APLICACIÓN DE LA METODOLOGÍA DE DAUDIN A LOS GRÁFICOS POR ATRIBUTOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APLICACIÓN DE LA METODOLOGÍA DE DAUDIN A LOS GRÁFICOS POR ATRIBUTOS"

Transcripción

1 27 Congreso Nacional de Estadística e Investigación Operativa Lleida, 8-11 de abril de 2003 APLICACIÓN DE LA METODOLOGÍA DE DAUDIN A LOS GRÁFICOS POR ATRIBUTOS Elena Pérez Bernabeu 1, José M. Jabaloyes Vivas 2, Andrés Carrión García 3 1 Departamento de Estadística e Investigación Operativa Aplicadas y Calidad Universidad Politécnica de Valencia, Valencia, España 2 Departamento de Estadística e Investigación Operativa Aplicadas y Calidad Universidad Politécnica de Valencia, Valencia, España 3 Departamento de Estadística e Investigación Operativa Aplicadas y Calidad Universidad Politécnica de Valencia, Valencia, España RESUMEN Los gráficos Double Sampling (DS) de J.J. Daudin son el punto de partida de nuestra investigación. Daudin (1992) determinó un conjunto de gráficos X Optimal DS, para la media. En este trabajo se propone una mejora de los gráficos de control para defectos, en conc reto, para el gráfico c, utilizando la metodología propuesta por Daudin. Palabras y frases clave: Daudin, X Double Sampling, Gráfico c, control por atributos. Clasificación AMS: 1. Introducción El control de calidad es, en la actualidad, requisito obligado para todas las industrias y empresas que deseen mejorar sus beneficios y mantenerse en competencia, cada vez más dura. El Control Estadístico de Proceso es una herramienta básica que nos permite mantener estable el proceso objeto de estudio, cumpliendo las especificaciones marcadas. Para ello se utilizan los gráficos de control, que permiten una vigilancia y control del proceso y disminuir la variabilidad del proceso. 745

2 Los objetivos fundamentales de los Gráficos de Control se pueden concretar en: a) Vigilancia y control del proceso con el fin de conseguir que este sea estable, evitando la producción de defectos. b) Aumento de la homogeneidad de la producción mediante la disminución de la variabilidad del proceso y, de esta forma, conseguir una mejora continuada de la calidad. c) Los Gráficos de Control son una norma clara de actuación sobre el proceso, por lo que se evitan ajustes innecesarios (sobrecontrol) que tanto daño pueden causar a la homogeneidad del producto. d) Los Gráficos de Control suministran la información necesaria para la determinación, mediante la correspondiente estimación estadística, de los parámetros del producto y del proceso, lo que permitirá conocer mejor nuestra actividad productiva. (1). Hay gráficos de control por variables, en los que se estudian características de calidad cuantitativas, que pueden expresarse mediante un número real; y gráficos de control por atributos, en los que va a centrarse este artículo. En estos últimos se estudian características cualitativas, o bien características cuantitativas que consideramos atributos si no nos interesa el valor de dicha variable, sino tan sólo si cumple o no las especificaciones. Existen varios tipos de gráficos de control por atributos. Los gráficos np y p se utilizan para controlar la proporción de piezas defectuosas que genera el proceso; el primero exige que el tamaño de muestra sea constante mientras que el segundo no. Los gráficos c y u sirven para controlar el número de defectos; el primero exige que el tamaño de muestra sea constante, mientras que esta exigencia no es necesaria en el gráfico u. (1). En este artículo nos vamos a centrar en el gráfico de control c de defectos, proponiendo una mejora, que consiste en aplicar el doble muestreo propuesto por Daudin para el gráfico de la media (2). 746

3 2. Gráfico de control c de defectos El gráfico de control por atributos se caracteriza por el tamaño de muestra que se toma, constante o no, y según si queremos controlar la proporción de piezas defectuosas o el número de defectos. Vamos a estudiar el proceso tradicional de control del número de defectos para un tamaño de muestra constante, es decir, el gráfico de control c de defectos. TOMAR UNA MUESTRA DE TAMAÑO n EN EL INSTANTE T=O CALCULAR A PARTIR DE LA MUESTRA EL VALOR DE UN PARÁMETRO λ (nº defectos) CONCLUIR QUE EL PROCESO ESTÁ FUERA DE CONTROL Se encuentra dentro de los límites de control establecidos? ENCONTRAR LAS CAUSAS DE LA SALIDA DE CONTROL DEL PROCESO PROCESO BAJO CONTROL REPARAR EL PROCESO. TOMAR LAS MEDIDAS NECESARIAS TOMAR UNA MUESTRA DE TAMAÑO n t unidades de tiempo después Periódicamente, si no han aparecido salidas del control del proceso, recalcular los valores de la media y la desviación típica poblacional del mismo Figura 1: Diagrama de Flujo del Gráfico de Control c 747

4 Según tenemos en la figura 1, el procedimiento para realizar el control de defectos es bien sencillo, teniendo en cuenta que el tamaño de muestra es constante, y la regla de decisión no es complicada. n embargo, igual que sucede en el control de la media o la desviación típica con los gráficos de Shewhart, la rapidez de los mismos para detectar pequeños cambios en los parámetros del procesos es muy pequeña. Esta rapidez en detectar un proceso fuera de control resulta fundamental a la hora de alcanzar los niveles de calidad planificados por la empresa y se puede medir de diferentes maneras: 1. La probabilidad de detectar un cambio en el proceso. Esta probabilidad se mide a través de la curva característica del gráfico de control. 2. El número de piezas que debo muestrear hasta detectar un cambio en el proceso. El indicador que utilizaremos será el ARL (average run length) 3. El tiempo que tardo en detectar un cambio en el proceso. El indicador que utilizaremos será el ATS (average time to signal) 4. El número de piezas defectuosas que produzco hasta detectar un cambio en el proceso. Para cada uno de los gráficos de control que estudiaremos en la asignatura se mostrará como calcular la eficacia del mismo para detectar cualquier cambio en el parámetro de los proceso que estén controlando. 3. Gráfico de control DS-C. La propuesta realizada en este trabajo consiste en aplicar la metodología de J.J. Daudin al gráfico de control c de defectos, aplicando el doble muestreo para tratar de mejorar las cualidades del gráfico, tanto económicamente en cuanto a tamaño de muestra medio, como de tiempo, por la menor cantidad de muestras a analizar en promedio. Según la figura 2, mostrada a continuación, los pasos a seguir son los siguientes. 748

5 TOMAR UNA MUESTRA DE TAMAÑO n 1 TOMAR UNA MUESTRA DE TAMAÑO n 1 EN EL INSTANTE T=O CALCULAR A PARTIR DE LA MUESTRA EL VALOR DE UN PARÁMETRO λ (nº. Defectos) CONCLUIR QUE EL PROCESO ESTÁ FUERA DE CONTROL Se encuentra dentro de los límites de control establecidos? ENCONTRAR LAS CAUSAS DE LA SALIDA DE CONTROL DEL PROCESO Se encuentra dentro de la región de atención establecida? REPARAR EL PROCESOS. TOMAR LAS MEDIDAS NECESARIAS TOMAR UNA MUESTRA DE TAMAÑO n 2 Inmediatamente después (T=0) CALCULAR A PARTIR DE LAS MUESTRAS EL VALOR DE UN PARÁMETRO λ (f(m1,m2)) PROCESO BAJO CONTROL Se encuentra dentro de los límites de control establecidos? TOMAR UNA MUESTRA DE TAMAÑO n 1 T unidades de tiempo después Periódicamente, si no han aparecido salidas del control del proceso, recalcular los valores de la media y la desviación típica poblacional del mismo Figura 2: Diagrama de Flujo del Gráfico de Control DS-C 749

6 4. Conclusiones Con este trabajo pretendemos diseñar un gráfico de control que mejore sustancialmente la potencia del gráfico clásico para el control de defectos como es el gráfico c. En el trabajo mostramos la aplicación de la metodología de Daudin al gráfico c. El nuevo gráfico DS-C proporcional al responsable del proceso, mejoras importantes en el control del mismo, obteniendo valores de los principales indicadores de potencia de un gráfico de control (ARL, ATSS, etc.) mucho mejores que el gráfico c y otros gráficos como el CQC (4). Referencias (1) Carot, V. (1998). Control Estadístico de la Calidad. Servicio de Publicaciones Universidad Politécnica de Valencia. (2) Daudin, J.J. (1992): Double Sampling X Charts. Journal of Quality Technology. Vol. 24, (3) Carot, V., Jabaloyes, J. y Carot,T. (2002): Combined double sampling and variable sampling interval X-Chart. International Journal Production Research. Vol. 40, (4) Chan,L.Y.; Xie, M.; Goh, T.N. (2000): Cumulative quantity control charts for monitoring production processes. International Journal of Production Research. Vol. 38,

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento

Más detalles

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes Objetivos Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos Epígrafes Introducción a los Gráficos p, np. Interpretación Gráficos c y u. Interpretación 2-1 Gráfico

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles

LOS GRÁFICOS DE CONTROL POR ATRIBUTOS

LOS GRÁFICOS DE CONTROL POR ATRIBUTOS Revista de investigación Editada por Área de Innovación y Desarrollo, S.L. Envío: 20-02-2012 Aceptación: 29-02-2012 Publicación: 01-06-2012 LOS GRÁFICOS DE CONTROL POR ATRIBUTOS ATTRIBUTE CONTROL CHART

Más detalles

OPTIMIZACIÓN DEL GRÁFICO DE CONTROL EWMA PARA PROCESOS MUY CAPACES Y PROCESOS DIFÍCILMENTE AJUSTABLES

OPTIMIZACIÓN DEL GRÁFICO DE CONTROL EWMA PARA PROCESOS MUY CAPACES Y PROCESOS DIFÍCILMENTE AJUSTABLES 27 Congreso Nacional de Estadística e Investigación Operativa Lleida, 8-11 de abril de 2003 OPTIMIZACIÓN DEL GRÁFICO DE CONTROL EWMA PARA PROCESOS MUY CAPACES Y PROCESOS DIFÍCILMENTE AJUSTABLES J.C. García-Díaz,

Más detalles

METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL

METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL María Pérez Marqués Metodología Seis Sigma a través de Excel María Pérez Marqués ISBN: 978-84-937769-7-8 EAN: 9788493776978 Copyright 2010 RC Libros RC Libros es

Más detalles

07/12/2009 CARACTERÍSTICAS PRINCIPALES GRAFICOS DE CONTROL POR ATRIBUTOS DEFINICIÓN

07/12/2009 CARACTERÍSTICAS PRINCIPALES GRAFICOS DE CONTROL POR ATRIBUTOS DEFINICIÓN GRAFICOS DE CONTROL POR ATRIBUTOS DEFINICIÓN Son Gráficos de Control basados en la observación de la presencia o ausencia de una determinada característica, o de cualquier tipo de defecto en el producto,

Más detalles

GRÁFICOS DE CONTROL. Datos tipo atributo

GRÁFICOS DE CONTROL. Datos tipo atributo GRÁFICOS DE CONTROL Datos tipo atributo SELECCIÓN DE LOS GRÁFICOS DE CONTROL Total GRÁFICOS PARA ATRIBUTOS Se distinguen dos grandes grupos: Por unidad Los gráficos p, 100p y u difieren de los gráficos

Más detalles

GRÁFICOS DE CONTROL. Datos tipo atributo

GRÁFICOS DE CONTROL. Datos tipo atributo GRÁFICOS DE CONTROL Datos tipo atributo SELECCIÓN DE LOS GRÁFICOS DE CONTROL GRÁFICOS PARA ATRIBUTOS Se distinguen dos grandes grupos: Los gráficos p, 100p y u difieren de los gráficos np y c en que los

Más detalles

CONTROL ESTADÍSTICO DE PROCESOS Y METROLOGÍA EN LA CONSTRUCCIÓN DE UN BUQUE EN GRADA

CONTROL ESTADÍSTICO DE PROCESOS Y METROLOGÍA EN LA CONSTRUCCIÓN DE UN BUQUE EN GRADA CONTROL ESTADÍSTICO DE PROCESOS Y METROLOGÍA EN LA CONSTRUCCIÓN DE UN BUQUE EN GRADA Salvador Naya 1 y José Ángel Fraguela 2 1 Departamento de Matemáticas. Escuela Politécnica Superior. Universidad de

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera. Asignatura: Método Cuantitativo Empresarial

UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera. Asignatura: Método Cuantitativo Empresarial UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera Asignatura: Método Cuantitativo Empresarial CLAVE: PDF-421 Prerrequisitos: Licenciatura No. de Créditos: 03 I. PRESENTACION El método

Más detalles

TEMA 2: EL PROCESO DE MUESTREO

TEMA 2: EL PROCESO DE MUESTREO 2.5. Determinación del tamaño de la muestra para la estimación en muestreo aleatorio estratificado TEMA 2: EL PROCESO DE MUESTREO 2.1. Concepto y limitaciones 2.2. Etapas en la selección de la muestra

Más detalles

CONTROL DE DEFECTOS EN UNA EMPRESA TEXTIL MEDIANTE ANÁLISIS DE CORRESPONDENCIAS

CONTROL DE DEFECTOS EN UNA EMPRESA TEXTIL MEDIANTE ANÁLISIS DE CORRESPONDENCIAS 27 Congreso Nacional de Estadística e Investigación Operativa Lleida, 8- de abril de 200 CONTROL DE DEFECTOS EN UNA EMPRESA TEXTIL MEDIANTE ANÁLISIS DE CORRESPONDENCIAS Pau Miró i Martínez, Jose M. Jabaloyes

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

El ábaco de Poisson. Aplicaciones Prácticas 1

El ábaco de Poisson. Aplicaciones Prácticas 1 El ábaco de Poisson. Aplicaciones Prácticas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística, Investigación Operativa

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA INFERENCIA ESTADISTICA ESTIMACION 2 maneras de estimar: Estimaciones puntuales x s 2 Estimaciones por intervalo 2 ESTIMACION Estimaciones por intervalo Limites de Confianza LCI

Más detalles

Unidad V. Control Estadístico de la Calidad

Unidad V. Control Estadístico de la Calidad UNIVERSIDAD NACIONAL DE INGENIERÍA UNI- NORTE - SEDE REGIONAL ESTELÍ Unidad V. Control Estadístico de la Calidad Objetivos Reconocer los principios estadísticos del control de calidad. Explicar la forma

Más detalles

Técnicas de investigación cuantitativas: Tema 4: MUESTREO PROBABILÍSTICO

Técnicas de investigación cuantitativas: Tema 4: MUESTREO PROBABILÍSTICO Técnicas de investigación cuantitativas: Tema 4: MUESTREO PROBABILÍSTICO Grado en Criminología Curso 2014/2015 Técnicas de investigación cualitativa y cuantitativa Diseño muestral Recordemos (Tema 3):

Más detalles

Control Estadístico de la Calidad. Gráficos de Control. Estadistica Básica

Control Estadístico de la Calidad. Gráficos de Control. Estadistica Básica Control Estadístico de la Calidad Gráficos de Control Estadistica Básica Control de Calidad Calidad significa idoneidad de uso, Es la interacción de la calidad: Del diseño Nivel de desempeño, de confiabilidad

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

Predicción de Confiabilidad en Sistemas Intensivos en Software

Predicción de Confiabilidad en Sistemas Intensivos en Software XII CONGRESO DE CONFIABILIDAD Predicción de Confiabilidad en Sistemas Intensivos en Software Cádiz, 24, 25 y 26 de noviembre de 2010 ÍNDICE 1.Introducción (contexto Alta Fiabilidad) 2.Conocimiento Cuantitativo

Más detalles

EL PAPEL DE LA ESTADISTICA EN O Y M. Objetivo: Identificar índices estadísticos, y métodos más convenientes, para aplicarlos en el estudio de O y M.

EL PAPEL DE LA ESTADISTICA EN O Y M. Objetivo: Identificar índices estadísticos, y métodos más convenientes, para aplicarlos en el estudio de O y M. EL PAPEL DE LA ESTADISTICA EN O Y M Objetivo: Identificar índices estadísticos, y métodos más convenientes, para aplicarlos en el estudio de O y M. O y M necesita apoyarse en la estadística que en casos

Más detalles

CURSO DE MÉTODOS CUANTITATIVOS I

CURSO DE MÉTODOS CUANTITATIVOS I CURSO DE MÉTODOS CUANTITATIVOS I TEMA VI: INTRODUCCIÓN AL MUESTREO Ing. Francis Ortega, MGC Concepto de Población y Muestra POBLACIÓN (N) Es el conjunto de todos los elementos de interés en un estudio

Más detalles

Presentación de la Asignatura. Estadística II. Prof. Sergio Jurado Chamorro

Presentación de la Asignatura. Estadística II. Prof. Sergio Jurado Chamorro Presentación de la Asignatura Estadística II Prof. Sergio Jurado Chamorro Estadística II: La asignatura Contexto Enfoque Nivel matemático Conocimientos básicos Otro requerimientos Herramienta de apoyo

Más detalles

INTRODUCCIÓN AL MUESTREO

INTRODUCCIÓN AL MUESTREO INTRODUCCIÓN AL MUESTREO Licenciatura de Ciencias Ambientales UPM Matemáticas y Estadística Aplicadas Prof: Susana Martín Fernández Prof: Esperanza Ayuga Téllez Definiciones Previas Población. Conjunto

Más detalles

Aprender a construir gráficos X-S y conocer sus limitaciones.

Aprender a construir gráficos X-S y conocer sus limitaciones. Objetivos Aprender a construir gráficos X-R y conocer sus limitaciones. Aprender a construir gráficos X-S y conocer sus limitaciones. Comprender la relación entre los Gráficos de Control y el intervalo

Más detalles

Guía docente 2007/2008

Guía docente 2007/2008 Guía docente 2007/2008 Plan 247 Lic.Investigación y Tec.Mercado Asignatura 43579 METODOS CUANTITATIVOS PARA LA INVESTIGACION DE MERCADOS Grupo 1 Presentación Métodos y técnicas cuantitativas de investigación

Más detalles

Método Seis Sigma. Maria Soledad Lahitte

Método Seis Sigma. Maria Soledad Lahitte Método Seis Sigma Maria Soledad Lahitte Introducción Seis Sigma es el término elegido por Motorola, hace más de 17 años, para denominar su iniciativa de reducción radical de defectos en productos, lo cual

Más detalles

BUENAS ENTRADAS, MEJORES SALIDAS

BUENAS ENTRADAS, MEJORES SALIDAS BUENAS ENTRADAS, MEJORES SALIDAS Todos conocemos aquella frase que dice, lo que bien empieza, bien acaba Pues bien, esto es perfecta y rigurosamente aplicable a la gestión de las organizaciones, ya sean

Más detalles

LOS GRÁFICOS DE CONTROL

LOS GRÁFICOS DE CONTROL CAPÍTULO IX LOS GRÁFICOS DE CONTROL 9.1 INTRODUCCIÓN En cualquier proceso de generación de productos o servicios, sin importar su buen diseño y/o mantenimiento cuidadoso, siempre existirá cierto grado

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4,

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

Indicadores de Proceso

Indicadores de Proceso Indicadores de Proceso Los indicadores nos permiten recoger adecuadamente la información relevante respecto a la ejecución y a los resultados de uno o varios PROCESOS, de forma que se pueda determinar

Más detalles

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática MINISTERIO DE EDUCACIÓN Dirección de Educación Técnica y Profesional Familia de especialidades:servicios Programa: Estadística Matemática Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 9no.

Más detalles

RÚBRICAS POR ÁREA. Matemáticas Aplicadas a las Cien. Soc.II 2014/2015

RÚBRICAS POR ÁREA. Matemáticas Aplicadas a las Cien. Soc.II 2014/2015 Criterio [BAII02C01]: Utilizar el lenguaje matricial como instrumento para organizar y codificar la información proveniente de situaciones con datos estructurados en forma de tablas o grafos, y aplicar

Más detalles

Control Estadístico de Procesos (SPC) para NO estadísticos.

Control Estadístico de Procesos (SPC) para NO estadísticos. Control Estadístico de Procesos (SPC) para NO estadísticos. - Sesión 3ª de 4 - Impartido por: Jaume Ramonet Fernández Ingeniero Industrial Superior PMP (PMI ) Consultoría y Formación Actitud requerida

Más detalles

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1 Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,

Más detalles

ALGUNAS CUESTIONES DESTACABLES EN INFERENCIA ESTADÍSTICA

ALGUNAS CUESTIONES DESTACABLES EN INFERENCIA ESTADÍSTICA ALGUNAS CUESTIONES DESTACABLES EN INFERENCIA ESTADÍSTICA Las encuestas sociológicas suelen trabajar con muestras. Sería demasiado costoso entrevistar al total de la población española adulta, que suele

Más detalles

(12249) TITULACIÓN LICENCIATURA EN A.D.E. TÉCNICAS ESTADÍSTICAS DE CONTROL DE CALIDAD. Mª Isabel López Rodríguez Dpto.

(12249) TITULACIÓN LICENCIATURA EN A.D.E. TÉCNICAS ESTADÍSTICAS DE CONTROL DE CALIDAD. Mª Isabel López Rodríguez Dpto. TITULACIÓN LICENCIATURA EN A.D.E. TÉCNICAS ESTADÍSTICAS DE CONTROL DE CALIDAD (149) Mª Isabel López Rodríguez Dpto. Economía Aplicada CURSO ACADÉMICO 013/014 TEMA 5: CONTROL DE PROCESOS POR VARIABLES.

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

EXAMEN de practica 6 CALIDAD

EXAMEN de practica 6 CALIDAD EXAMEN de practica 6 CALIDAD 1. Cuál de las siguientes NO es parte de la calidad? A. Satisfacción del cliente B. Valor para el Patrocinador (Sponsor) C. Conformidad con los requisitos D. Aptitud de uso

Más detalles

Análisis de los resultados de la evaluación del aprendizaje de procedimientos de análisis descriptivo en ingeniería informática

Análisis de los resultados de la evaluación del aprendizaje de procedimientos de análisis descriptivo en ingeniería informática Análisis de los resultados de la evaluación del aprendizaje de procedimientos de análisis descriptivo en ingeniería informática Apellidos, nombre Capilla Romá, Carmen 1 (ccapilla@eio.upv.es) Departamento

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE PROGRAMA DE ESTUDIO A. Antecedentes Generales ASIGNATURA : Estadística CÓDIGO : IIM313A DURACIÓN : UN SEMESTRE ACADÉMICO PRE - REQUISITO : PROBABILIDADES CO REQUISITO : NO TIENE UBICACIÓN : TERCER AÑO,

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA MANUFACTURA EN COMPETENCIAS PROFESIONALES

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA MANUFACTURA EN COMPETENCIAS PROFESIONALES TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA MANUFACTURA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE CONTROL ESTADÍSTICO DEL PROCESO 1. Competencias Administrar la cadena de suministro,

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS

INTRODUCCIÓN AL ANÁLISIS DE DATOS INTRODUCCIÓN AL ANÁLISIS DE DATOS HORARIOS: Lunes, 12:00-13:30 Martes, 8:15-9:45 Jueves, 8:15-9:45 Tema 1. Introducción. El análisis de datos dentro de la estadística. Características de los datos socioeconómicos.

Más detalles

PROGRAMA DE ESTUDIOS

PROGRAMA DE ESTUDIOS PROGRAMA DE ESTUDIOS Nombre: ESTADÍSTICA DESCRIPTIVA Carrera: Ingeniería Ambiental, Ecología y Biología Créditos: 6 Horas Teóricas a la semana: 2 Horas Prácticas a la semana: 2 PRESENTACION La necesidad

Más detalles

SISTEMAS DE GESTIÓN DE LA ENERGÍA. Aportes de la nueva Norma UNIT-ISO a la mejora del desempeño energético

SISTEMAS DE GESTIÓN DE LA ENERGÍA. Aportes de la nueva Norma UNIT-ISO a la mejora del desempeño energético SISTEMAS DE GESTIÓN DE LA ENERGÍA Aportes de la nueva Norma UNIT-ISO 50001 a la mejora del desempeño energético INTRODUCCIÓN El propósito de esta Norma es permitir que las organizaciones establezcan procesos

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill. GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos

Más detalles

ANÁLISIS DE DATOS. L.A. y M.C.E. Emma Linda Diez Knoth

ANÁLISIS DE DATOS. L.A. y M.C.E. Emma Linda Diez Knoth ANÁLISIS DE DATOS 1 Tipos de Análisis en función de la Naturaleza de los Datos Datos cuantitativos Datos cualitativos Análisis cuantitativos Análisis cuantitativos de datos cuantitativos (Estadística)

Más detalles

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística MINISTERIO DE EDUCACIÓN Educación Técnica y Profesional Familia de especialidades: Economía Programa: Estadística Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 12mo. Grado AUTORA MSc. Caridad

Más detalles

GRAFICOS DE CONTROL DATOS TIPO VARIABLES

GRAFICOS DE CONTROL DATOS TIPO VARIABLES GRAFICOS DE CONTROL DATOS TIPO VARIABLES OBJETIVO DEL LABORATORIO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos de control, para realizar

Más detalles

DISEÑO CURRICULAR ESTADÍSTICA III

DISEÑO CURRICULAR ESTADÍSTICA III UNIVERSIDAD NUEVA ESPARTA FACULTAD DE CIENCIAS DE LA INFORMATICA ESCUELA DE COMPUTACION DISEÑO CURRICULAR ESTADÍSTICA III ESCUELA DE COMPUTACIÓN CÓDIGO DE LA ESCUELA: 10-0762-2 ASIGNATURA: Estadística

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Fuente de los comics: La Estadística en Comic. LarryGonicky Woollcatt Smith. Ed. ZendreraZariquiey, 1999 ESTADÍSTICA ESTADÍSTICA

Más detalles

PROGRAMA INSTRUCCIONAL CONTROL DE CALIDAD

PROGRAMA INSTRUCCIONAL CONTROL DE CALIDAD UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECANICO PROGRAMA AL CONTROL DE CALIDAD CÓDIGO ASIGNADO SEMESTRE U.C DENSIDAD HORARIA SEMI H.T H.P/H.L H.A

Más detalles

CURSO VIRTUAL. Acceso a fuentes de información y manejo de redes sociales. Módulo 2

CURSO VIRTUAL. Acceso a fuentes de información y manejo de redes sociales. Módulo 2 CURSO VIRTUAL Acceso a fuentes de información y manejo de redes sociales Módulo 2 OBJETIVOS Conseguir que el alumno adquiera conocimientos estadísticos que le permitan una lectura comprensiva de la metodología

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

Prof. Angel Zambrano ENERO 2009 Universidad de Los Andes Escuela de Estadística

Prof. Angel Zambrano ENERO 2009 Universidad de Los Andes Escuela de Estadística Prof. Angel Zambrano ENERO 009 Universidad de Los Andes Escuela de Estadística Muestreo: Es una metodología que apoyándose en la teoría estadística y de acuerdo a las características del estudio, indica

Más detalles

Quim 3025 Por: Rolando Oyola Martínez Derechos 16. Química Analítica

Quim 3025 Por: Rolando Oyola Martínez Derechos 16. Química Analítica Quim 3025 Por: Rolando Oyola Martínez Derechos Reservados@2015 16 1 Química Analítica Definición: Ciencia que se ocupa de la caracterización química de la materia. Análisis Cualitativo = Qué es?, Qué consiste?

Más detalles

Inferencia con una variable Tema 2

Inferencia con una variable Tema 2 Inferencia con una variable Tema 2 1. Contraste sobre una proporción 2. Bondad de ajuste 3. Contraste de hipótesis sobre una media 3.1. Con σ 2 conocida, prueba Z 3.2. Con σ 2 desconocida, prueba T 4.

Más detalles

Ficha de la asignatura

Ficha de la asignatura Nirsavoáreasón de lempresa.s: Asignatura: Control y Gestión de la Calidad Departamento: Departamento de Organización Industrial Tipo: Curso: Primero Cuatrimestre: Segundo Semestre Nivel: Idioma: Castellano

Más detalles

Asignaturas antecedentes y subsecuentes Probabilidad y Estadística Matemática

Asignaturas antecedentes y subsecuentes Probabilidad y Estadística Matemática PROGRAMA DE ESTUDIOS MUESTREO Área a la que pertenece: ÁREA DE FORMACION INTEGRAL PROFESIONAL Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0082 Asignaturas antecedentes y subsecuentes Probabilidad

Más detalles

MUESTREO PARA ACEPTACION

MUESTREO PARA ACEPTACION MUESTREO PARA ACEPTACION Inspección de Calidad Consiste en un procedimiento técnico que permite verificar si los materiales, el proceso de fabricación y los productos terminados cumplen con sus respectivas

Más detalles

CONTROL ESTADISTICO DE LA CALIDAD

CONTROL ESTADISTICO DE LA CALIDAD CICLO 2012-II Módulo: Unidad: 4 Semana: 4 CONTROL ESTADISTICO DE LA CALIDAD Ing. Enrique Montenegro Marcelo GRAFICOS DE CONTROL ORIENTACIONES Al finalizar este capitulo el alumno deberá poder construir

Más detalles

ESTADÍSTICA. Rincón del Maestro:

ESTADÍSTICA. Rincón del Maestro: ESTADÍSTICA Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Conceptos

Más detalles

1 POBLACIÓN Y MUESTRA

1 POBLACIÓN Y MUESTRA 1 POBLACIÓN Y MUESTRA Estadística.- es la rama de las matemáticas que se encarga de describir y analizar datos de un estudio, y obtener consecuencias válidas del estudio. Población.- es el conjunto de

Más detalles

NUEVAS ESTRATEGIAS DE OPTIMIZACIÓN PARA EL PROCESO DE ENVASADO EN PESADORAS MULTICABEZALES IMPLEMENTADAS EN EMPRESAS DE ALIMENTOS

NUEVAS ESTRATEGIAS DE OPTIMIZACIÓN PARA EL PROCESO DE ENVASADO EN PESADORAS MULTICABEZALES IMPLEMENTADAS EN EMPRESAS DE ALIMENTOS NUEVAS ESTRATEGIAS DE OPTIMIZACIÓN PARA EL PROCESO DE ENVASADO EN PESADORAS MULTICABEZALES IMPLEMENTADAS EN EMPRESAS DE ALIMENTOS 1. INTRODUCCIÓN Alexander De Jesús Pulido Rojano alpuro@doctor.upv.es Estudiante

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos 5.3-1 El % de los DVDs de una determinada marca son defectuosos. Si se venden en lotes de 5 unidades, calcular

Más detalles

Introducción a la Estadística Aplicada en la Química

Introducción a la Estadística Aplicada en la Química Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00

Más detalles

TEMA 3: Inspección Estadística por Variables

TEMA 3: Inspección Estadística por Variables TEMA 3: Inspección Estadística por Variables 1 Planes de muestreo por variables 2 Inspección en cadena 3 Inspección por muestreo continuo 4 Planes de muestreo por lotes salteados 5 Consideración de errores

Más detalles

COLEGIO INTERNACIONAL SEK ALBORÁN. Middle Years Programme [PROGRAMA DE AÑOS INTERMEDIOS] CURSO ACADÉMICO

COLEGIO INTERNACIONAL SEK ALBORÁN. Middle Years Programme [PROGRAMA DE AÑOS INTERMEDIOS] CURSO ACADÉMICO COLEGIO INTERNACIONAL SEK ALBORÁN Departamento de MATEMÁTICAS Middle Years Programme [PROGRAMA DE AÑOS INTERMEDIOS] CURSO ACADÉMICO 2012-2013 2º ESO Apuntes de estadística y probabilidad 3. ESTADÍSTICA.

Más detalles

Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES

Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES Práctica 2 Estudios Descriptivos Bidimensionales Página 1 Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES En esta segunda práctica

Más detalles

ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL Organiza: INSTITUTO CÁNTABRO DE ESTADÍSTICA http://www.icane.es Responsable: Francisco Parra Rodríguez Jefe de Servicio de Estadísticas

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MANUFACTURA AERONÁUTICA ÁREA MAQUINADOS DE PRECISIÓN EN COMPETENCIAS PROFESIONALES

TÉCNICO SUPERIOR UNIVERSITARIO EN MANUFACTURA AERONÁUTICA ÁREA MAQUINADOS DE PRECISIÓN EN COMPETENCIAS PROFESIONALES TÉCNICO SUPERIOR UNIVERSITARIO EN MANUFACTURA AERONÁUTICA ÁREA MAQUINADOS DE PRECISIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FUNDAMENTOS DE MANUFACTURA ESBELTA 1. Competencias Desarrollar la manufactura

Más detalles

Muestreo de aceptación

Muestreo de aceptación Muestreo de aceptación Cuándo aplicar muestreo de aceptación? Se puede aplicar en cualquier relación cliente proveedor, ya sea en el interior de una empresa o entre diferentes empresas y se puede ver como

Más detalles

Tema1: Introducción a La Estadística 1.1-1

Tema1: Introducción a La Estadística 1.1-1 1 Tema1: Introducción a La Estadística 1.1-1 Introducción Un objetivo importante de La Estadística es: aprender acerca de un grupo grande, examinando los datos de algunos de sus miembros. La Estadística

Más detalles

Estimación de la evolución de proyectos en el ámbito de la producción industrial mediante la parametrización de la curva S del coste acumulado

Estimación de la evolución de proyectos en el ámbito de la producción industrial mediante la parametrización de la curva S del coste acumulado Estimación de la evolución de proyectos en el ámbito de la producción industrial mediante la parametrización de la curva S del coste acumulado Contenido Qué vamos a ver? Introducción Antecedentes Objetivos

Más detalles

SILABO DEL CURSO TEORÍA DE MUESTREO

SILABO DEL CURSO TEORÍA DE MUESTREO FACULTAD DE ESTUDIOS DE LA EMPRESA CARRERA DE MARKETING SILABO DEL CURSO TEORÍA DE MUESTREO 1. DATOS GENERALES 1.1. Carrera Profesional : Marketing 1.2. Departamento : Marketing 1.3. Tipo de Curso : Obligatorio

Más detalles

MATEMÁTICAS APLICADAS A LAS CCSS II (2º BACHILLERATO)

MATEMÁTICAS APLICADAS A LAS CCSS II (2º BACHILLERATO) MATEMÁTICAS APLICADAS A LAS CCSS II (2º BACHILLERATO) 1.1.1 Contenidos y temporalización. Matemáticas Aplicadas a las Ciencias Sociales II 1.1.1.1 Bloque 1. Álgebra (Total : 40 sesiones) Matrices y determinantes

Más detalles

ASIGNATURA: Estadística para la Mejora de la Calidad

ASIGNATURA: Estadística para la Mejora de la Calidad CARACTERÍSTICAS GENERALES Tipo: Página 1 de 6 Formación básica, Obligatoria, Optativa Trabajo de fin de grado, Prácticas externas Duración: Semestral Semestre/s: 7 Número de créditos ECTS: 4 Idioma/s:

Más detalles

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS ASIGNATURA

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS ASIGNATURA PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS SEMESTRE ASIGNATURA 8vo TEORÍA DE DECISIONES CÓDIGO HORAS MAT-31314

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

UNIVERSIDAD AGRO-ALIMENTARIA ALIMENTARIA DE MAO IEES-UAAM PROGRAMA ANALÍTICO EVALUACION DEL RENDIMIENTO FISICO. Mao, Valverde República Dominicana

UNIVERSIDAD AGRO-ALIMENTARIA ALIMENTARIA DE MAO IEES-UAAM PROGRAMA ANALÍTICO EVALUACION DEL RENDIMIENTO FISICO. Mao, Valverde República Dominicana UNIVERSIDAD AGRO-ALIMENTARIA ALIMENTARIA DE MAO IEES-UAAM PROGRAMA ANALÍTICO EVALUACION DEL RENDIMIENTO FISICO Mao, Valverde República Dominicana I. DATOS DE LA ASIGNATURA Nombre de la asignatura: Evaluación

Más detalles

DESARROLLO CAPÍTULO I

DESARROLLO CAPÍTULO I 1. INTRODUCCION Según Valderrey 1 (p 1), Wilfredo Pareto, economista italiano (1848-1923), enuncio el principio de la distribución de la riqueza diciendo que el 80 % de la riqueza está en manos del 20%

Más detalles

Ministerio de Agricultura y Ganadería Manual para elaborar y documentar procedimientos en el Ministerio de Agricultura y Ganadería

Ministerio de Agricultura y Ganadería Manual para elaborar y documentar procedimientos en el Ministerio de Agricultura y Ganadería Ministerio de Agricultura y Ganadería Manual para elaborar y documentar procedimientos en el Ministerio de Agricultura y Ganadería inc 2008 1 Presentación El Ministerio de Agricultura y Ganadería con el

Más detalles

Objetivos. Epígrafes 8-1. Francisco José García Álvarez

Objetivos. Epígrafes 8-1. Francisco José García Álvarez Objetivos Entender los fundamentos estadísticos del muestreo de aceptación por variables. Aprender los procedimientos más usados del muestreo de aceptación por variables: Norma militar 414 Epígrafes Introducción

Más detalles

DISEÑO Y CÁLCULO DE TAMAÑO DE MUESTRA PARA SU APLICACIÓN A LOS ESTUDIOS DE INVESTIGACIÓN. FACILITADOR: JOSÉ CRISTO NOVA

DISEÑO Y CÁLCULO DE TAMAÑO DE MUESTRA PARA SU APLICACIÓN A LOS ESTUDIOS DE INVESTIGACIÓN. FACILITADOR: JOSÉ CRISTO NOVA DISEÑO Y CÁLCULO DE TAMAÑO DE MUESTRA PARA SU APLICACIÓN A LOS ESTUDIOS DE INVESTIGACIÓN. FACILITADOR: JOSÉ CRISTO NOVA INTRODUCCIÓN Los profesionales y docentes del área de la metodología de investigación

Más detalles

Gestión de Procesos. Dpto. Calidad y Control de Gestión Administración Municipal - cqc

Gestión de Procesos. Dpto. Calidad y Control de Gestión Administración Municipal - cqc Gestión de Procesos 1 Es un mecanismo de evaluación externo y de reconocimiento público a las municipalidades que alcancen determinados niveles de gestión de los servicios municipales, en comparación con

Más detalles

OBJETIVOS CONTENIDOS

OBJETIVOS CONTENIDOS OBJETIVOS - Aplicar sus conocimientos Matemáticos a situaciones diversas, utilizándolos en particular en la interpretación de fenómenos y procesos de las ciencias sociales y humanas, y en las actividades

Más detalles

PROYECTO GRUPAL. GUIA DE LA ACTIVIDAD DE TRABAJO COLABORATIVO Muestreo y Estimación de Parámetros METODOLOGÍA. Procedimiento:

PROYECTO GRUPAL. GUIA DE LA ACTIVIDAD DE TRABAJO COLABORATIVO Muestreo y Estimación de Parámetros METODOLOGÍA. Procedimiento: PROYECTO GRUPAL GUIA DE LA ACTIVIDAD DE TRABAJO COLABORATIVO Muestreo y Estimación de Parámetros Respetados Estudiantes, A continuación se dan las instrucciones necesarias para su participación en la actividad

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 5 Simulación ORGANIZACIÓN DEL TEMA Sesiones: Introducción Ejemplos prácticos Procedimiento y evaluación de resultados INTRODUCCIÓN Simulación: Procedimiento

Más detalles

IND-LAB-CAL Gráficos de Control Variables CONTROL DE PROCESOS - GRAFICOS DE CONTROL - CARACTERÍSTICAS TIPO VARIABLES

IND-LAB-CAL Gráficos de Control Variables CONTROL DE PROCESOS - GRAFICOS DE CONTROL - CARACTERÍSTICAS TIPO VARIABLES CONTROL DE PROCESOS - GRAFICOS DE CONTROL - CARACTERÍSTICAS TIPO VARIABLES 1.- OBJETIVO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos

Más detalles

Práctica de Control Estadístico de Procesos Control por Variables

Práctica de Control Estadístico de Procesos Control por Variables Práctica de Control Estadístico de Procesos Control por Variables Fichero de datos: Sensorpresion.sf3 1. Los datos Un sensor de presión ha de trabajar en condiciones de alta temperatura. Para controlar

Más detalles

Principales características del Índice de Precios de Servicios (IPS), base 2010

Principales características del Índice de Precios de Servicios (IPS), base 2010 Principales características del Índice de Precios de Servicios (IPS), base 2010 Madrid, junio de 2013 1 PRINCIPALES CARACTERÍSTICAS DEL IPS, BASE 2010 Introducción El Reglamento (CE) Nº 1165/98 del Consejo

Más detalles

Carrera: Integrantes de la Academia de Ingeniería Industrial: M.C. Ramón García González. Integrantes de la

Carrera: Integrantes de la Academia de Ingeniería Industrial: M.C. Ramón García González. Integrantes de la 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Ingeniería de calidad Licenciatura en Ingeniería Industrial Clave de la asignatura: Horas teoría horas práctica - créditos 4-0 - 8 2.- HISTORIA

Más detalles

Servei d Estadística Aplicada

Servei d Estadística Aplicada Servei d Estadística Aplicada Asesoramiento experto y consultoría en todos los ámbitos de la Estadística En todo proyecto de investigación, la Estadística Analítica es la pieza clave para procesar información

Más detalles