Unión: Intersección: Unión e intersección: 4

5 * Cardinal de un conjunto. Para un conjunto A, llamamos cardinal de A al número de elementos que posee A. Se expresa, Card(A), o bien: n(a). Para muchos conjuntos utilizados en Matemáticas, tales como N, Z, Q ó R, su cardinal es infinito. Pero para dos conjuntos A y B con una cantidad finita de elementos se tiene la siguiente propiedad: A. 6 Conjunto complementario de un conjunto. Dado un conjunto A, se llama conjunto complementario de A (representado por A') respecto a un conjunto universal U, a todo U excepto los elementos de A. Es decir, todo excepto los elementos de A. Algunas propiedades: Suponiendo un conjunto universal llamado C, se verifica: 5

6 A. 7 Partición de un conjunto. Dado un conjunto C, se dice que se ha realizado una partición del conjunto C en subconjuntos (o "partes") S1, S2,..., Si,..., Sn, cuando éstos cumplen las dos propiedades: es decir que sean disjuntos y que su unión cubra todo C. A. 8 Producto cartesiano de conjuntos. Sean dos conjuntos A y B, se llama producto cartesiano de A por B al conjunto C formado por todas las parejas posibles en forma de par ordenado (x, y), tales que el primer elemento, x, pertenezca al conjunto A y el segundo, y, pertenezca al conjunto B. Este producto cartesiano se representa por C = A B. En el diagrama adjunto podemos ver un ejemplo de producto cartesiano de A B, siendo A={a, b, c, d}, y siendo B={ }. Los elementos de A B, representados en rojo, son todos los pares (x, y), como por ejemplo (a, ), (a, ), (b, ),... El número de elementos en este caso es: 4 5, es decir, 20. A. 9 Relación binaria definida entre los elementos de un conjunto. Sea un conjunto A, se llama relación binaria entre los elementos del conjunto A a una parte del producto cartesiano A A (también llamado A²). Aunque es más común escribirla así: Por ejemplo, en el diagrama adjunto tenemos el conjunto A = { }. Establecido el producto cartesiano A A, cualquier parte C de él, como la señalada por puntos anaranjados, define una relación R entre los elementos de A. La relación R del dibujo vendría expresada así: C = {( } C = { R R R R R R } Además, en Matemáticas una relación suele venir definida mediante una propiedad, por 6

7 ejemplo, en el conjunto N de los números enteros se encuentra definida la relación siguiente: arb "a es divisible por b" Según esta relación, se tiene: 1R1, 4R2, 4R1, 6R2,... * Propiedades de las relaciones binarias Dado un conjunto A con una relación binaria R definida entre sus elementos, hay cuatro posibles propiedades para R: 1. Propiedad Reflexiva: La relación R es reflexiva si: o sea, si cada elemento de A está relacionado por R con sí mismo. 2. Propiedad Simétrica: La relación R es simétrica si: es decir, que si x se encuentra relacionado con y, entonces y también está relacionado con x. 3. Propiedad Antisimétrica. La relación R es antisimétrica si: es decir, si xry entonces y no está relacionado con x (a no ser que ambos, x e y coincidan). 4. Propiedad Transitiva. La relación R es transitiva si: es decir, si x se encuentra relacionado con un elemento y, y éste, a su vez, está relacionado con otro elemento z, entonces x está relacionado con z también. 7

8 A. 10 Relación de Equivalencia. Sea A un conjunto y R una relación binaria definida en A, se dice que R es una relación de equivalencia en A si para R se verifican las tres propiedades: 1. Reflexiva. 2. Simétrica. 3. Transitiva. Como un ejemplo consideremos el conjunto N* de los números naturales (excepto el 0), y consideremos la siguiente relación binaria en R: x R y {x e y tienen la misma "paridad"} (NOTA: Se dice que un número natural tiene paridad par cuando es divisible por el 2, y paridad "impar" cuando no lo es.) Así tenemos: ( 1R1, 1R3, 3R5, 5R7, 5R5,..., 2R2, 2R4, 4R2, 20R100,... ) Se trata de una relación de equivalencia porque R cumple las tres propiedades: 1. R es reflexiva: En efecto, pues dado un número natural cualquiera x, está relacionado por R consigo mismo, en otras palabras, x tiene la misma paridad que sí mismo. 2. R es simétrica: Algo obvio, pues si x R y, es decir, si x e y tienen la misma paridad, ello significa que y R x, o sea, y y x tienen obviamente la misma paridad ("si Pepe y Juan son franceses, no lo dejan de ser si hablamos de Juan y Pepe" ). 3. R es transitiva: Si x R y, es decir x tiene la misma paridad que y, y simultáneamente, y R z, es decir, y tiene la misma paridad que z, entonces obviamente x R z (x tiene la misma paridad de z). * Clase de equivalencia. Dado un conjunto A y una relación de equivalencia R definida en él, si tomamos un elemento a A y buscamos el conjunto de elementos que están relacionados con él según R, lo que obtenemos es la clase de equivalencia, es decir: Tenemos que: i) Dos elementos que están relacionados entre sí definen la misma clase de equivalencia: ii) Dos clases de equivalencia distintas son disjuntas. Por lo cual el conjunto A, al establecer una relación de equivalencia R en él, queda "partido" en clases de equivalencia (en el sentido de partición dado en 1.6) 8

9 Así para la relación de "paridad" en N* de nuestro ejemplo, el conjunto N* queda "partido" en dos clases: : los números impares, y : los números pares. Es obvio que hay una redundancia al hablar de la clase o hablar de la clase pues ambas se refieren al conjunto de los números pares. A. 11 Relación de Orden. Sea A un conjunto y R una relación binaria definida en A, se dice que R es una relación de orden en A si para R se verifican las tres propiedades: 1. Reflexiva. 2. Antisimétrica. 3. Transitiva Como un ejemplo consideremos el conjunto N de los números naturales, y consideremos la siguiente relación binaria en R: x R y {x y } 1. R es reflexiva: En efecto, pues dado un número natural cualquiera x, este número es "menor o igual" que sí mismo, en concreto es igual; (de paso fijémonos cómo la relación "<", de "menor que", no es reflexiva, pues un número no es menor que sí mismo). 2. R es antisimétrica: Algo obvio, pues si x R y, es decir, si x es menor o igual que y, y simultáneamente, y R x, y es menor o igual que x, sólo puede darse que x=y. 3. R es transitiva: Si x R y, es decir x es menor o igual que y, y simultáneamente, y R z, es decir, y menor o igual a z, (piénsese por ejemplo en longitudes) entonces obviamente x R z (x es menor o igual a z). * Estructura de orden. Dado un conjunto A y una relación de orden R definida en él, en el caso de que para cualquier pareja de elementos de A, x, y, se verifica siempre una de estas dos propiedades: xry, yrx, se dice que el conjunto A está totalmente ordenado, según la relación R, en caso contrario se dice parcialmente ordenado. Los conjuntos numéricos que usamos en el Cálculo suelen estar totalmente ordenados para la relación de orden. Por ejemplo, si expresamos xry con una flecha de izquierda a derecha, el conjunto N podría representarse: 9

10 A. 12 Aplicación entre dos conjuntos. Sean dados dos conjuntos A = {a, b, c, d, e,... } y B = {,...}. Se llama corresponcencia del conjunto A en el B a un subconjunto de A B. Por ejemplo, en la gráfica de la derecha tenemos una cierta correspondencia definida por aquellos elementos de A B indicados (marcados en color rojo). Por lo tanto, la correspondencia del ejemplo podría venir expresada como: f(x) = {(a, (a, (b, (b, (b, (c, (c, (c, (d, (d, (d, } En la que se enumeran todos los pares ordenados de la aplicación. No obstante, no es así como las aplicaciones suelen generalmente expresarse sino en la forma gráfica de la izquierda. Se expresan los elementos de A a la izquierda, los de B a la derecha, y para cada pareja (a, ) se traza una flecha que parte del elemento de A y finaliza en el elemento de B. La correspondencia viene entonces representada por un conglomerado de flechas que van desde los elementos de A hacia los elementos de B. Pero obsérvese cómo de los elementos de A pueden salir varias flechas hacia B, por ejemplo, al elemento "a" se le hacen corresponder los y de B. Pues bien, en Matemáticas es conveniente que a cada elemento de A le corresponda un único elemento de B, es decir, que sólo salga una flecha (o ninguna) de cada elemento del conjunto de la izquierda. En este caso la correspondencia se llama aplicación (también llamada "función" cuando los conjuntos son numéricos). A los elementos de B donde una flecha finaliza se les llama "imágenes", y a los elementos de A de los que parte una flecha se les llama "anti-imágenes". En Matemáticas es muy corriente expresar las aplicaciones mediante y = f(x), siendo y los elementos de B, x los elementos de A, y siendo f(x) una cierta expresión matemática. Un ejemplo podía ser y = x

11 * Aplicación Suprayectiva Una aplicación f : A ----> B se dice suprayectiva, cuando todo elemento de B es imagen de al menos un elemento de A. En otras palabras, el conjunto B queda recubierto por completo por las flechas procedentes de A, no quedando ningún elemento "libre", sin su correspondiente flecha, en B. Matemáticamente se expresa indicando que la ecuación: y = f(x) tiene al menos una solución para x. * Aplicación Inyectiva Una aplicación f : A ----> B se dice inyectiva, cuando todo elemento de B es la imagen de un elemento de A como máximo. (En este caso puede haber elementos de B que no sean imágenes de elementos de A). Matemáticamente f es inyectiva si para cualquier par de elementos de A, distintos, entonces sus imágenes son también distintas, es decir:, que sean * Aplicación Biyectiva Una aplicación f : A ----> B se dice biyectiva, si es al mismo tiempo suprayectiva e inyectiva. En este caso a cada elemento de A le corresponde uno, y sólo uno, elemento de B. Es decir, para cada valor de "y" sólo existe un valor de "x" que sea solución de la ecuación y = f(x). Por ejemplo, en la expresión y = 2 x + 1, para un valor determinado de "y" sólo existe un valor de x, en concreto x = ½ (y-1). 11

12 ALGUNOS EJERCICIOS. 1. En una reunión hay más hombres que mujeres, hay más mujeres que beben que hombres que fuman, y más mujeres que fuman y no beben que hombres que no beben ni fuman. Demostrar que hay menos mujeres que ni beben ni fuman que hombres que beben y no fuman. Solución : Podemos considerar los ocho conjuntos disjuntos de la gráfica de la figura, evidentemente el conjunto de los hombres que fuman y no beben (F) es disjunto de las mujeres que fuman y no beben (G), o los hombres que beben y no fuman (A) es disjunto de las mujeres que beben y no fuman (D), etc. Que haya más hombres que mujeres significa: n(a) + n(b) + n(e) + n(f) > n(c) + n(d) + n(g) + n(h) {1} Que haya más mujeres que beben que hombres que fuman significa: n(c) + n(d) > n(b) + n(f) {2} Y que haya más mujeres que fuman y no beben que hombres que ni beben ni fuman significa: Si sumamos {1},{2} y {3} obtenemos: n(g) > n(e) {3} n(a) + n(b) + n(c) + n(d) + n(e) + n(f) + n(g) > n(b) + n(c) + n(d) + n(e) + n(f) + n(g) + n(h) Y simplificando términos iguales, tenemos: n(a) > n(h) Lo cual significa que el número de mujeres que ni beben ni fuman es inferior al de hombres que beben y no fuman (que es lo que había que demostrar). * * * 2. En el conjunto de los números reales se define la siguiente relación: x R y tan x = tan y Se trata de una relación de equivalencia?. Solución: Comprobemos si R cumple las tres propiedades de las relaciones de equivalencia: 12

13 a) Reflexiva: obviamente, todo número real está relacionado consigo mismo. b) Simétrica: Si x R y y R x también obvio, pues si tan x = tan y, también se da que tan y = tan x. c) Transitiva: Cosa que también se da para esta R, pues si tan x = tan y, y simultáneamente, tan y coincide con tan z, evidentemente se dará que tan x = tan z. Por lo tanto la relación R definida es una relación de equivalencia para los números reales. * * * EJERCICIOS PARA EL ALUMNO: 1. Dados tres conjuntos A, B. C tales que: qué se puede decir de los dos conjuntos B y C?. 2. Dadas dos partes A y B de un conjunto E, se llama diferencia simétrica de A y B (que se escribe A B) al conjunto: A B = (A B) - (A B) Demostrar que A B = (A-B) (B-A) (NOTA: Por A - B expresamos todos los elementos de A excepto los de B). 3. Se sabe que entre los tripulantes de un barco a los que les gusta la cerveza o el vermut o ambas bebidas, les gusta también la cerveza o el vino o las dos. Y a los que les gusta la cerveza y 13

14 el vermut les gusta también la cerveza y el vino. Demostrar que a todos los que les gusta el vermut les gusta también el vino. 4. En el conjunto N de los números naturales se establece la siguiente relación binaria: x R y y - x = siendo m un número entero dado (por nos referimos a "cualquier múltiplo de m"). a) Probar que R es una relación de equivalencia. b) Indicar cuáles son las clases de equivalencia. 14

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

SISTEMA DE NUMEROS REALES

SISTEMA DE NUMEROS REALES SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto

Más detalles

PRODUCTO CARTESIANO RELACIONES BINARIAS

PRODUCTO CARTESIANO RELACIONES BINARIAS PRODUCTO CARTESIANO RELACIONES BINARIAS Producto Cartesiano El producto cartesiano de dos conjuntos A y B, denotado A B, es el conjunto de todos los posibles pares ordenados cuyo primer componente es un

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Capítulo 6. Relaciones. Continuar

Capítulo 6. Relaciones. Continuar Capítulo 6. Relaciones Continuar Introducción Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones se utilizan en base de datos,

Más detalles

ÁLGEBRA Ejercicios no resueltos de la Práctica 1

ÁLGEBRA Ejercicios no resueltos de la Práctica 1 ÁLGEBRA Ejercicios no resueltos de la Práctica 1 Correspondencias y aplicaciones (Curso 2007 2008) 1. Dadas las siguientes correspondencias, determinar sus conjuntos origen, imagen, decidir si no son aplicaciones

Más detalles

Funciones: Aspectos básicos

Funciones: Aspectos básicos Funciones: Aspectos básicos Nombre: Curso:.. Producto cartesiano En teoría de conjuntos, el producto cartesiano de dos conjuntos es una operación que resulta en otro conjunto cuyos elementos son todos

Más detalles

Unidad II. Conjuntos. 2.1 Características de los conjuntos.

Unidad II. Conjuntos. 2.1 Características de los conjuntos. Unidad II Conjuntos 2.1 Características de los conjuntos. Es la agrupación en un todo de objetos bien diferenciados en el la mente o en la intuición, por lo tanto, estos objetos son bien determinados y

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES. Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: Se tiene:

50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES. Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: Se tiene: 50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: A = {a, b, c, d, e}, B = {e, f, g, h}, C = {a, e, i, o, u} A B C, A B C, A \ B,

Más detalles

T0. TRANSFORMADAS DE LAPLACE

T0. TRANSFORMADAS DE LAPLACE ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS T0. TRANSFORMADAS DE LAPLACE Mediante transformadas de Laplace (por Pierre-Simon

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Propiedades Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos: Propiedades Matemáticas Discretas - p.

Más detalles

CONJUNTO Y TIPOS DE CONJUNTOS

CONJUNTO Y TIPOS DE CONJUNTOS CONJUNTO Y TIPOS DE CONJUNTOS Ejemplos 1. Determine cuáles de los siguientes conjuntos corresponden a conjuntos vacíos. a) El conjunto de los números naturales mayores que 3 y menores que 6. b) El conjunto

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS

CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS 2.1. NOCIONES PRIMITIVAS Consideraremos tres nociones primitivas: Conjunto, Elemento y Pertenencia. Conjunto Podemos entender al conjunto como, colección,

Más detalles

RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal

RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal RELACIONES Y FUNCIONES M.C. Mireya Tovar Vidal IDEA INTUITIVA DE RELACIÓN Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS.

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. UNIDAD 1.- CONCEPTOS REQUERIDOS CONJUNTOS. AXIOMAS DE PERTENENCIA, PARALELISMO, ORDEN Y PARTICIÓN. 1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. 1.1 Determinaciones de un conjunto. Un conjunto queda determinado

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos GUÍAS DE ESTUDIO Código PGA-02-R02 1 INSTITUCIÓN EDUCATIVA CASD Programa de alfabetización, educación básica y media para jóvenes y adultos UNIDAD DE TRABAJO Nº 1 PERIODO 1 1. ÁREA INTEGRADA: MATEMÁTICAS

Más detalles

TEMA II TEORÍA INTUITIVA DE CONJUNTOS

TEMA II TEORÍA INTUITIVA DE CONJUNTOS TEMA II TEORÍA INTUITIVA DE CONJUNTOS Policarpo Abascal Fuentes TEMA II Teoría intuitiva de conjuntos p. 1/4 TEMA II 2. TEORÍA INTUITIVA DE CONJUNTOS 2.1 CONJUNTOS 2.1.1 Operaciones con conjuntos 2.2 RELACIONES

Más detalles

Definición matemática de Relación y de Función

Definición matemática de Relación y de Función Fecha: 05/0 Versión: DOCENTE: ANTONIO ELI CASTILLA Definición matemática de Relación de Función En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto,

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D

Más detalles

BLOQUE 1. LOS NÚMEROS

BLOQUE 1. LOS NÚMEROS BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad. nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas

Más detalles

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad

Más detalles

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA COLEGIO NUESTRO SEÑOR DE L UEN ESPERNZ signatura: NÁLISIS MTEMÁTICO 11º Profesor: Lic. EDURDO DURTE SUESCÚN TLLER OPERCIONES CON CONJUNTOS OPERCIONES CON CONJUNTOS En aritmética se suma, resta y multiplica,

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

El concepto de número

El concepto de número Los Números Reales El concepto de número El concepto de número es una de las más importantes abstracciones de la mente humana. Los números han surgido a lo largo de la historia como herramienta para resolver

Más detalles

Los Conjuntos de Números

Los Conjuntos de Números Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

MATEMATICAS DISCRETAS

MATEMATICAS DISCRETAS MTEMTICS DISCRETS Propiedad reflexiva Sea R una relación binaria R en, ( ). Definición: Diremos que R es reflexiva si a, a R a Ejemplo: 1) En N la relación R definida por: x R y x divide a y es reflexiva

Más detalles

Teoría de Conjuntos. Conjunto es: colección de cosas, o una colección determinada de objetos.

Teoría de Conjuntos. Conjunto es: colección de cosas, o una colección determinada de objetos. Teoría de Conjuntos Apuntes Fernando Toscano tomados por A.Diz-Lois La teoría de conjuntos es una herramienta formal semántica que trata de dotar de significado, o lo que es lo mismo dotar de interpretación.

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por

Más detalles

Pablo Cobreros Tema 6. El tamaño del infinito

Pablo Cobreros Tema 6. El tamaño del infinito Lógica II Pablo Cobreros pcobreros@unav.es Tema 6. El tamaño del infinito Introducción Introducción La noción de cardinal Afirmaciones acerca del tamaño La noción de cardinal El tamaño del infinito Introducción

Más detalles

Estructuras algebraicas

Estructuras algebraicas Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B

Más detalles

Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto.

Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto. TEORÍ DE CONJUNTOS. Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto. Ejemplos: Los libros de una biblioteca. Los alumnos de una escuela.

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:1,3, 3 5, e,

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Naturales Con los números naturales contamos los elementos de un conjunto (número cardinal). O bien expresamos la posición u orden que ocupa un elemento en un conjunto (ordinal). El conjunto de

Más detalles

INSTITUTO TECNOLÓGICO DE NUEVO LAREDO ING. EN SISTEMAS COMPUTACIONALES UNIDAD: 2

INSTITUTO TECNOLÓGICO DE NUEVO LAREDO ING. EN SISTEMAS COMPUTACIONALES UNIDAD: 2 NOMBRE DE LA Ejercicios de Conjuntos y Relaciones OBJETIVO: El estudiante desarrollará diversos ejercicios de representación y operaciones con conjuntos y con relaciones MATERIAL Y EQUIPO NECESARIO: Papel

Más detalles

Semana05[1/14] Relaciones. 28 de marzo de Relaciones

Semana05[1/14] Relaciones. 28 de marzo de Relaciones Semana05[1/14] 28 de marzo de 2007 Introducción Semana05[2/14] Ya en los capítulos anteriores nos acercamos al concepto de relación. Relación Dados un par de conjuntos no vacíos A y B, llamaremos relación

Más detalles

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora.

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. CAPÍTULO 1 INTRODUCCIÓN Construcción con tijeras y papel Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. La caja1. De una hoja de papel vamos a recortar un cuadrito

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Apuntes de Matemática Discreta 8. Relaciones de Equivalencia

Apuntes de Matemática Discreta 8. Relaciones de Equivalencia Apuntes de Matemática Discreta 8. Relaciones de Equivalencia Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 8 Relaciones de Equivalencia

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

2. Los números naturales, enteros y racionales 1

2. Los números naturales, enteros y racionales 1 - Fernando Sánchez - - Cálculo I 2Los números naturales, enteros y racionales Números naturales 24 09 2015 Se llaman números naturales a los elementos del conjunto N = {1, 2, 3,...}. En este conjunto hay

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad

Más detalles

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO El estudio de los conjuntos infinitos se inicia con Las Paradojas del Infinito, la última obra del matemático checo Bernard Bolzano, publicada

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Caracterización de los números reales

Caracterización de los números reales Grado 11 Matematicas - Unidad 1 Operando en el conjunto de los números reales Tema Caracterización de los números reales Nombre: Curso: Breve historia de los reales A continuación se da una brevísima historia

Más detalles

De los números naturales a los números enteros. Exposición de contenidos matemáticos. Sobre el número cardinal

De los números naturales a los números enteros. Exposición de contenidos matemáticos. Sobre el número cardinal De los números naturales a los números enteros Exposición de contenidos matemáticos Sobre el número cardinal Usos del número: Introducción: Se reconocen distintos usos del número natural. Los usos o significados

Más detalles

El estudiante de Pitágoras

El estudiante de Pitágoras COLEGIO INTEGRADO SIMÓN BOLÍVAR GUÍA PARA EL ESTUDIANTE MBP354 FORMATO 1 ASIGNATURA: ARITMÉTICA DOCENTE: CLAUDIA RODRIGUEZ PERIODO: SEGUNDO VALORACIÓN TEMA:NUMEROS RACIONALES. I ESTUDIANTE: FECHA: GRADO:SEPTIMO

Más detalles

CURSOS DE MATEMÁTICAS

CURSOS DE MATEMÁTICAS CURSOS DE MATEMÁTICAS Relaciones de equivalencia FERNANDO REVILLA http://www.fernandorevilla.es Jefe del Departamento de Matemáticas del IES Santa Teresa de Madrid y profesor de Métodos Matemáticos de

Más detalles

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.

Más detalles

Ejercicios Tema 1. Profesora: Carmen López Esteban. Curso: 1ª Magisterio. Esp. Educación Infantil. Grupo: A.

Ejercicios Tema 1. Profesora: Carmen López Esteban. Curso: 1ª Magisterio. Esp. Educación Infantil. Grupo: A. Profesora: Carmen López Esteban Curso: 1ª Magisterio. Esp. Educación Infantil Grupo: A. Ejercicios de CONJUNTOS Ejercicio 1: 1.1) A = {x/x es país fronterizo con Perú} El conjunto esta por... 1.2) B =

Más detalles

10. 1 Definición de espacio euclídeo.

10. 1 Definición de espacio euclídeo. ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar

Más detalles

Capitulo V: Relaciones

Capitulo V: Relaciones Capitulo V: Relaciones Relaciones Binarias: Consideremos dos conjuntos A B no vacíos, llamaremos relación binaria de A en B o relación entre elementos de A B a todo subconjunto R del producto cartesiano

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

José Vicente Ugarte Susaeta. Profesor de la Universidad Comercial de Deusto

José Vicente Ugarte Susaeta. Profesor de la Universidad Comercial de Deusto MATEMÁTICAS PARA ECONOMÍA Y EMPRESA CÁLCULO DE UNA VARIABLE José Vicente Ugarte Susaeta Profesor de la Universidad Comercial de Deusto Con la colaboración de Miguel Ángel Larrinaga Ojanguren Profesor de

Más detalles

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto» TEMA 10 DERIVADA DE UNA FUNCIÓN EN UN PUNTO f (a): Consideremos una función f(x) y un punto P de su gráfica (ver figura), de abscisa x=a. Supongamos que damos a la variable independiente x un pequeño incremento

Más detalles

Lección 11: Fracciones. Equivalencia y orden

Lección 11: Fracciones. Equivalencia y orden GUÍA DE MATEMÁTICAS I LECCIÓN Lección : Fracciones. Equivalencia y orden Fracciones equivalentes No siempre podemos trabajar con unidades divididas decimalmente; con frecuencia nos conviene partir de otra

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO

INSTITUTO TECNOLÓGICO DE APIZACO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar

Más detalles

CLASIFICACION DE LOS NUMEROS

CLASIFICACION DE LOS NUMEROS CLASIFICACION DE LOS NUMEROS NÚMEROS NATURALES En el desarrollo de las culturas fue evolucionando esta forma primitiva de representar objetos o cosas reales a través de símbolos naciendo así el primer

Más detalles

Notas de Álgebra Básica I

Notas de Álgebra Básica I Notas de Álgebra Básica I Carlos Ruiz de Velasco y Bellas Departamento de Matemáticas, Estadística y Computación Facultad de Ciencias Universidad de Cantabria 14 de septiembre de 2006 2 Capítulo 1 Conjuntos,

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

TEMA 1. Las cuentas de andar por casa

TEMA 1. Las cuentas de andar por casa TEMA 1. Las cuentas de andar por casa 1.-Los distintos tipos de números Módulo 3 1.1. Los números naturales El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

CONJUNTOS Y RELACIONES BINARIAS

CONJUNTOS Y RELACIONES BINARIAS UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL CONJUNTOS Y RELACIONES BINARIAS INTRODUCCIÓN Intuitivamente, un conjunto es una

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 3: Números racionales Parte I: Fracciones y razones Números racionales 1 Situación introductoria ANÁLISIS DE CONOCIMIENTOS PUESTOS EN JUEGO

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Mó duló 02: Nu merós Reales

Mó duló 02: Nu merós Reales INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 0: Nu merós Reales Objetivo: Comprender los números reales como un conjunto que está conformado por otros conjuntos numéricos, los cuales tienen

Más detalles

Colegio Universitario Boston. Funciones

Colegio Universitario Boston. Funciones 70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie.

CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie. RESUMEN DE MATEMATICAS I PARTE I CONJUNTOS CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie. A= {números pares} B= { banda de rock} ELEMENTO: Son las ideas u objetos cualesquiera

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles