PROGRAMACIÓN LINEAL PROBLEMAS PARA PLANTEAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROGRAMACIÓN LINEAL PROBLEMAS PARA PLANTEAR"

Transcripción

1 PROBLEMAS PARA PLANTEAR PROGRAMACIÓN LINEAL 1. Una compañía tiene dos minas. La mina A produce diariamente una tonelada de carbón de antracita de alta calidad, 2 toneladas de carbón de calidad media y cuatro toneladas de carbón de baja calidad. La mina B produce 2 toneladas de cada una de las clases. La compañía necesita 70 toneladas de carbón de alta calidad, 130 de calidad media y 150 de baja calidad. Los gastos diarios de la mina A ascienden a 150$ y los de la mina B a 200$. Cuántos días deberán trabajar en cada mina para que la función de coste sea mínima? 2. Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas. Dos mayorista pueden suministrarle para satisfacer sus necesidades, pero solo venden la fruta en contenedores completos. El mayorista A envía en cada contenedor 8 cajas de naranjas, 1 de plátanos y 2 de manzanas. El mayorista B envía en cada contenedor dos cajas de naranjas, una de plátanos y 7 de manzanas. Sabiendo que el mayorista A se encuentra a 150 Km de distancia y el mayorista B a 300 Km, calcular cuántos contenedores habrá que comprar a cada mayorista, con el objeto dinero y tiempo, reduciendo al mínimo la distancia de lo solicitado. 3. Un abono para jardines ha de tener como mínimo 15 unidades de un componente químico líquido y 15 de otro sólido En el mercado se encuentran dos clases de abono: tipo A que contiene una unidad de componente líquido y 5 de sólido, y el tipo B que contiene 5 de líquido y 1 de sólido, el precio del tipo A es 1000 y el B de Qué cantidades han de comprarse de cada tipo para cubrir las necesidades con un coste mínimo? 4. En una encuesta realizada por una televisión local se ha detectado que un programa con 20 minutos de variedades y un minuto de publicidad capta espectadores, mientras que otro con 10 minutos de variedades y un minuto de publicidad capta espectadores. Para un determinado periodo, la dirección de la red decide dedicar 80 minutos de variedades y los anunciantes 6 minutos de publicidad. Cuántas veces deberá aparecer cada programa con objeto de captar el máximo número de espectadores? 5. En la elaboración de un producto A se necesita una sustancia B. La cantidad de A obtenida es menor o igual que el doble de A utilizada, y la diferencia entre las cantidades del producto B y A no supera los dos gramos, mientras que la suma no debe superar los cinco gramos. Además se utiliza por lo menos un gramo de B y se requiere un gramo de A. La sustancia A se vende a 5 millones y la B cuesta 4 millones el gramo. Calcular la cantidad de sustancia B necesaria para que el beneficio sea máximo. 6. Un inversionista dispone de dos millones de Ptas. Puede invertir en bonos del tipo A que dan un rendimiento del 10% y en bonos del tipo B, cuyo rendimiento es del 15%. Existen unos topes legales que impiden invertir más de Ptas. en bonos del tipo B, pero sucede lo contrario con los del tipo A, en los cuales la inversión mínima es de medio millón de Ptas. Por otra parte el inversionista desea colocar en bonos del tipo A tanto dinero al menos, como en bonos del tipo B. Cuánto debe invertir en bonos de cada tipo para que el rendimiento obtenido sea máximo? 7. Una fábrica de automóviles y camiones tiene dos talleres. En el taller A para hacer un camión deben trabajar 7 días-operario, en cambio para fabricar un automóvil se precisa 2 días-operario. En el taller B invierten 3 días-operario tanto en la terminación de un camión como en la de un automóvil. Debido a las limitaciones de hombres y maquinaria, el taller A dispone de 300 días-operario, mientras que el taller B dispone de 270 días-operario. Si el fabricante obtiene una ganancia de 6 millones en cada camión y dos millones en cada automóvil, cuántas unidades de cada uno deberá producir la fábrica para maximizar su ganancia? 8. Una empresa de transportes tiene dos tipos de camiones: los del tipo A, con un espacio refrigerado de 20 m³ y no refrigerado de 40 m³; los del tipo B, con igual cubicaje total, al 50% de espacio refrigerado y no refrigerado. Se contrata la empresa para que transporte m³ de un producto que necesita refrigeración y

2 4.000 m³ de otro que no la necesita. El coste por Km de un camión de tipo A es de 30 Pta. y de uno del tipo B, 40. Cuántos camiones de cada tipo ha de utilizar para que el coste sea mínimo? 9. El departamento de policía de una ciudad dispone de 60 coches patrulla y de 140 agentes para ocuparlos. Existen dos tipos de servicios: el de vigilancia intensiva en zonas de alto riesgo, y el de vigilancia rutinaria y de servicio al ciudadano. Los coches destinados al primer servicio son ocupados por tres agentes y los destinados al segundo tipo de servicio, por dos agentes. Puede montarse un servicio de 30 coches de vigilancia intensiva y 30 coches de vigilancia normal? Determinar el número máximo de coches patrulla que pueden ejercer vigilancia en la ciudad. 10. Una factoría fabrica dos tipos de productos A y B. Para su elaboración se requieren dos máquinas M 1 y M 2. El artículo A necesita 2 horas del trabajo de la máquina M 1 y 1,5 horas del trabajo de la máquina M 2. El artículo B, respectivamente, 1,5 horas y 1 hora. Cada máquina está en funcionamiento, a lo sumo, 40 horas a la semana. Por cada unidad del artículo A se obtiene un beneficio de 250 Pta., mientras que por cada unidad de B 150 Cuántas unidades de A y de B deben fabricarse semanalmente, para obtener el máximo beneficio? 11. Consideremos las mesas rectangulares cuyas dimensiones no sobrepasen, cada una, los 2 m; y entre ellas, las que la suma de su lado mayor y el doble del menor no sobrepase los 4m. Determinar el máximo valor que puede tener el perímetro de estas. 12. La capacidad de producción de un taller de montaje es de 120 televisores por día y de 360 aparatos de radio, también por día. El control técnico revisa 200 aparatos de uno y otro tipo al día. Sabiendo que los televisores son cuatro veces más caros que los aparatos de radio, cuál debe ser la producción de cada uno de los artículos para obtener la máxima ganancia? 13. Unos grandes almacenes encargan a un fabricante chándales y chaquetas deportivas. El fabricante dispone para la confección de 750 m de tejido de algodón y m de poliéster. Cada chándal precisa 1 m de algodón y 2 m de poliéster; y cada chaqueta, de 1,5 m de algodón y 1 m de poliéster. El precio de venta del chándal se fija en Pta., y el de la chaqueta en Qué cantidad de chándales y de chaquetas debe suministrar el fabricante a los almacenes para que estos consigan una venta máxima? 14. En un almacén se guarda aceite de oliva y de girasol. Para atender a los clientes han de tener un mínimo de 20 bidones de aceite de oliva y 60 bidones de aceite de girasol. Los gastos de almacenaje son de 240 Ptas. para un bidón de aceite de oliva y de 180 Ptas. para un bidón de aceite de girasol. Teniendo en cuenta que la capacidad total del almacén es de 100 bidones, cuántos bidones de cada tipo hay que almacenar para que el gasto sea mínimo? Cuándo será máximo el gasto? 15. Una empresa fabrica 2 tipos de aparatos A y B. Para el producto A se necesitan 2 operarios y 20 Kg de material y para el producto B se precisan 5 operarios y 8 Kg de material. La empresa gana Ptas. por cada aparato del tipo A y por cada uno del tipo B. La empresa dispone de 60 operarios y 250 Kg de material.. Cuántos aparatos A y cuántos B se deben de fabricar para obtener el máximo beneficio? 16. Una persona decide hacer ejercicio físico y para ello piensa hacer un recorrido combinando bicicleta y footing y establece las siguientes condiciones: ha de correr un mínimo de 2 Km, ha de hacer un máximo de 30 Km en bicicleta y recorrer, como mínimo, el quíntuplo de Km que corriendo. Si por cada Km corriendo consume 240 calorías y por cada Km en bicicleta consume 30, cuánto Km debe recorrer en cada especialidad para que el consumo de calorías sea máximo? 17. Los alumnos de un conservatorio de música deciden formar una orquesta. Los gustos del público exigen que haya siempre mayor o igual nº de instrumentos de cuerda que de viento, y que el número de instrumentos de cuerda no debe superar al doble de los de viento. En total hay 20 músicos de viento y 30 de

3 cuerda. Los empresarios pagan Ptas. por cada músico de viento y por cada músico de cuerda. Cómo deben organizarse para obtener el máximo beneficio? 18. En un bar de playa elaboran dos tipos de refrescos S y T. Y los hacen con un "producto secreto" y agua. Para hacer S se utilizan 0,4 de litros de "producto secreto" y para hacer T son necesarios 0,3 litros. En total disponen de 120 litros de "producto secreto" y una cantidad ilimitada de agua. Por el gusto de los clientes saben que del producto T se vende la mitad o menos que del producto S. Un litro de S se vende a 250 Ptas. y un litro de T se vende a 200 Ptas. Cuántos litros de cada tipo se debe fabricar para obtener la máxima recaudación? 19. Una empresa de productos químicos elabora dos productos A y B. El producto A lleva 10% de fósforo, 20% de potasio y el resto de agua. El producto B lleva 30% de fósforo, 10% de potasio y el resto de agua. Disponen de Kg de fósforo y de potasio. La empresa vende a 150 pts/kg. El producto B y a 75 pts/kg. El producto A. Cuántos Kg da cada producto ha de fabricar para que el importe de la venta sea máximo? 20. En una pajarería envasan comida para periquitos. Hacen dos tipos de productos A y B, compuestos de alpiste y mujo. En cada Kg de los productos se emplean las siguientes cantidades: ALPISTE MUJO PRODUCTO A PRODUCTO B Disponen de 72 Kg. de alpiste y 28 Kg. de mujo. El alpiste lo compran a 24,5 pts/kg. y él mujo a 36,5 pts/kg. El producto A se vende a 75 pts/kg. y el producto B a 90 pts/kg. Cuántos Kg. de cada producto deben elaborar para obtener el máximo beneficio? 21. Una empresa maderera compra en el lugar P m³ de madera y en el lugar G m³. Esta madera la guarda en tres almacenes: A con m³ de capacidad; B con m³ de capacidad y C con m³ de capacidad. Llevar 1 m³ de madera desde los lugares de compra hasta cada uno de los almacenes, en pesetas, viene indicado en la siguiente tabla: ALMACEN A ALMACEN B ALMACEN C LUGAR P LUGAR G A qué almacenes debe trasladar la madera comprada para que sean mínimos los gastos? 22. En una fábrica se producen dos tipos de productos A y B. Para fabricar una tonelada del producto A se necesitan 5 obreros, 20 kw/h, 0 3 toneladas de materia prima y 1 tonelada de agua. Para una tonelada del producto B se emplean 7 obreros, 15 kw/h, 0,1 tonelada de materia prima y 2 toneladas de agua. La empresa tiene que pagar: Ptas. por cada obrero, 300 Ptas. por cada kw/h y Ptas. por cada tonelada de materia prima (el agua no le cuesta nada. Dispone de 300 obreros, kw/h y 40 toneladas de materia prima. Cada tonelada del producto A se vende a Ptas. y cada tonelada de producto B a Ptas. a) Cuántas toneladas de cada producto hay que fabricar para que el coste sea mínimo? b) Y cuántas toneladas hay que fabricar para que el beneficio sea máximo? 23. En un laboratorio se fabrican dos componentes vitamínicos. El producto REVIT lleva un 10% de vitamina A, 30% de vitamina B y 60% de vitamina C. El producto VITAL tiene un 25% de vitamina A, 40% de vitamina B y 35% de vitamina C. Disponen de 6 Kg. de vitamina A, 12 Kg. de vitamina B y 24 de vitamina C. El laboratorio compra a 5 Pts. el gramo de vitamina A, a 7,5 Pts. el gramo de vitamina B y a 12 Pts. el gramo de vitamina C. El laboratorio presenta los compuestos en sobres de un gramo de peso que vende a 30 Pts. cada sobre de REVIT y a 25 Pts. cada sobre de VITAL. Cuántos sobres de cada tipo han de fabricar para obtener el máximo beneficio? 24. Una compañía aérea tiene dos aviones A y B para cubrir un determinado trayecto. El avión A debe hacer más veces el trayecto que el avión B, pero no puede pasar de 120 viajes. Entre los dos aviones han

4 de realizar más de 60 vuelos pero menos de 200. En cada vuelo el avión A consume 900 l. de gasolina, mientras que el avión B consume 700 l. Y en cada viaje del avión A la empresa gana Ptas. y Ptas. en cada viaje del avión B. Cuántos viajes debe hacer cada avión para maximizar las ganancias? Cuántos vuelos debe hacer cada avión para que su consumo de gasolina sea el mínimo? 25. Una empresa automovilística tiene dos fábricas, una en la ciudad Z y otra en la ciudad C. En Z se producen coches al año y en C, 800 coches al año. La empresa tiene 3 almacenes: uno en la ciudad M en el que caben 900 coches, otro en la ciudad B en el que caben 700 coches y otro en la ciudad S con capacidad para 400 coches. Llevar un coche desde la fábrica Z hasta el almacén M cuesta Ptas., Ptas. hasta el B y Ptas. hasta el S y cada coche de la fábrica C cuesta Ptas. llevarlo hasta el almacén M, Ptas. hasta el almacén B y Ptas. hasta el almacén S. Cómo deben almacenarse los automóviles de cada fábrica para que los gastos de transporte sean mínimos? 26. Una emisora de radio emite por Onda Media o por F.M. La programación de un día de Onda Media consiste en: 1 hora de música, 3 horas de deporte, 2 horas de reportajes y 4 horas de debates. Y la programación de un día de F.M. consta de 5 horas de música, 4 horas de deporte, 1 hora de reportaje y 1 hora de debate. La emisora dispone de 50 horas de música, 51 horas de deporte, 24 horas de reportaje y 46 horas de debate. Cada día que la emisión es por Onda Media se obtienen unas ganancias de Ptas. y por F.M. las ganancias de un día de emisión son de Ptas. Cuántos días debe emitir por Onda Media y cuántos por F.M. para obtener máxima ganancia? 27. Una empresa fabrica dos tipos de colonia: A y B. La primera contiene un 15% de extracto de jazmín, un 20% de alcohol y el resto de agua; la segunda lleva un 30% de extracto de jazmín, un 15% de alcohol y el resto de agua. Diariamente se dispone de 60 litros de extracto de jazmín y de 50 litros de alcohol. Cada día se pueden producir un máximo 150 litros de la colonia B. El precio de venta por litro de colonia A es de 500 ptas. y el de la colonia B es de Halla los litros de cada tipo que deben producirse diariamente para que el beneficio sea máximo. 28. Un granjero tiene dos almacenes de patatas, A 1 y A 2, que contienen 20 toneladas y 12 toneladas de patatas, respectivamente. Recibe encargos de tres clientes, C 1, C 2 y C 3 de 8, 10 y 14 toneladas. La distancia entre los almacenes y los clientes (en Km) se dan en la tabla siguiente: C 1 C 2 C 3 A A Suponiendo que el coste de transporte es una cantidad fija por kilómetro y tonelada, cómo tendrán que distribuirse las patatas para minimizar el coste de transporte?. Razona el planteamiento del problema y la técnica usada para su resolución. 29. Una cooperativa tiene autorizada la construcción de m 2 de viviendas como máximo. Necesita viviendas de dos tipos: las de tipo A son de 150 m 2 y su coste es de 20 millones de pesetas. En total no se pueden construir más de 250 viviendas, y de las de tipo B se harán como máximo el doble que las de tipo A. Cuántas deben edificarse de cada tipo para que el coste sea mínimo? 30. Una empresa tiene dos centros de producción que producen tres tipos de productos:. A, B y C. Sus compromisos comerciales consisten en entregar semanalmente 18 unidades de tipo A, 16 de tipo B y 6 de tipo C. El primer centro de producción cuesta cada día 10 6 pesetas y produce diariamente, las siguientes unidades: 9 de A, 4 de B y 1 de C. El segundo centro de producción le cuesta diariamente, las siguientes unidades: 3 de A, 4 de B y 1 de C. Cuántos días por semana debe trabajar cada centro de producción para que cumpliendo los compromisos comerciales, se reduzcan al máximo los costos de producción? 31. Se necesita una dieta que proporcione a un animal calorías y 80 unidades de proteínas por día. En el mercado los alimentos básicos pueden usarse para preparar la dieta: el alimento I cuesta 20 ptas. /Kg, contiene 600 calorías y 2 unidades de proteínas. Formula razonablemente el problema de determinar la combinación más barata de alimentos que satisfagan las necesidades de la dieta.

5 32. (Puntuación máxima: 3 Puntos) Una empresa de automóviles tiene dos plantas P y Q de montaje de vehículos en las que produce tres modelos A, B y C. De la planta P salen semanalmente 10 unidades del modelo A, 30 del B y 15 del C y de la Q, 20 unidades del modelo A, 20 del B y 70 del C., cada semana. La firma necesita, al menos 800 unidades de A, 1600 de B y 1800 de C. Si el gasto de mantenimiento de cada planta es de 6 millones de pesetas semanales, Cuántas semanas ha de funcionar cada planta para que el coste de producción sea mínimo? 33. (Puntuación máxima: 3 Puntos) Una industria vinícola produce vino y vinagre. El doble de la producción de vino es siempre menor o igual que la producción de vinagre más cuatro unidades. Por otra parte, el triple de la producción de vinagre sumado con 4 veces la producción de vino se mantiene siempre menor o igual a 18 unidades. Halla el número de unidades de cada producto que se deben producir para alcanzar un beneficio máximo, sabiendo que cada unidad de vino deja un beneficio de 800 pta. y cada unidad de vinagre 200 pta. 34. (Puntuación máxima: 3 puntos) Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y sillas que vende a 2000 pesetas y 3000 pesetas por unidad, respectivamente. Desea saber cuántas unidades de cada artículo debe fabricar diariamente un operario para maximizar los ingresos, teniéndose las siguientes restricciones: El número total de unidades de los dos tipos no podrá exceder de 4 por día y operario. Cada mesa requiere 2 horas para su fabricación; cada silla, 3 horas. La jornada laboral máxima es de 10 horas. El material utilizado en cada mesa cuesta 400 pts. El utilizado en cada silla cuesta 200 pts. Cada operario dispone de ptas diarias para material. 35. (Puntuación 3 puntos) Una agencia de viajes vende paquetes turísticos para acudir a la final de un campeonato de fútbol. La agencia está considerando ofrecer dos tipos de viajes: El 1º de ellos (A) incluye desplazamiento en autocar para dos personas, una noche de alojamiento en habitación doble y cuatro comidas. El 2º (B) incluye desplazamiento en autocar para una persona, una noche de alojamiento en habitación también doble y dos comidas. El precio de venta del paquete A es de ptas. y el del paquete B es de ptas. La agencia tiene contratadas un máximo de 30 plazas de autobús, 20 habitaciones dobles y 56 comidas. El número de paquetes del tipo B no debe superar al de los de tipo A. La empresa desea maximizar sus ingresos. Se pide: a) Expresar la función del objeto. b) Escribir mediante inecuaciones las restricciones del problema y representar gráficamente el recinto definido. c) Determinar cuantos paquetes de cada tipo debe vender la agencia para maximizar sus ingresos. Calcular dichos ingresos.

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL. 1. (JUN 02) Un proyecto de asfaltado puede llevarse a cabo por dos grupos diferentes de una misma empresa: G1 y G2. Se trata de asfaltar tres zonas: A, B y

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades PROGRAMACIÓN LINEAL 1. Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener

Más detalles

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Inecuaciones en 2 variables Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes:

Más detalles

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex. IES de MOS Ejercicios Programación Lineal PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.com 1. Dada la región del

Más detalles

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL.

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. 1º/ Un taller de fabricación de muebles de oficina dispone de 700 kg de hierro y 1000 kg de alumnio para la producción de sillas y sillones metálicos. Cada silla

Más detalles

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL 1. Sistemas de inecuaciones lineales con dos incógnitas (Recuerda: Si multiplicamos o dividimos por un número negativo los dos miembros de una inecuación, debemos

Más detalles

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts SOLUCIONES 27. (Puntuación máxima: 3 Puntos) Una empresa fabrica dos tipos de colonia: A y B. La 1ª contiene un 15% de extracto de jazmín, un 20% de alcohol y el resto es agua, y la 2ª lleva un 30% de

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución?

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución? HOJA DE EJERCICIOS 1.- Dibuja la región del plano determinada por estas desigualdades: x + y 4x + y 0 y 0 x + y 5, y calcula el máximo de la función F( x, y) = x + y en esta región. (Sol. (-1,4)). Existe

Más detalles

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones:

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: Llamando, respectivamente r, s y t a las rectas expresadas en las tres últimas restricciones, la zona de soluciones factibles

Más detalles

EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL

EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (001-M1;Sept-B-1) (3 puntos) Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B. Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

Problemas de Sistemas de Inecuaciones lineales con dos incógnitas.

Problemas de Sistemas de Inecuaciones lineales con dos incógnitas. Problema 1. Se considera la región factible dada por el siguiente conjunto de restricciones: + 5 + 3 9 0, Representar la región factible que determina el sistema de inecuaciones anterior hallar de forma

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos

Más detalles

UNIDAD 4 Programación lineal

UNIDAD 4 Programación lineal UNIDD 4 Programación lineal Pág. 1 de 8 1 Un mayorista de frutos secos tiene almacenados 1 800 kilos de avellanas y 420 kilos de almendras para hacer dos tipos de mezclas, que embala en cajas como se indica

Más detalles

PPL PARA RESOLVER CON SOLVE

PPL PARA RESOLVER CON SOLVE PPL PARA RESOLVER CON SOLVE 1. Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día

Más detalles

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003 SOLUCIÓN PRÁCTIC Nº 0 Programación Lineal MTEMÁTICS º VETERINRI Curso 00-00 Supongamos que se quiere elaborar una ración que satisfaga unas condiciones mínimas de contenidos vitamínicos diarios por ejemplo

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=

Más detalles

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita: RELACIÓN DE EJERCICIOS TEMA 4.- Inecuaciones 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD

SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD Ejercicio nº 1.- Subraya los pares de magnitudes que sean proporcionales: a) El peso de las naranjas compradas y el precio pagado por ellas. b) La estatura

Más detalles

ECUACIONES E INECUACIONES

ECUACIONES E INECUACIONES ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x

Más detalles

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución: 1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

Problemas de Investigación Operativa y Programación Matemática

Problemas de Investigación Operativa y Programación Matemática Problemas de Investigación Operativa y Programación Matemática Omar J. Casas López Septiembre 2002 Tema I : Introducción 1. Una factoría fabrica dos tipos de productos, A y B. Para su elaboración se requieren

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

O-3. CENTRO DE ESTUDIOS RIVAS & MÉNGAR MAGNUS BLIKSTAD 83 ENTRLO C

O-3. CENTRO DE ESTUDIOS RIVAS & MÉNGAR MAGNUS BLIKSTAD 83 ENTRLO C 1) SI CADA UNO DE LOS MIEMBROS DE UNA FAMILIA DE 4 PERSONAS AHORRAN 2 DUROS Y 3 PESETAS AL DÍA, CUÁNTO AHORRARÍA AL CABO DE UN AÑO? a) 18.000 ptas b) 25.000 ptas c) 18.980 ptas d) 13.250 ptas 2) JUAN LE

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

Horas requeridas producto B

Horas requeridas producto B 1. J&M Winery fabrica dos tipos de Chardonnay, uno con etiqueta económica y otro con etiqueta especial. Han firmado un contrato de venta de 30.000 cajas de Chardonnay y están seguros que podrán vender

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

UNIDAD 4 Programación Lineal

UNIDAD 4 Programación Lineal MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:

Más detalles

MATEMÁTICAS 6º PRIMARIA

MATEMÁTICAS 6º PRIMARIA CUADERNO DE ACTIVIDADES MATEMÁTICAS 6º PRIMARIA Nombre: Curso: 1 Descompón estos números. Fíjate en el ejemplo. 4.168 = 4 UM + 1 C + 6 D + 8 U 51.245 = 754.390 = 3.790.050 = 2 Rodea con rojo los múltiplos

Más detalles

ÓMNIBUS 3. c) ptas b) ptas

ÓMNIBUS 3. c) ptas b) ptas ÓMNIBUS 3 1. Si cada uno de los miembros de una familia de 4 personas ahorran 2 duros y 3 pesetas al día, cuánto ahorraría al cabo de un año? a) 18.000 ptas c) 18.980 ptas b) 25.000 ptas d) 13.250 ptas

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

Curso ON LINE Tema 8. Resolvemos el sistema por el método de Gauss

Curso ON LINE Tema 8. Resolvemos el sistema por el método de Gauss SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA Un almacén distribuye cierto producto que fabrican 3 marcas distintas: A, B y C. La marca A lo envasa

Más detalles

INECUACIONES. Ejercicios Repaso 2ªEvaluación Matemáticas Aplicadas I. Representa gráficamente el sistema de inecuaciones.

INECUACIONES. Ejercicios Repaso 2ªEvaluación Matemáticas Aplicadas I. Representa gráficamente el sistema de inecuaciones. INECUACIONES x + y 3 + 2y 1 x+y=3 x+2y=-1 + y 5 3x + y 7 x+y=5 3x+y=7 x 4 y 2 3x + 2y 3 x=4 3x+2y=3 y=2 x + 2y 4 4x + y 10 y 4 4x+y=10 x+2y=4 y=4 Problema 1: Joana y Pedro quiere repartir propaganda para

Más detalles

2. (a) Calcula los puntos del recinto 2x y[20 que hacen mínima la función f(x, y) = 2x + y. Cuántas soluciones hay? (7 puntos)

2. (a) Calcula los puntos del recinto 2x y[20 que hacen mínima la función f(x, y) = 2x + y. Cuántas soluciones hay? (7 puntos) Alumno... Fecha: 25 Noviembre 2011 Opción A 1. En una empresa se produce queso y mantequilla. Para fabricar una unidad de queso se necesitan 10 unidades de leche y 6 unidades de mano de obra y para fabricar

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL PROBLEMAS DE PROGRAMACIÓN LINEAL A.- Problemas generales B.- Problemas con porcentajes C.- Problemas de dietas D.- Problemas para profundizar A.- PROBLEMAS GENERALES Ejercicio 1.- En una fábrica se construyen

Más detalles

15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN

15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN 15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN Problema 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Solución 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1. Una empresa fabrica dos tipos de juguetes de

Más detalles

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

La concentración de ozono contaminante, en microgramos por metro cúbico, en una ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90

Más detalles

EJERCICIOS. Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León.

EJERCICIOS. Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León. EJERIIOS Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León. Junio 1990) 1-2 0 2 Ejercicio 2.- (P.L.I.) escribir mediante un sistema

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma: TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

UNIDADES DE CAPACIDAD

UNIDADES DE CAPACIDAD 1 UNIDADES DE CAPACIDAD 1. - Completa: - 0,035 kl =... dl - 1247 ml =... dal - 14,56 dal =... cl - 0,52 l =... hl - 6,3 hl =... l - 308 l =... mal - 2,75 hl =... ml - 32 cl =... dal - 0,0007 mal =... dl

Más detalles

PROGRAMACIÓN LINEAL. MATEMÁTICAS aplicadas a las CC.SS. II Alfonso González IES Fernando de Mena Dpto. de Matemáticas

PROGRAMACIÓN LINEAL. MATEMÁTICAS aplicadas a las CC.SS. II Alfonso González IES Fernando de Mena Dpto. de Matemáticas PROGRAMACIÓN LINEAL Los estadounidenses George B. Dantzig (1914-2005), considerado padre de la Programación Lineal, y John Von Neumann (1903-1957), y el ruso Leonid Kantoróvich (1912-1986), tres de los

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

4. El largo de un terreno rectangular mide 3 metros más que su ancho, determine la expresión algebraica que representa el perímetro del terreno.

4. El largo de un terreno rectangular mide 3 metros más que su ancho, determine la expresión algebraica que representa el perímetro del terreno. GUÍA DE EJERCICIOS Nº 4 Contenidos: Lenguaje algebraico: Utiliza letras para representar números desconocidos Evaluación de expresiones algebraicas: Hallar el valor numérico de una expresión 1. En cada

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente

Más detalles

TEMA 4 PROGRAMACIÓN LINEAL

TEMA 4 PROGRAMACIÓN LINEAL Tema Programación lineal Ejercicios resueltos - Matemáticas CCSSII º Bach TEMA PROGRAMACIÓN LINEAL INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA EJERCICIO : a) Halla la inecuación que corresponde al siguiente

Más detalles

MATEMÁTICAS 1º ESO PROBLEMAS: Números naturales (1)

MATEMÁTICAS 1º ESO PROBLEMAS: Números naturales (1) MATEMÁTICAS 1º ESO PROBLEMAS: Números naturales (1) NOMBRE FECHA 1.- En un vivero tienen 18 cajas de 50 rosas preparadas para la venta. Cuántas cajas, iguales a las anteriores, les faltan para cubrir un

Más detalles

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250 Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

2.- Completa la siguiente tabla sabiendo que la proporcionalidad entre las magnitudes es directa A 4 2 7 B 20 60 100

2.- Completa la siguiente tabla sabiendo que la proporcionalidad entre las magnitudes es directa A 4 2 7 B 20 60 100 1.- Es cribe D en los pares de magnitudes directamente proporcionales, I en las inversamente proporcionales y X en las que no sean ni una cosa ni otra.. El número de personas que van en el autobús y la

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 14 REFLEXIONA En esta unidad vas a estudiar las relaciones de proporcionalidad, que te ayudarán a superar muchos problemas aritméticos de los que se presentan todos los días. Completa la

Más detalles

REGLA DE TRES SIMPLE Y COMPUESTA

REGLA DE TRES SIMPLE Y COMPUESTA 1 REGLA DE TRES SIMPLE Y COMPUESTA Actividad Especial de Recuperación CONCEPTOS BÁSICOS Regla de tres directa: se aplica cuando entre las magnitudes se establecen las relaciones: A más A menos más. menos.

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

41 EJERCICIOS de MATRICES y GRAFOS 2º BACH. 3 ; k) B )

41 EJERCICIOS de MATRICES y GRAFOS 2º BACH. 3 ; k) B ) 41 EJERCICIOS de MTRICES y GRFOS 2º BCH. 1 2 x 3 0 1 2 7 3 0 1. Hallar x e y para que ambas matrices sean iguales: = 3 2 1 0 3 y 2 1 0 3 2. Indicar tres ejemplos de matriz simétrica de orden 3 Operaciones

Más detalles

1º BACHILLERATO MATEMATICAS CCSS PROBLEMAS TEMA 5 - INECUACIONES

1º BACHILLERATO MATEMATICAS CCSS PROBLEMAS TEMA 5 - INECUACIONES La La ˆ PÁGINA 106, EJERCICIO 40 1º BACHILLERATO MATEMATICAS CCSS PROBLEMAS TEMA 5 - INECUACIONES Averigua qué números naturales verican que al sumarles los dos siguientes se obtiene un número superior

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

EJERCICIOS PAU PROGRAMACION LINEAL

EJERCICIOS PAU PROGRAMACION LINEAL (J01) Una fábrica produce bombillas normales a 900 ptas cada una y focos halógenos a 1200 ptas cada uno. La capacidad máxima diaria de fabricación es de 1000, entre bombillas normales y focos halógenos,

Más detalles

Proporcionalidad. 1. Calcula:

Proporcionalidad. 1. Calcula: Proporcionalidad 1. Calcula:. Resuelve los siguientes problemas: a. Tres kilos de naranjas cuestan,4. Cuánto cuestan dos kilos? b. Seis obreros descargan un camión en tres horas. Cuánto tardarán cuatro

Más detalles

LOS NUMEROS Y LAS OPERACIONES

LOS NUMEROS Y LAS OPERACIONES LOS NUMEROS Y LAS OPERACIONES Sistema de numeración decimal. Lectura de números 1. Escribe los números siguientes: Medio millón:... Cuatro millones cuatrocientos... Tres millones y medio:... Seis millones

Más detalles

FRACCIONES. a) c) e) 3. - Escribe las fracciones: - Catorce diecinueveavos:... - Ocho onceavos:...

FRACCIONES. a) c) e) 3. - Escribe las fracciones: - Catorce diecinueveavos:... - Ocho onceavos:... FRACCIONES. - Observa el gráfico y responde: a) Cuántos cuadrados ves? b) Cuántos cuadrados negros hay? c) Qué fracción del conjunto representan los cuadrados negros? d) Qué fracción del conjunto representan

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

CAPÍTULO 4 Funciones Económicas

CAPÍTULO 4 Funciones Económicas CAPÍTULO 4 Funciones Económicas Introducción La actividad económica surge de la necesidad de utilizar recursos para producir los bienes materiales que satisfacen los deseos del hombre, ya sean básicos

Más detalles

Problemas de proporcionalidad

Problemas de proporcionalidad Problemas de proporcionalidad REGLA DE TRES SIMPLE DIRECTA E INVERSA. 1.- En 50 litros de agua de mar hay 1.300 g. de sal. Cuántos litros hacen falta para 5.200 g. de sal? 2.- Un coche gasta 5 litros de

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE PROBLEMA DE FLUJO DE COSTO MINIMO. 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

APRENDER MATEMÁTICAS TEMA 1 JUAN LUIS CHAMIZO BLÁZQUEZ - CARMEN GORDO CUEVAS PEDRO M. RIVERA LEBRATO 3

APRENDER MATEMÁTICAS TEMA 1 JUAN LUIS CHAMIZO BLÁZQUEZ - CARMEN GORDO CUEVAS PEDRO M. RIVERA LEBRATO 3 TEMA 1 JUAN LUIS CHAMIZO BLÁZQUEZ - CARMEN GORDO CUEVAS PEDRO M. RIVERA LEBRATO 3 NÚMEROS NATURALES Los números naturales son los que sirven para contar. Los números naturales se representan de menor a

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental Recuerda lo fundamental EL SISTEMA DE NUMERACIÓN DECIMAL LOS NÚMEROS NATURALES Nuestro sistema de numeración es decimal: 10 unidades de un orden cualquiera hacen una unidad del orden inmediato superior.

Más detalles

Contenidos: Números decimales: operatoria. Potencias numéricas. Raíces numéricas. Definición, propiedades y cálculo de raíces.

Contenidos: Números decimales: operatoria. Potencias numéricas. Raíces numéricas. Definición, propiedades y cálculo de raíces. GUÍA DE EJERCICIOS Nº 3 RACIONALES II, POTENCIAS Y RAÍCES Contenidos: Números decimales: operatoria. Potencias numéricas. Raíces numéricas. Definición, propiedades y cálculo de raíces. 1. Un depósito vacío

Más detalles

Guía Resumen. Prueba 1

Guía Resumen. Prueba 1 Guía Resumen Prueba 1 1) Un taxista Cobra $250 el banderazo y $400 por cada kilómetro a) Una función lineal que modele el problema si son los kilómetros recorridos b) El valor que se debe cancelar si se

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Ecuación lineal con n incógnitas Sistemas de ecuaciones lineales Es cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se denominan coeficientes,

Más detalles

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número

Más detalles

19. En un hospital existen tres áreas: Ginecología, Pediatría, Traumatología. El presupuesto anual del hospital se reparte conforme a la sig.

19. En un hospital existen tres áreas: Ginecología, Pediatría, Traumatología. El presupuesto anual del hospital se reparte conforme a la sig. ESTRUCTURAS SECUENCIALES 1. Lea desde el teclado el nombre y la edad de cualquier persona e imprima tanto el nombre como la edad 2. Lea dos números. Calcule la suma e imprima la suma y los dos números.

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. PÁGINA 8 Con los datos de la ilustración, calcula la distancia que recorre cada vehículo en una hora. Coche de caballos en min 0 km en 0 min Coche utilitario

Más detalles

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250 EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 3, 0 y 40 millones

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder

Más detalles

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2 Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores

Más detalles

Proporcionalidad y porcentajes

Proporcionalidad y porcentajes CLAVES PARA EMPEZAR a) 1 4 2 5 4 10 No son equivalentes. b) 12 7 16 6 4 96 No son equivalentes. c) 4 60 3 0 240 240 Sí son equivalentes. a) 3 2 6 12/3 4 b) 3 6 x 24/6 4 c) x 6 12 7 4/6 14 a) b) c) d) e)

Más detalles

www.klasesdematematicasymas.com

www.klasesdematematicasymas.com 1. Resolver el siguiente problema por el sistema dual simplex Max Z = 0,50X 1 + 0,40X 2 2X 1 + X 2 120 2X 1 + 3X 2 240 X 1, X 2 0 El modelo estándar es: Z 0,5X 1 0,40X 2 + 0S 1 + 0S 2 = 0 2X 1 + X 2 +

Más detalles

DEPARTAMENTO DE MATEMATICAS DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS DEPARTAMENTO DE MATEMATICAS EL LITRO MEDIDA DE CAPACIDAD El litro es la medida de capacidad principal y se representa por la letra l. -. Señala qué unidad de capacidad utilizarías para medir: - Una piscina olímpica. -. Un perfume

Más detalles

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 Curso ON LINE "Tema 06" Tema LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 001 002 003 Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja y otras talladas

Más detalles

Xinia Zúñiga Esquivel

Xinia Zúñiga Esquivel MINISTERIO DE EDUCACIÓN PÚBLICA DIRECCIÓN REGIONAL DE PÉREZ ZELEDÓN DEPARTAMENTO DE ASESORÍA PEDAGÓGICA ASESORÍA DE MATEMÁTICAS Xinia Zúñiga Esquivel 2015 Los patrones son acciones o eventos que se repiten

Más detalles

El peso será de. .. kg. Obtuvo. .. euros. Tardará. .. minutos. Pagará

El peso será de. .. kg. Obtuvo. .. euros. Tardará. .. minutos. Pagará 6º de Ed. Primaria Problemas matemáticos Nombre:.. 1. En una granja se han vendido 3.888 huevos a 3 la docena. Cuánto ha sido toda la venta de los huevos? La venta fue de 2. Un comerciante compra 400 litros

Más detalles