13.Teoría de colas y fenómenos de espera

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "13.Teoría de colas y fenómenos de espera"

Transcripción

1 3.Teoría de colas y fenómenos de espera Notación y terminología Modelado del proceso de llegada Modelado del proceso de servicio Notación de Kendall-Lee Procesos de nacimiento y muerte Modelo M/M/. Análisis de modelos Notación y terminología. Para describir una cola hay que especificar: Proceso de entrada o llegada: clientes El proceso de llegada no se ve afectado por nº de clientes presentes, se rige por una distribución de probabilidad que gobierna el tiempo entre llegadas sucesivas Modelos de origen finito: las llegadas se toman de una población pequeña La rapidez de llegada disminuye cuando la instalación está concurrida: el cliente puede declinar. Proceso de salida o servicio: distribución del tiempo de servicio independiente del nº de clientes presentes Servidores en paralelos Servidores en serie Francisco R. Villatoro

2 Notación y terminología. Disciplina de la cola: método que se usa para determinar el orden en el que se sirve a los clientes Primero en entrar, primero en ser servido (cola) Último en entrar, primero en ser servido (pila) Servicio en orden aleatorio Disciplinas de prioridad en espera Método utilizado por los clientes para unirse a la cola Modelado del proceso de llegada Hipótesis: puede suceder una llegada como mucho en cada instante de tiempo t i tiempo en el que llega el i-ésimo cliente T i t i+ -t i tiempo i-ésimo entre llegadas, variable aleatoria Independientes: T no tiene efecto sobre T 3,... Continuas: las llegadas pueden suceder en cualquier instante de tiempo Descritas por la variable aleatoria A: la distribución de llegadas es independiente del tiempo Francisco R. Villatoro

3 Distribución de llegadas a(t) función de densidad de A: P c ( A c) a( t) dt, P( A > c) a( t) dt, c Tiempo promedio entre llegadas: rapidez de llegadas ta( t)dt Habitualmente A es la distribución exponencial c Distribución exponencial A distribución exponencial con parámetro ( ) t a t e E( A) var( A) Propieda de amnesia: si A tiene distribución exponencial entonces para todo valor no negativo de t y h P ( A > t + h A t) P( A > h) No importa cuanto tiempo haya pasado desde la última llegada para conocer la distribución de probabilidad de la siguiente llegada. Francisco R. Villatoro 3

4 Distribución de Poisson Los tiempos entre llegadas son exponenciales con parámetro si y sólo si el número de llegadas que suceden en un intervalo t sigue una distribución de Poisson con parámetro t n e P( N n) n! E( N) var( N) Distribución de Poisson Si N sigue una distribución de Poisson con parámetro t y los tiempos entre llegadas son exponenciales con parámetro entonces se verifica: las llegadas definidas en intervalos de tiempos que no se solapan son independientes, para t pequeño y cualquier valor de t la probabilidad de que se tenga una llegada entre los tiempos t y t+ t es t +o( t), Si la rapidez de llegadas es estable, no pueden tenerse llegadas en masa y las llegadas del pasado no afectan las llegadas del futuro, entonces los tiempos entre llegadas se pueden modelar utilizando una distribución exponencial con parámetro y el nº de llegadas en cualquier intervalo de longitud t por una Poisson con parámetro t. Francisco R. Villatoro 4

5 Modelado del proceso de servicio Hipótesis: los tiempos de servicio de distintos clientes son variables aleatorias independientes y el tiempo de servicio de cada cliente está regido por una variable aleatoria S con función de densidad s(t) Tiempo promedio de servicio a cliente: ts( t) dt µ Rapidez de servicio: µ Notación de Kendall-Lee Cada sistema de colas se representa con 6 características: //3/4/5/6. Naturaleza del proceso de llegada: Mtiempo entre llegadas independientes y distribuidos idénticamente (iid), las v.a. siguen una distribución exponencial D tiempo entre llegadas iid y deterministas GI tiempo entre llegadas iid y distribución general. Naturaleza de los tiempos de servicio: Como en. 3. Número de servidores en paralelo Francisco R. Villatoro 5

6 Notación de Kendall-Lee 4. Disciplina de la cola PLPS primero en llegar, primero en ser atendido ULPS último en llegar, primero en ser atendido SEOA servicio en orden aleatorio 5. Número máximo permitido de clientes en el sistema incluyendo los que esperan y los que están siendo atendidos 6. Tamaño de la población de la que se toman los clientes Procesos de nacimiento y muerte. Estado del sistema en t número de clientes presentes en cualquier sistema de cola en tiempo t. Para t, el estado del sistemanº inicial de clientes P i (t)probabilidad de que haya clientes en el sistema de cola en t supuesto que en el tiempo había i personas π estado estable o probabilidad de equilibrio del estado lim P i t Comportamiento transitorio del sistema de cola comportamiento de P i (t) antes de alcanzar el estado estable. Proceso de nacimiento y muerte: proceso estocástico continuo en el tiempo para el que el estado del sistema en cualquier tiempo es un entero no negativo ( t) Francisco R. Villatoro 6

7 Procesos de nacimiento y muerte. Leyes del movimiento. La probabilidad de que suceda un nacimiento (el estado del sistema pase de a +) entre el tiempo t y t+ t es t + o( t). es la tasa de natalidad en el estado. La probabilidad de que suceda una muerte (el estado del sistema pase de a -) entre el tiempo t y t+ t es µ t + o( t). µ es la tasa de mortalidad en el estado. Se debe cumplir µ 3. Los nacimientos y muertes son independientes entre sí. La mayor parte de los sistemas de cola con tiempos exponenciales entre llegadas y de servicio pueden modelarse como procesos de nacimiento y muerte. Modelo M/M/. Análisis de modelos. Tiempos entre llegadas: exponenciales con parámetro Probabilidad de nacimiento (llegada) entre t y t+ t t Tasa de natalidad: Tiempos de servicio: exponenciales con parámetro µ Probabilidad de muerte (fin de servicio) entre t y t+ t Tasa de mortalidad: µ t t e dt e t t + o µ t µ t µ e e µ t + o ( t) ( t) Francisco R. Villatoro 7

8 Modelo M/M/. Análisis de modelos. Probabilidades de estado estable π π π π, π, Kπ µ µ µ Intensidad de tráfico ρ µ Si ρ< π π ( + ρ+ ρ + K) ( + ρ+ ρ + K) π π ρ, π ρ ( ρ ) ρ Si ρ : no existe distribución de estado estable Modelo M/M/. Análisis de modelos. ρ< Número promedio de clientes presentes en el sistema de colas ρ L π ρ µ Número esperado de clientes en la cola L q ( ) π ρ ρ µ ( µ ) Número esperado de clientes en ventanilla Ls L Lq ρ Francisco R. Villatoro 8

9 Modelo M/M/. Análisis de modelos. ρ< Fórmula de Little para colas: para cualquier sistema de colas en el que exista una distribución de estado estable se cumple donde W tiempo promedio que pasa un cliente en el sistema Wq tiempo promedio que pasa un cliente en la cola Wstiempo promedio que pasa un cliente en el servicio rapidez de llegadas L W L W q s q L W s Francisco R. Villatoro 9

UNIVERSIDAD SIMON BOLIVAR LINEAS DE ESPERA USB PS4161 GESTION DE LA PRODUCCION I LINEAS DE ESPERA

UNIVERSIDAD SIMON BOLIVAR LINEAS DE ESPERA USB PS4161 GESTION DE LA PRODUCCION I LINEAS DE ESPERA UNIVERSIDAD SIMON BOLIVAR LINEAS DE ESPERA 1 Contenido Características de un sistema de líneas de espera Características de las llegadas Características de la línea de espera Características del dispositivo

Más detalles

ESTRUCTURA DE LINEAS DE ESPERA

ESTRUCTURA DE LINEAS DE ESPERA ESTRUCTURA DE LINEAS DE ESPERA La teoría de las colas es el estudio de líneas de espera. Cuatro características de un sistema de la formación de colas o líneas de espera son: la manera en que los clientes

Más detalles

Teoría de colas I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Teoría de colas I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Teoría de colas I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Teoría de colas Ejemplo: un centro de atención telefónica (call center) Tasa de llegada y

Más detalles

TEMA N 3.- TEORÍA DE COLAS

TEMA N 3.- TEORÍA DE COLAS UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI TEMA N 3.- TEORÍA DE COLAS Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos 3.1 Introducción

Más detalles

Ingeniería de Sistemas. Teoría de colas y juegos

Ingeniería de Sistemas. Teoría de colas y juegos Ingeniería de Sistemas Teoría de colas y juegos DEFINICIÓN Estudio analítico del comportamiento de líneas de espera. DEFINICIÓN OBJETIVOS DE LA TEORÍA DE COLAS Identificar el nivel óptimo de capacidad

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Teoría de Colas. Investigación Operativa II. Javier Alarcón Rafael Cáceres Jenny Martínez Pamela Quijada Grupo N 9

Teoría de Colas. Investigación Operativa II. Javier Alarcón Rafael Cáceres Jenny Martínez Pamela Quijada Grupo N 9 Teoría de Colas Investigación Operativa II Javier Alarcón Rafael Cáceres Jenny Martínez Pamela Quijada Grupo N 9 Profesor: Milton Ramírez 31 de Enero del 2012 ELEMENTOS BÁSICOS DE UN MODELO DE LÍNEA DE

Más detalles

S = N λ = 5 5 = 1 hora.

S = N λ = 5 5 = 1 hora. Teoría de Colas / Investigación Operativa 1 PROBLEMAS DE INVESTIGACIÓN OPERATIVA. Hoja 5 1. Al supercomputador de un centro de cálculo llegan usuarios según un proceso de Poisson de tasa 5 usuarios cada

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas).

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). Teoría de Colas TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). IO 07/08 - Teoría de Colas 1 Teoría de Colas: ejemplos

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

TEORIA DE COLAS, FENOMENOS DE ESPERA

TEORIA DE COLAS, FENOMENOS DE ESPERA Universidad del Bío-Bío Facultad de Ingeniería Depto. Ingeniería Industrial Investigación de Operaciones II: TEORIA DE COLAS, FENOMENOS DE ESPERA Integrantes: Pedro Chávez Cristian Guajardo Victor Pino

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

MODELO DE LINEAS DE ESPERA

MODELO DE LINEAS DE ESPERA MODELO DE LINEAS DE ESPERA La teoría de colas es el estudio matemático del comportamiento de líneas de espera. Esta se presenta, cuando los clientes llegan a un lugar demandando un servicio a un servidor,

Más detalles

Introduccion. TEMA 6: MODELOS DE FILAS DE ESPERA (Waiting Line Models) (Capítulo 12 del libro) Modelos de Decisiones

Introduccion. TEMA 6: MODELOS DE FILAS DE ESPERA (Waiting Line Models) (Capítulo 12 del libro) Modelos de Decisiones Modelos de Decisioes TEMA 6: MODELOS DE FILAS DE ESPERA (Waitig Lie Models) (Capítulo 2 del libro) Itroduccio.. Estructura de u Sistema de Filas de Espera 2. Modelo Sigle-Chael co tasa de llegadas tipo

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Modelos de colas exponenciales

Modelos de colas exponenciales Tema 6 Modelos de colas exponenciales 6.1. La distribución exponencial y los procesos de Poisson 6.1.1. Distribución exponencial El análisis de los distintos modelos de colas está determinado en gran parte

Más detalles

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios Esta lista contiene ejercicios y problemas tanto teóricos como de modelación. El objetivo

Más detalles

Proceso de llegadas de Poisson

Proceso de llegadas de Poisson Gestión y Planificación de Redes y Servicios Proceso de llegadas de Poisson Area de Ingeniería Telemática http://www.tlm.unavarra.es Grado en Ingeniería en Tecnologías de Telecomunicación, 4º Proceso de

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

2 Teoría de colas o líneas de espera

2 Teoría de colas o líneas de espera 2 Teoría de colas o líneas de espera El tráfico en redes se puede modelar con la ayuda de la teoría de colas, es por ello ue es importante estudiarlas y comprenderlas. Existen varias definiciones sobre

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

PROCESOS ESTOCÁSTICOS

PROCESOS ESTOCÁSTICOS Capítulo 10 Cadenas de Markov PROCESOS ESTOCÁSTICOS Una sucesión de observaciones X 1,X 2,... se denomina proceso estocástico Si los valores de estas observaciones no se pueden predecir exactamente Pero

Más detalles

TRÁFICO DE TELEFONÍA MÓVIL: CARACTERIZACIÓN E IMPLICACIONES DEL TIEMPO DE OCUPACIÓN DEL CANAL

TRÁFICO DE TELEFONÍA MÓVIL: CARACTERIZACIÓN E IMPLICACIONES DEL TIEMPO DE OCUPACIÓN DEL CANAL ESCOLA TÈCNICA SUPERIOR D ENGINYERIA DE TELECOMUNICACIÓ DE BARCELONA TRÁFICO DE TELEFONÍA MÓVIL: CARACTERIZACIÓN E IMPLICACIONES DEL TIEMPO DE OCUPACIÓN DEL CANAL Autor: Francisco Barceló Arroyo Director:

Más detalles

1. OBJETO Y MOTIVACIÓN de los SISTEMAS de ESPERA. Ejemplos.

1. OBJETO Y MOTIVACIÓN de los SISTEMAS de ESPERA. Ejemplos. Sesión 3.a TEORIA DE COLAS INTRODUCCIÓN y PROPIEDADES BÁSICAS 1. OBJETO Y MOTIVACIÓN de los SISTEMAS de ESPERA. Ejemplos. 2. ESTRUCTURA DE LOS S.E. Características de los componentes. Proceso de llegadas

Más detalles

DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICAS INVESTIGACION DE OPERACIONES

DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICAS INVESTIGACION DE OPERACIONES DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICAS INVESTIGACION DE OPERACIONES AUTOR: TEMA: OSCAR A. ROMERO CARDENAS INGENIERO INDUSTRIAL ESPECIALISTA EN INFORMATICA Y MULTIMEDIA ESPECIALISTA EN ESTADISTICA

Más detalles

Tema 5: Teoría de colas. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Tema 5: Teoría de colas. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Tema 5: Teoría de colas Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario Conceptos básicos Cola M M Cola M M c Cola M M k Redes de colas Redes de

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

SIMULACIÓN DE PROCESOS INDUSTRIALES SOFTWARE ARENA INTRODUCCION

SIMULACIÓN DE PROCESOS INDUSTRIALES SOFTWARE ARENA INTRODUCCION UNIVERSIDAD DIEGO PORTALES FACULTAD CIENCIAS DE LA INGENIERIA INGENIERIA CIVIL INDUSTRIAL SIMULACIÓN DE PROCESOS INDUSTRIALES SOFTWARE ARENA INTRODUCCION Profesor Responsable. Macarena Donoso Ayudante.

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UCM Función de distribución y función de densidad Ejercicio. Sea X una variable aleatoria con función de distribución dada

Más detalles

Notas de Clase de: Investigación de Operaciones

Notas de Clase de: Investigación de Operaciones Notas de Clase de: Investigación de Operaciones Víctor Leiva Departamento de Estadística Universidad de Valparaíso, Chile victor.leiva@uv.cl www.deuv.cl/leiva Índice general 1. Programa de la Asignatura

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Teoría de Colas o Fenómenos de Espera

Teoría de Colas o Fenómenos de Espera Teoría de Colas o Fenómenos de Espera Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Introducción 2 Introducción............................................................

Más detalles

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma: TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Generación de eventos en Procesos de Poisson

Generación de eventos en Procesos de Poisson Generación de eventos en Procesos de Poisson Georgina Flesia FaMAF 26 de abril, 2012 Proceso de Poisson homogéneo N(t), t 0, es un proceso de Poisson homogéneo de razón λ, λ > 0, si: N(0) = 0 proceso comienza

Más detalles

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN PROGRAMACIÓN NO LINEAL Conceptos generales INTRODUCCIÓN Una suposición importante de programación lineal es que todas sus funciones Función objetivo y funciones de restricción son lineales. Aunque, en

Más detalles

A continuación se muestra el programa resumido de la asignatura, el cual se describirá con detalle posteriormente.

A continuación se muestra el programa resumido de la asignatura, el cual se describirá con detalle posteriormente. Fecha de impresión: 03/07/2007 13:29:00 2007/2008 Tipo: UNI Curso: 2 Semestre: B CREDITOS Totales TA TS AT AP PA 4,5 1 1 0 0 1 PI 0 PL 1,5 PC 0 OBJETIVOS El objetivo global de la asignatura Teletráfico,

Más detalles

Aplicación de colas de Poisson en procesos de toma de decisiones en la gestión de servicios médicos

Aplicación de colas de Poisson en procesos de toma de decisiones en la gestión de servicios médicos DOCUMENTOS DE INVESTIGACIÓN Facultad de Administración No. 138, ISSN: 0124-8219 Mayo de 2012 Aplicación de colas de Poisson en procesos de toma de decisiones en la gestión de servicios médicos Diego Fernando

Más detalles

Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta

Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta Distribución Normal La distribución normal (O Gaussiana) se define como sigue: En donde y >0 son constantes arbitrarias. Esta función es en realidad uno de las más importantes distribuciones de probabilidad

Más detalles

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K CONTENIDOS 1. Introducción a las colas poissonianas. 2. Modelo de colas poissoniano con un servidor M/M/1 3. Modelo con un servidor y capacidad finita M/M/1/K 4. Modelo con varios servidores M/M/c. Fórmula

Más detalles

Distribuciones de probabilidad multivariadas

Distribuciones de probabilidad multivariadas Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable

Más detalles

-80- El siguiente análisis definirá un modelo para determinar el nivel de servicio de estas operaciones (14).

-80- El siguiente análisis definirá un modelo para determinar el nivel de servicio de estas operaciones (14). ^. - - -^a»'-" l- ^.'.^'^'.'.-;.T'".. ' -^~'* :^'^.'J3aB,!.'-".'-Wii.T"-P7 -H!- aj,_i^whh-1. i'^r-'^r--" -80- IX. PLANIFICACIÓN DE OPERACIONES TERMINALES EN LA CADENA DE TRANSPORTE FORESTAL. Según se ha

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Ecología de Sistemas:

Ecología de Sistemas: Ecología de Sistemas: Aplicación de procedimientos de análisis de sistemas a la Ecología Bases para su desarrollo: Alta potencia de cálculo Simplificación formal de los ecosistemas complejos El carácter

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación CENTRIFUGACIÓN Fundamentos. Teoría de la centrifugación Fuerzas intervinientes Tipos de centrífugas Tubular De discos Filtración centrífuga 1 SEDIMENTACIÓN Se basa en la diferencia de densidades entre

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

Teoría a de Colas o Filas de Espera. M. En C. Eduardo Bustos Farías

Teoría a de Colas o Filas de Espera. M. En C. Eduardo Bustos Farías Teoría a de Colas o Filas de Espera M. En C. Eduardo Bustos Farías as Introducción Una línea de espera es la resultante de un sistema cuando la demanda por un bien o servicio supera la capacidad que puede

Más detalles

Modelos Estadísticos de Crimen

Modelos Estadísticos de Crimen Universidad de los Andes Modelos Estadísticos de Crimen 27 de Mayo de 2015 Motivacion Conocer la densidad de probabilidad del crimen sobre una ciudad, a distintas horas del día, permite Modelos Estadísticos

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

Teoría de Líneas de Espera

Teoría de Líneas de Espera Teoría de Colas Teoría de Líneas de Espera COLAS: Líneas de espera que utiliza modelos matemáticos que describen sistemas de líneas particulares o Sistemas de Colas. Modelos presentan las siguientes características:

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

Clasificación de sistemas

Clasificación de sistemas Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta

Más detalles

PROBLEMA 1 PROBLEMA 2

PROBLEMA 1 PROBLEMA 2 PROBLEMA 1 Dos compañías de taxis atienden a una comunidad. Cada empresa posee dos taxis y se sabe que ambas compañías comparten el mercado al 50%. Las llamadas que llegan a cada una de las respectivas

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

Ambas componentes del sistema tienen costos asociados que deben de considerarse.

Ambas componentes del sistema tienen costos asociados que deben de considerarse. 1. Introducción. En este trabajo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares

Más detalles

Carrera: INB Participantes. Representante de las academias de ingeniería industrial de. Academias Ingeniería Industrial.

Carrera: INB Participantes. Representante de las academias de ingeniería industrial de. Academias Ingeniería Industrial. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Investigación de Operaciones II Ingeniería Industrial INB-0412 4-0-8 2.- HISTORIA

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

TEORIA DE COLAS SIMULACIÓN DE SISTEMAS

TEORIA DE COLAS SIMULACIÓN DE SISTEMAS SIMULACIÓN DE SISTEMAS UNIVERSIDAD ALAS PERUANAS FILIAL- ICA Ing. Las LINEAS DE ESPERA, FILAS DE ESPERA o COLAS, son realidades cotidianas: Personas esperando para una caja en un banco, Estudiantes esperando

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

Análisis de Decisiones II

Análisis de Decisiones II Tema 14 Distribución de llegadas Poisson, distribución de servicio Exponencial, varios servidores, servicio PEPS, población y cola infinita Objetivo de aprendizaje del tema Al finalizar el tema serás capaz

Más detalles

PROGRAMACION CONCURRENTE Y DISTRIBUIDA

PROGRAMACION CONCURRENTE Y DISTRIBUIDA PROGRAMACION CONCURRENTE Y DISTRIBUIDA V.2 Redes de Petri: Análisis y validación. J.M. Drake 1 Capacidad de modelado y capacidad de análisis El éxito de un método de modelado es consecuencia de su capacidad

Más detalles

13,20 13,25 13,30 13,35 13,40 13,45 13,50 13,55 14,00 14,05 14,10

13,20 13,25 13,30 13,35 13,40 13,45 13,50 13,55 14,00 14,05 14,10 05 Trabajo Práctico N : LÍMITE DE FUNCIONES Ejercicio : Un dispositivo registra los valores de la frecuencia cardiaca de un paciente internado. El gráfico muestra la frecuencia cardíaca epresada en pulsaciones

Más detalles

TEORIA DE COLAS. Enero 30. Modelos líneas de espera

TEORIA DE COLAS. Enero 30. Modelos líneas de espera TEORIA DE COLAS Enero 30 2012 Elementos básicos de un modelo de línea de espera, y buscar una aplicación real de cualquiera de los modelos de líneas de espera existentes. Modelos líneas de espera -Integrantes:

Más detalles

ADMINISTRACIÓN DE EMPRESAS

ADMINISTRACIÓN DE EMPRESAS DIRECCIÓN DE EDUCACIÓN ABIERTA Y A DISTANCIA Y VIRTUALIDAD ADMINISTRACIÓN DE EMPRESAS INVESTIGACION DE OPERACIONES MÓDULO EN CORPORACIÓN UNIVERSITARIA DEL CARIBE-CECAR DIVISIÓN DE EDUCACIÓN ABIERTA Y A

Más detalles

DEPARTAMENTO DE INGENIERÍA INDUSTRIAL MANUAL DE INVESTIGACION DE OPERACIONES II. Autores: Barbara Rodriguez Morera Dr. C. Fernando Marrero Delgado

DEPARTAMENTO DE INGENIERÍA INDUSTRIAL MANUAL DE INVESTIGACION DE OPERACIONES II. Autores: Barbara Rodriguez Morera Dr. C. Fernando Marrero Delgado DEPARTAMENTO DE INGENIERÍA INDUSTRIAL MANUAL DE INVESTIGACION DE OPERACIONES II Autores: Barbara Rodriguez Morera Dr. C. Fernando Marrero Delgado Santa Clara, 0 A: Mis padres por el apoyo que me han brindado

Más detalles

Nombre de la asignatura: Investigación de Operaciones II. Créditos: Aportación al perfil

Nombre de la asignatura: Investigación de Operaciones II. Créditos: Aportación al perfil Nombre de la asignatura: Investigación de Operaciones II Créditos: 2-2-4 Aportación al perfil Analizar, diseñar y gestionar sistemas productivos desde la provisión de insumos hasta la entrega de bienes

Más detalles

PLANEACIÓN DE OPERACIONES ADMINISTRACIÓN DE OPERACIONES

PLANEACIÓN DE OPERACIONES ADMINISTRACIÓN DE OPERACIONES PLANEACIÓN DE OPERACIONES ADMINISTRACIÓN DE OPERACIONES Objetivo de la planeación de operaciones Equilibrar la totalidad de la demanda con la totalidad de los recursos de los inventarios y la capacidad.

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

Relación de Problemas. Tema 6

Relación de Problemas. Tema 6 Relación de Problemas. Tema 6 1. En una urna hay 5 bolas blancas y 2 negras y se sacan tres bolas sin reemplazamiento. a) Calcular la distribución conjunta del número de bolas blancas y negras de entre

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

El modelo cinético molecular para un gas ideal

El modelo cinético molecular para un gas ideal El modelo cinético ecular para un gas ideal En 166, Robert Boyle encontró que el volumen de un gas a temperatura constante es proporcional al inverso de la presión ley de Boyle 1 (1) P En 1787, Jacques

Más detalles

EL PROBLEMA DE LA TANGENTE

EL PROBLEMA DE LA TANGENTE EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar

Más detalles

de Erlang-B Jhon Jairo Padilla A., PhD.

de Erlang-B Jhon Jairo Padilla A., PhD. Sistemas de Pérdidas das y la Fórmula de Erlang-B Jhon Jairo Padilla A., PhD. Introducción Ahora se considerará la teoría de teletráfico clásica desarrollada por Erlang (Dinamarca), Engset (Noruega) y

Más detalles

np {N q = n N q > 0} = (1 ρ) n=1 = (1 ρ) nρ n 1 = 1 (3.34) P {T q t T q > 0} = P {T q t T q > 0} P {T q

np {N q = n N q > 0} = (1 ρ) n=1 = (1 ρ) nρ n 1 = 1 (3.34) P {T q t T q > 0} = P {T q t T q > 0} P {T q 52 CAPÍTULO 3. SISTEMAS DE ESPERA Luego: P {N q = n N q > 0} = P n+1 2 = (1 ) n 1, n = 1, 2, (3.33) Nótesequelaprobabilidadqueexistan N probabilidadgeométricaconparámetro n 1,locualesigualaladistribuciónprobabilidad

Más detalles

ANALISIS DE FRECUENCIA

ANALISIS DE FRECUENCIA ANALISIS DE FRECUENCIA HIDROLOGÍA Determinística: enfoque en el cual los parámetros se calculan en base a relaciones físicas para procesos dinámicos del ciclo hidrológico. Estocástico: Enfoque en el cual

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

CDEE. Cuestiones 3er Ejercicio. 0 si x 1. k(x + 1) + x2 1. k(x + 1) x si x > 1

CDEE. Cuestiones 3er Ejercicio. 0 si x 1. k(x + 1) + x2 1. k(x + 1) x si x > 1 CUESTIÓN 1: El tiempo de retraso, medido en minutos, del AVE Madrid-Sevilla sigue una variable aleatoria continua con función de distribución: 0 si x 1 F (x) = k(x + 1) + x2 1 2 si 1 < x 0 k(x + 1) x2

Más detalles

Introducción a la teoría de ciclos ĺımite

Introducción a la teoría de ciclos ĺımite Introducción a la teoría de ciclos ĺımite Salomón Rebollo Perdomo srebollo@inst-mat.utalca.cl Instituto de Matemática y Física 05-09 de enero, 2015. Talca, CL Contenido 1 Introducción Qué es un ciclo ĺımite?

Más detalles

V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas

V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE INVESTIGACIÓN DE OPERACIONES II INGENIERIA INDUSTRIAL E INGENIERIA DE SISTEMAS V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas Maestro

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

CAPITULO 1: PERSPECTIVE GENERAL DE LA

CAPITULO 1: PERSPECTIVE GENERAL DE LA CONTENIDO CAPITULO 1: PERSPECTIVE GENERAL DE LA INVESTIGACION DE OPERACIONES 1 1.1 Modelos matemáticos de investigación de operaciones. 1 1.2 Técnicas de investigación de operaciones 3 1.3 Modelado de

Más detalles

Introducción a Ecuaciones Diferenciales

Introducción a Ecuaciones Diferenciales Introducción a Ecuaciones Diferenciales Temas Ecuaciones diferenciales que se resuelven directamente aplicando integración. Problemas con condiciones iniciales y soluciones particulares. Problemas aplicados.

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M. PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Posible solución al examen de Investigación Operativa de Sistemas de junio de 2002

Posible solución al examen de Investigación Operativa de Sistemas de junio de 2002 Posible solución al examen de Investigación Operativa de Sistemas de junio de 00 Problema (,5 puntos): Resuelve el siguiente problema utilizando el método Simplex o variante: Una compañía fabrica impresoras

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

SISTEMAS DE COLAS EXPONENCIALES

SISTEMAS DE COLAS EXPONENCIALES UNIVERSIDAD POLITÉCNICA DE MADRID FACULTAD DE INFORMÁTICA SISTEMAS DE COLAS EXPONENCIALES M a ISABEL RODRÍGUEZ GALIANO Madrid, Junio de 2002 Índice Introducción 2 Sistema de Colas M/M/ 3 3 Sistema de Colas

Más detalles

Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística

Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística El Objetivo La teoría de colas o líneas de espera, procura el estudio riguroso del fenómeno (muy común en estos tiempos)

Más detalles

Poblaciones multietáneas

Poblaciones multietáneas : Estado biológico Dinámica de poblaciones: crecimiento de poblaciones multietáneas José Antonio Palazón Ferrando palazon@um.es http://fobos.bio.um.es/palazon Departamento de Ecología e Hidrología Universidad

Más detalles