Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR"

Transcripción

1 Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos un ejercicio de parcial del año 007 el cual se resuelve aplicando las leyes de Newton. Una vez resuelto el problea, nos planteaos distintas situaciones en las cuales podría variar la solución del problea, hasta coprender a fondo el ejercicio y el problea físico en sí. Teneos en cuenta que la cantidad de variaciones posibles es uy grande, por lo que tuvios en cuenta las sugeridas y relevantes. TEXTO FUNDAENTO TEÓRICO Priera ley de Newton Todo cuerpo conserva su estado de reposo o de oviiento rectilíneo unifore a enos que sea obligado a cabiar ese estado por fuerzas que se apliquen. A esta ley se la denoina ley de Inercia, y a los arcos de referencia donde es aplicable esta ley se les denoina arcos inerciales. Estos arcos si bien están fijos con respecto a las estrellas lejanas, o bien se ueven con velocidad constante respecto a ellas. Si F = 0 V = cte (1) Segunda ley de Newton La aceleración de un cuerpo es, en agnitud, directaente proporcional a la fuerza resultante e inversaente proporcional a la asa del cuerpo. Este enunciado puede expresarse coo: F = a () Donde F es la suatoria de las fuerzas aplicadas sobre el cuerpo, y la asa del iso. Obsérvese que si la fuerza resultante de un cuerpo es cero, la aceleración del cuerpo es cero y el cuerpo se ueve a velocidad constante. Tercera ley de Newton Cuando un cuerpo A ejerce una fuerza sobre otro cuerpo B, tabién B ejerce una fuerza sobre A. Estas dos fuerzas siepre tienen la isa agnitud y dirección pero sentido contrario. Esto se puede expresar en fórulas con la siguiente ecuación: = - F AB Otra fora de expresar esta ley puede ser: A toda acción corresponde una reacción igual en agnitud y de sentido contrario. Observeos que esta definición es la que da nobre a la ley. F BA PROBLEA 6. 1er PARCIAL

2 Un hobre de pie sobre una platafora, sujeta una cuerda de largo total l que lo une a un bloque de asa, a través de un sistea de poleas, coo se uestra en la figura. El sistea hobre-platafora tiene tabién asa. Inicialente todo el sistea está en reposo con las dos asas a la isa altura. En el instante t = 0, el individuo coienza a recoger cuerda de odo tal, que el trao de cuerda entre la platafora y el bloque se va acortando de odo tal que Ї (edida en /s) es constante. Considere las poleas de asas y radios despreciables, y la cuerda sin asa e inextensible. Cuál de las siguientes afiraciones es correcta? a) El bloque llega a la polea que cuelga del techo antes que la platafora. b) El bloque llega a la polea que cuelga del techo después que la platafora. c) El bloque y la platafora llegan siultáneaente a la polea que cuelga del techo. d) Sólo el bloque llega a la polea que cuelga del techo ya que la platafora peranece en su posición inicial. e) No es posible que el bloque o la platafora lleguen hasta la polea que cuelga del techo. Resolución Teneos dos foras de resolver el problea: 1) Considerando las fuerzas que actúan sobre cada cuerpo y aplicando nuestros conociientos de leyes de Newton ) Considerando las fuerzas que actúan sobre la asa, y sobre el sistea conforado por el hobre, la platafora, la polea y una parte de la cuerda, de asa. Resolución 1 Priero, analizaos las fuerzas que actúan sobre los eleentos del sistea: Siendo la fuerza tensión de la cuerda y la fuerza de acción-reacción que le hace la cuerda al individuo. Aplicando la segunda ley de Newton, planteaos las ecuaciones de y : ) F = T + g = a (1) ) F = T + T +F + g = a / T = -F () - -

3 Y operaos restándole () a (1): g - g = a - a ( ) = ( ) = Coo =, entonces deducios que: a = a y en consecuencia el bloque y la platafora llegan siultáneaente a la polea que cuelga del techo, por lo que la respuesta correcta a la pregunta sería: C) EL BLOQUE Y LA PLATAFORA LLEGAN SIULTÁNEAENTE A LA POLEA QUE CUELGA DEL TECHO. Resolución Análogaente a la parte anterior, analizaos las fuerzas que actúan sobre los eleentos del sistea: Recordeos que nuestro segundo sistea a considerar es el sistea forado por el hobre, la platafora con la polea, y la cuerda (véase figura). Esto es posible dado que las fuerzas dentro del sistea son de acción-reacción. F internas = 0 Por lo que las únicas fuerzas que actúan sobre el sistea son el peso y la tensión. Aplicando la segunda ley de Newton teneos que: (1) F = T - g = a () F = T - g = a Operando obteneos nuevaente que lo que la respuesta correcta es = y coo = teneos que a =a, por - 3 -

4 C) EL BLOQUE Y LA PLATAFORA LLEGAN SIULTÁNEAENTE A LA POLEA QUE CUELGA DEL TECHO. Variaciones La prier pregunta que nos proponeos es Qué pasa cuando la asa del bloque no es igual a la asa del sistea hobre-platafora? 1) Qué pasa si >? ) Qué pasa si <? Al resolver la parte anterior, deterinaos una relación entre las asas que nos puede ayudar a resolver esta pregunta: = De esta relación se obtienen las respuestas. Si > entonces / > 1 a /a > 1 donde se deduce que a > a y es ahora la platafora quien llega priero a la polea. Análogaente, si < entonces a < a y el bloque llega priero a la polea. Generalizando: el objeto de enor asa llegará priero a la cuerda, a no ser que las asas de los objetos sean iguales y por lo tanto lleguen al iso tiepo. Ahora nos interesaría saber que pasaría si el hobre no estuviera en la platafora, y la fuerza se aplicara desde afuera. Agregaos una polea ás para darle ás realidad al problea, y consideraos la asa del hobre coo µ Ahora la asa de la platafora será = - µ Si bien ahora no podeos considerarnos un sistea que nos siplifique la resolución, la tercera ley de Newton se sigue cupliendo por lo que F = T. Por segunda ley de Newton: - 4 -

5 F = T + g T - g = a (1) F = T +g T - g = a () Despejaos T e igualaos las ecuaciones: ((a + g)) - g = a a + g = a + g A partir de esta ecuación, podeos deducir que para que el sistea esté en reposo la asa del bloque debe ser el doble que la asa de la platafora. Ahora, si suponeos que las asas son iguales (copensaos la asa del hobre con algún objeto de asa µ) teneos que: T - g = a T - g = a T T a - a = = A consecuencia de esto, si las asas son iguales, se pueden dar estas tres situaciones: Si T = 0 N entonces las aceleraciones son iguales a -g, y los objetos caen libreente. En general si T/ < g entonces la asa baja. Pero la asa puede bajar o subir, dependiendo de si T/ < g o no, respectivaente. Si se da que T/ > g entonces a > a > 0 por lo tanto la platafora llega priero a la polea. Ahora, si variaos las asas teneos que: Si />1 priero. a + g > 1 a + g de donde se deduce que a > a y por lo tanto la platafora llega Análogaente si / < 1 se deduce que a < a y por lo tanto el bloque llega priero Y si / = 1 teneos que a = a y por lo tanto llegan siultáneaente. Coo últio problea nos planteaos, a que distancia d del punto de partida, se encuentra el bloque de asa cuando la platafora de asa = - µ llega a la polea si variaos µ?, siendo µ la asa del hobre. Toaos las ecuaciones de dináica de la parte anterior obtenidas aplicando la ª ley de Newton dado que el sistea es el iso. F = T + g T - g = a F = T + g T - g = a - 5 -

6 Despejaos las aceleraciones para aplicar nuestros conociientos en cineática, y así llegar a una expresión de desplazaiento. Suponeos que abas asas parten del reposo y desde una altura nula. T - g = a T - g = a integraos T a (t)d t = v (t) = t( - g ) T a (t)d t = v (t) = t( - g ) nuevaente t T v (t)d t = r (t) = ( - g ) t T v (t)d t = r (t) = ( - g ) Con la ecuación de la asa, hallaos el tiepo t 1 en que llega a la posición h donde se encuentra la polea en la ecuación r (t 1 )=h y averiguaos dónde se encuentra la asa en ese oento con la ecuación r (t) t1 T h h h = r (t 1) = ( - g) t 1 = t 1 = T T - g - g Sustituyendo t 1 en r (t): h(g - T) r (t 1) = = d (g - T) Hago aparecer µ ediante el cabio de variable = - µ y obtengo d(µ): h( -µ)(g - T ) d(µ) = (g( -µ) - T ) Ahora para hallar posibles gráficos de esta expresión- nótese que no teneos valores concretos coo para graficar- nos consideraos h = 10 = 0 Kg y algunos valores de T con los que construios los siguientes gráficos: - 6 -

7 d = f(µ) 3 1 Las restricciones tenidas en cuenta son: 1. No puede existir asa negativa. No nos interesa el caso en que la asa es positiva pero la fuerza ejercida por el hobre no es suficienteente para levantar las asas 3. Cuando las asas pasan de h (altura en que se encuentra la polea que cuelga del techo), ya que en ese punto el problea físico cabia. Noteos: cuando µ 0 los cuerpos llegan juntos ya que d=h cuando µ la platafora no se ueve ya que d=0 REFERENCIAS BIBLIOGRÁFICAS 1. Física Resnick-Haliday-Krane 5ª edición Voluen 1-7 -

= = 11,11. Actividades resueltas de Dinámica

= = 11,11. Actividades resueltas de Dinámica Actividades resueltas de Dináica Sobre un cuerpo de 5 kg actúa una uerza de 0 N durante 3 s. Calcular: a) El ipulso de la uerza. b) La variación de la cantidad de oviiento del cuerpo. c) Su velocidad inal

Más detalles

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA 1. Una cáara de niebla es un dispositivo para observar trayectorias de partículas cargadas. Al aplicar un capo agnético unifore, se observa que las trayectorias seguidas por un protón y un electrón son

Más detalles

PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales

PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales PRBLEMS DE DINÁMIC DE L PRTÍCUL. Ecuación básica de la dináica en referencias inerciales y no inerciales. Leyes de conservación del ipulso, del oento cinético y del trabajo 3. Fuerzas centrales 4. Gravitación

Más detalles

EL MUELLE. LAS FUERZAS ELÁSTICAS

EL MUELLE. LAS FUERZAS ELÁSTICAS EL MUELLE. LAS FUERZAS ELÁSTICAS En una pista horizontal copletaente lisa, se encuentra un uelle de 30 c de longitud y de constante elástica 100 N/. Se coprie 0 c y se sitúa una asa de 500 g frente a él.

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

III OLIMPIADA DE FÍSICA CHECOSLOVAQUIA, 1969

III OLIMPIADA DE FÍSICA CHECOSLOVAQUIA, 1969 OLIMPID INTERNCIONL DE FÍSIC Probleas resueltos y coentados por: José Luis Hernández Pérez y gustín Lozano Pradillo III OLIMPID DE FÍSIC CHECOSLOVQUI, 1969 1.- El sistea ecánico de la figura inferior consta

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE 4 MOVIMIENO ARMÓNICO SIMPLE 4.. MOVIMIENOS PERIÓDICOS. Conocido el período de rotación de la Luna alrededor de la ierra, y sabiendo que la Luna no eite luz propia, sino que refleja la que recibe del Sol,

Más detalles

La Energía Mecánica. E = m v

La Energía Mecánica. E = m v Energía La Energía Mecánica Direos que la energía de un cuerpo o sistea de cuerpos es la capacidad que tienen para realizar trabajo. Esta definición es iperfecta pero nos alcanza para hacer una priera

Más detalles

GUÍA DE PROBLEMAS F 10º

GUÍA DE PROBLEMAS F 10º Unidad 3: Dináica de la partícula GUÍ DE PROBLEMS 1)-Una partícula de asa igual a kg esta tirada hacia arriba por una plano inclinado liso ediante una fuerza de 14,7 N. Deterinar la fuerza de reacción

Más detalles

Algunos Ejercicios Resueltos

Algunos Ejercicios Resueltos lgunos Ejercicios Resueltos IS Paralelo 5 Prof. Rodrigo Vergara Segundo Seestre 6 ) Sobre un óvil de asa [kg] que se encuentra sobre una superficie sin roce, inicialente en reposo en el origen (x), actúa

Más detalles

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE Capítulo II CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE 7. INTRODUCCIÓN Todo cuerpo que se halla en las inediaciones de la tierra interactúa con ella coo resultado de esta interacción actúa sore el cuerpo

Más detalles

CURSO CERO DE FÍSICA DINÁMICA

CURSO CERO DE FÍSICA DINÁMICA CURSO CERO DE ÍSICA Departaento de ísica COTEIDO. Principios fundaentales de la dináica. Priera ley de ewton: Ley de la inercia. Segunda ley de ewton: Ley fundaental de la dináica. Tercera ley de ewton:

Más detalles

Una fuerza es una magnitud vectorial que representa la interacción entre dos cuerpos.

Una fuerza es una magnitud vectorial que representa la interacción entre dos cuerpos. 1 Concepto de fuerza Una fuerza es una agnitud vectorial que representa la interacción entre dos cuerpos. La interacción entre dos cuerpos se puede producir a distancia o por contacto. or tanto las fuerzas

Más detalles

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones.

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones. Guía de Ejercicios Vectores y algunas plicaciones. 1 Notabene : Todas las agnitudes vectoriales se presentan en esta guía con negrita y cursiva. Por distracción, puede haberse oitido tal cosa en algún

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de prier orden 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión

Más detalles

CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE

CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE 1. INTRODUCCIÓN CINEMÁTICA Y DINÁMICA PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE La ley de Hooe describe fenóenos elásticos coo los que exhiben los resortes. Esta ley afira

Más detalles

Capítulo 6 Momentum lineal y colisiones

Capítulo 6 Momentum lineal y colisiones Capítulo 6 Moentu lineal y colisiones 10 Probleas de selección - página 87 (soluciones en la página 124) 9 Probleas de desarrollo - página 92 (soluciones en la página 125) 85 6.A PROBLEMAS DE SELECCIÓN

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO 2 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway

PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO 2 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO FISICA TOMO Cuarta, quinta y sexta edición Rayond A. Serway MOVIMIENTOS EN UNA DIMENSION. Desplazaiento, velocidad y rapidez. Velocidad instantánea

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional Dirección de Capacitación No Docente Dirección General de Cultura y Educación Provincia de Buenos Aires FÍSICA Segundo

Más detalles

PROBLEMAS RESUELTOS SOBRE CAIDA LIBRE. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS SOBRE CAIDA LIBRE. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELTOS SOBRE CAIDA LIBRE Erving Quintero Gil Ing. Electroecánico Bucaraanga Colobia Para cualquier inquietud o consulta escribir a: quintere@hotail.co quintere@gail.co quintere6@yahoo.co Problea.4

Más detalles

Movimiento armónico simple

Movimiento armónico simple UNIDAD Moviiento arónico siple Un trapolín ejerce una fuerza de restauración sobre la persona que salta directaente proporcional a la fuerza edia necesaria para desplazar la colchoneta. El oviiento hacia

Más detalles

3 TRABAJO Y ENERGIA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física

3 TRABAJO Y ENERGIA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física 3 TRJ Y ENERGI ERNRD RENS GVIRI Universidad de ntioquia Instituto de ísica 2010 Índice general 3. Trabajo y energía 1 3.1. Introducción.......................................... 1 3.2. Ipulso (I)...........................................

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO 2 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway

PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO 2 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO FISICA TOMO Cuarta, quinta y sexta edición Rayond A. Serway MOVIMIENTOS EN UNA DIMENSION. Desplazaiento, velocidad y rapidez. Velocidad instantánea

Más detalles

Folleto Física Ing. Zarate. Remasterizado en el Cursillo Pi

Folleto Física Ing. Zarate. Remasterizado en el Cursillo Pi Folleto Física Ing. Zarate Reasterizado en el Cursillo Pi Física VECTORES 1. Deterínese la fuerza resultante en el reache de la figura. 60 N 40 N 30 60 50 N Rta.: 70,03 N ; 31,61 2. En la figura Qué fuerza

Más detalles

B: DINAMICA. & r, y la

B: DINAMICA. & r, y la 10 Escuela de Ineniería. Facultad de Ciencias Físicas y Mateáticas. Universidad de Chile. B: DINAMICA B.1.-Un bloque B de asa desliza con roce despreciable por el interior de un tubo, el cual a su vez

Más detalles

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 2008-09

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 2008-09 Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 8-9 C) VIBRACIONES Y ONDAS 1. VIBRACIONES MECÁNICAS 1. 1. INTRODUCCIÓN Una vibración ecánica es la oscilación repetida de un punto aterial

Más detalles

2 m C. S

2 m C. S www.clasesalacarta.co Uniersidad de Castilla La Mancha Junio 04 JUNIO 04 Opción A Problea.- Un planeta gigante tiene dos satélites, S y S, cuyos periodos orbitales son T = 4.5 días terrestres y T = 5.9

Más detalles

Física: Dinámica Conceptos básicos y Problemas

Física: Dinámica Conceptos básicos y Problemas Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS GUIAS ÚNICAS DE LABORAORIO DE ÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANIAGO DE CALI UNIVERSIDAD SANIAGO DE CALI DEPARAMENO DE LABORAORIOS MÁQUINAS SIMPLES - POLEAS 1. INRODUCCIÓN. Una áquina siple

Más detalles

ced Au Au Au f Cu Cu Cu f

ced Au Au Au f Cu Cu Cu f Probleas calorietria Ejeplo 1.- 100 g de una aleación de oro y cobre, a la teperatura de 75.5ºC se introducen en un caloríetro con 502 g de agua a 25ºC, la teperatura del equilibrio es de 25.5ºC. Calcular

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional Dirección de Capacitación No Docente Dirección General de Cultura y Educación Provincia de Buenos Aires FÍSICA Segundo

Más detalles

Guía de ejercicios Introducción a la lesyes de Newton

Guía de ejercicios Introducción a la lesyes de Newton Guía de ejercicios Introducción a la lesyes de Newton Departamento de Ciencia Profesor David Valenzuela Unidad: II Dinámica Curso: 2 Medio NOMBRE: Para esta guía considere g = 10 m/s 2 1. Un auto de 500

Más detalles

Capítulo 3: Leyes de la conservación. Trabajo de una fuerza constante

Capítulo 3: Leyes de la conservación. Trabajo de una fuerza constante Capítulo 3: Leyes de la conseración En este capítulo, tratareos arias agnitudes nueas coo el trabajo, la energía, el ipulso y la cantidad de oiiento, y undaentalente las leyes de la conseración que tienen

Más detalles

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN 1 Considere los tres bloques conectados que se muestran en el diagrama. Si el plano

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización compuesta.

GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización compuesta. GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización copuesta. Concepto de capitalización copuesta. Térinos a utilizar en la capitalización copuesta. Cálculo del capital final o ontante.

Más detalles

Vamos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas musicales va de la siguiente manera:

Vamos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas musicales va de la siguiente manera: Conceptos Básicos aos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas usicales va de la siguiente anera: # Re# Fa# # La# Re i Fa La Si / / Qué quiere decir esto? Figura

Más detalles

Suponga que trata de calcular la rapidez de una flecha disparada con un arco.

Suponga que trata de calcular la rapidez de una flecha disparada con un arco. TRABAJO Y ENERGÍA CINÉTICA 6?Cuando una ara de fuego se dispara, los gases que se expanden en el cañón epujan el proyectil hacia afuera, de acuerdo con la tercera ley de Newton, el proyectil ejerce tanta

Más detalles

ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO

ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO 3.1.1- Introducción 3.1- Coo discutios en el Trabajo Práctico Nº 1, el coponente coún a todos los cuerpos es la ateria. Todo ente aterial ocupa un lugar en el espacio

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway

PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO Cuarta, quinta y sexta edición Rayond A. Serway MOVIMIENTO LINEAL Y CHOQUES 9. Moento lineal y su conservación 9. Ipulso y oento 9.3

Más detalles

1. Trayectoria y desplazamiento

1. Trayectoria y desplazamiento 1. Trayectoria y desplazaiento A partir de la actividad anterior, pudiste apreciar que la distancia ás corta entre dos lugares es la recta que los separa. Sin ebargo, en la vida diaria y en la ayoría de

Más detalles

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva 5.46 Un bloque de masa 3 kg es empujado hacia arriba contra una pared por una pared con una fuerza

Más detalles

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS JUAN ALFONSO OAXACA LUNA, MARÍA DEL CARMEN VALDERRAMA BRAVO Introducción Uno de los conceptos centrales en el

Más detalles

y d dos vectores de igual módulo, dirección y sentido contrario.

y d dos vectores de igual módulo, dirección y sentido contrario. MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo

Más detalles

CAPITULO 9 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway

CAPITULO 9 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO Cuarta, quinta y sexta edición Rayond A. Serway MOVIMIENTO LINEAL Y CHOQUES 9. Moento lineal y su conservación 9. Ipulso y oento 9.3

Más detalles

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS PRACTCA : CÁLCULOS DE ACTUADORES NEUMÁTCOS Se trata de seleccionar los actuadores adecuados para un anipulador de un proceso de epaquetado de latas de atún. Coo se puede apreciar en el dibujo, en prier

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

PROBLEMAS RESUELTOS DE INDUCCIÓN ELECTROMAGNÉTICA

PROBLEMAS RESUELTOS DE INDUCCIÓN ELECTROMAGNÉTICA 0 PROLEMAS RESUELTOS DE INDUCCIÓN ELECTROMAGNÉTICA PROLEMAS DEL CURSO Un rotor de 100 espiras gira dentro de un capo agnético constante de 0,1 T con una elocidad angular de 50 rad/s. Sabiendo que la superficie

Más detalles

f 5 1 T T 5 1 f v52pf 5 2p T F x 52kx a x 5 F x m 52 k m x v5 Å f 5 v Å k 2p 5 1 g T 5 1 f 5 2p m x 5 A cos 1 vt 1f2

f 5 1 T T 5 1 f v52pf 5 2p T F x 52kx a x 5 F x m 52 k m x v5 Å f 5 v Å k 2p 5 1 g T 5 1 f 5 2p m x 5 A cos 1 vt 1f2 CPÍTUO 13 RESUMEN Moviiento periódico: Un oviiento periódico se repite en un ciclo definido; se presenta siepre que un cuerpo tiene una posición de equilibrio estable y una fuerza de restitución que actúa

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario MECANICA TEORÍA Moento Entonces Sistea Par o Cupla de Vectores Es un sistea de dos vectores deslizables de la isa agnitud que están en distintas rectas sostén con la isa dirección pero sentido contrario

Más detalles

Problemas de Física (Dinámica)

Problemas de Física (Dinámica) Universitat Jaue I Departaento de Ciencias Experientales Área de Física Aplicada Junta Electoral General Probleas de Física (Dináica) Ingenieria Técnica en Diseño Industrial Marcel Aguilella i Arzo Santiago

Más detalles

Pontificia Universidad Javeriana. Depto. Física. Periodo 1430. Sesión de problemas.

Pontificia Universidad Javeriana. Depto. Física. Periodo 1430. Sesión de problemas. Pontificia Universidad Javeriana. Depto. Física. Periodo 1430. Sesión de probleas. 2. Problea experiento sobre edición e incertidubre Objetivo: Medir la constante de elasticidad de un resorte por dos étodos:

Más detalles

1.- EL CAMPO MAGNÉTICO

1.- EL CAMPO MAGNÉTICO 1.- EL CAMPO MAGNÉTICO Las cargas en oviiento foran una corriente eléctrica I; y estas generan una nueva perturbación en el espacio que se describe por edio de una agnitud nueva llaada capo agnético B.

Más detalles

CAPÍTULO 6 RESUMEN. f5ángulo entre F S y S

CAPÍTULO 6 RESUMEN. f5ángulo entre F S y S CAPÍTULO 6 RESUMEN Trabajo efectuado por una fuerza: Cuando una fuerza W 5 F # S S s 5 Fs cos f S (6.2), (6.3) constante F actúa sobre una partícula que sufre un desplazaiento rectilíneo S s, el trabajo

Más detalles

CINEMÁTICA. r(t)= (3t 3 - t -78) i + (18-2t 2 ) j + (t 4-81)k

CINEMÁTICA. r(t)= (3t 3 - t -78) i + (18-2t 2 ) j + (t 4-81)k CINEMÁTIC 1.- Se lanza un cuerpo hacia arriba en dirección vertical con una velocidad inicial de 98 /s desde la azotea de un edificio de 100 de altura. Calcula: a) la áxia altura que alcanza sobre el suelo,

Más detalles

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2005

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2005 I.E.S. Al-Ándalus. Arahal. Sevilla. Dpto. Física y Quíica. Selectividad Andalucía. Física. Junio 5-1 UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 5 OPCIÓN A 1. Dos partículas con cargas

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE A: JUSTIFICACIÓN Al observar la Naturaleza nos daos cuenta de que uchos eventos físicos (por ejeplo el oviiento de rotación y traslación de los planetas) son repetitivos, sucediendo

Más detalles

CANTIDAD DE MOVIMIENTO LINEAL

CANTIDAD DE MOVIMIENTO LINEAL NOTAS DE FÍSICA GRADO CANTIDAD DE MOIMIENTO LINEAL CONTENIDO. IMPULSO. COLISIONES O CHOQUES 3. PROBLEMAS PROPUESTOS Contanteente ecuchao y veo choque de auto y oto, nootro alguna vece deprevenido chocao

Más detalles

Problemas. 1. Un barco se balancea arriba y abajo y su desplazamiento vertical viene dado por la ecuación y = 1,2 cos

Problemas. 1. Un barco se balancea arriba y abajo y su desplazamiento vertical viene dado por la ecuación y = 1,2 cos Probleas. Un barco se balancea arriba y abajo y su desplazaiento vertical viene dado por t π la ecuación y, cos +. Deterinar la aplitud, frecuencia angular, 6 constante de fase, frecuencia y periodo del

Más detalles

ENERGÍA (II) FUERZAS CONSERVATIVAS

ENERGÍA (II) FUERZAS CONSERVATIVAS NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevaos un cuerpo una altura h, la fuerza realiza trabajo positivo (counica energía cinética al cuerpo). No podríaos aplicar la definición

Más detalles

TEMA I: Modelación Experimental de Procesos

TEMA I: Modelación Experimental de Procesos TEMA I: Modelación Experiental de Procesos Métodos Clásicos para Modelación o Identificación de Procesos. Introducción La puesta en funcionaiento de un deterinado proceso que opera en lazo cerrado, requiere

Más detalles

El Principio de Equivalencia: una propuesta didáctica a partir del juguete de Einstein

El Principio de Equivalencia: una propuesta didáctica a partir del juguete de Einstein El Principio de Equivalencia: una propuesta didáctica a partir del juguete de Einstein Giovanni Cardona Rodríguez 1, Jaie Duván Reyes 1 Eric Ortiz Ibánez 2 1 Facultad de Ciencias y Educación, Universidad

Más detalles

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.

Más detalles

TECNOLOGÍA EJERCICIOS DE HIDROSTÁTICA

TECNOLOGÍA EJERCICIOS DE HIDROSTÁTICA UNDACIÓN EDUCACIÓN CATÓLICA Colegio Providencia agrado Corazón EJERCICIO DE HIDROTÁTICA º E..O. 1. PREIÓN 1.1 Calcula la presión que ejerce un cilindro de acero de Kg, apoyado por una de sus bases que

Más detalles

8.9 Algunas aplicaciones de la inducción magnética.

8.9 Algunas aplicaciones de la inducción magnética. CAPÍTULO 8 Inducción agnética Índice del capítulo 8 8. Flujo agnético. 8. La ley de Faraday. 83 8.3 Ley de Lenz. 8.4 Fe de oviiento. 8.5 Corrientes de Foucault. 8.6 Inductancia. 8.7 Energía agnética. 8.8

Más detalles

Examen 1º Bachillerato QUIMICA Nombre:

Examen 1º Bachillerato QUIMICA Nombre: Exaen 1º Bachillerato QUIICA Nobre: Teoría ( puntos) Respuesta correcta: + 0,75; Respuesta incorrecta: - 0,15; Respuesta no contestada: 0 1. El peso olecular del ácido sulfúrico, HSO4, es: a. 98 g b. 98

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo

Más detalles

Segunda y Tercera Ley de Newton. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret

Segunda y Tercera Ley de Newton. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Segunda y Tercera Ley de Newton Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret NASA El transbordador espacial Endeavor despega para una misión de 11 días

Más detalles

ECUACIONES DE DIMENSIÓN

ECUACIONES DE DIMENSIÓN Tea 6-1 Ecuaciones de Diensión - 1 Tea 6 Curso 006/07 Departaento de Física y Quíica Aplicadas a la Técnica Aeronáutica Curso 006/07 Tea 6- Se representan las agnitudes fundaentales con letras ayúsculas:

Más detalles

Factor de forma para conducción bidimensional

Factor de forma para conducción bidimensional Factor de fora para conducción bidiensional En la literatura es frecuente encontrar soluciones analíticas a soluciones de interés práctico en ingeniería. En particular, el factor de fora perite calcular

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA. Curso 2009. Práctico III Trabajo y Energía.

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA. Curso 2009. Práctico III Trabajo y Energía. INSTITUT DE FÍSIC MECÁNIC NEWTNIN Curso 009 Práctico III Trabajo y Enería. NT: Los siuientes ejercicios están ordenados por tea y, dentro de cada tea, en un orden creciente de dificultad. l final se incluyen

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A (Abril 14 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización. En esta

Más detalles

5.7.- ESTUDIO GRANULOMETRICO DE LOS ARIDOS. 5.7.1.- Análisis granulométrico

5.7.- ESTUDIO GRANULOMETRICO DE LOS ARIDOS. 5.7.1.- Análisis granulométrico 5.7.- ESTUDIO GRANULOMETRICO DE LOS ARIDOS 5.7.1.- Análisis granuloétrico La granuloetría de los áridos es uno de los paráetros ás iportantes epleados para la dosificación del horigón (La ayoría de los

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final Enero de 01 Problemas (Dos puntos por problema) Problem (Primer parcial): Un pescador desea cruzar un río de 1 km de ancho el cual tiene una corriente

Más detalles

2. Amplía: factoriales y números combinatorios

2. Amplía: factoriales y números combinatorios UNIDAD Cobinatoria 2. Aplía: factoriales y núeros cobinatorios Pág. 1 de FACTORIALES El núero de perutaciones de n eleentos es: P n n n 1) n 2) 2 1 A este producto de n factores decrecientes a partir de

Más detalles

Física 1 Químicos - Segundo cuatrimestre/ Mecánica 1/30 CINEMÁTICA

Física 1 Químicos - Segundo cuatrimestre/ Mecánica 1/30 CINEMÁTICA Física 1 Quíicos - Seundo cuatriestre/010 - Mecánica 1/30 CINEMÁTICA 1 - Un óvil que se encuentra en un punto A en un cierto instante t 0, viaja con velocidad constante. Cuando transcurre un tiepo t =

Más detalles

CAPITULO 9 FISICA TOMO 1. Cuarta quinta y sexta edición. Raymond A. Serway

CAPITULO 9 FISICA TOMO 1. Cuarta quinta y sexta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO Cuarta quinta y sexta edición Rayond A. Serway MOVIMIENTO LINEAL Y CHOQUES 9. Moento lineal y su conservación 9. Ipulso y oento 9.3

Más detalles

T-2) LA FUERZA DE LORENTZ (10 puntos)

T-2) LA FUERZA DE LORENTZ (10 puntos) T-2) LA FUERZA DE LORENTZ (10 puntos) Un móvil se desliza por un plano inclinado sobre el que pende el conductor cilíndrico AC a una distancia h de la línea de máxima pendiente, tal como indica la figura.

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

Física y Química 4º ESO. Dinámica 22/11/11. Tipo A Tipo B

Física y Química 4º ESO. Dinámica 22/11/11. Tipo A Tipo B Física y Química 4º ESO Dinámica /11/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 Ptos] Tipo A Tipo B 1. Se lanza horizontalmente un objeto de 400 g con una velocidad de 14,0 m/s sobre una

Más detalles

Ejercicios de Dinámica

Ejercicios de Dinámica Ejercicios de Dinámica 1. Una fuerza de 14 N que forma 35 con la horizontal se quiere descomponer en dos fuerzas perpendiculares, una horizontal y otra vertical. Calcula el módulo de las dos fuerzas perpendiculares

Más detalles

ELEMENTOS DEL MOVIMIENTO.

ELEMENTOS DEL MOVIMIENTO. 1 Poición y deplazaiento. ELEMENTOS DEL MOVIMIENTO. Ejercicio de la unidad 11 1.- Ecribe el vector de poición y calcula u ódulo correpondiente para lo iguiente punto: P 1 (4,, 1), P ( 3,1,0) y P 3 (1,0,

Más detalles

Problemas. 128 Capítulo 5 Las leyes del movimiento. 2 intermedio; 3 desafiante; razonamiento simbólico; razonamiento cualitativo

Problemas. 128 Capítulo 5 Las leyes del movimiento. 2 intermedio; 3 desafiante; razonamiento simbólico; razonamiento cualitativo 128 Capítulo 5 Las leyes del oviiento Probleas 1. Un objeto de 3.00 kg se soete a una aceleración conocida por S a (2.00î 5.00 ĵ ) /s 2. Encuentre la fuerza resultante que actúa sobre él y la agnitud de

Más detalles

ASOCIACIÓN DE POLEAS

ASOCIACIÓN DE POLEAS ASOCIACIÓN DE POLEAS Dos objetos de masas m 1 y m 2 cuelgan de un conjunto de poleas combinadas de dos formas distintas (asociación A y B). Calcula en qué condiciones el conjunto se encuentra en equilibrio.calcula

Más detalles

Tema 6. Análisis de Circuitos en Régimen Sinusoidal Permanente

Tema 6. Análisis de Circuitos en Régimen Sinusoidal Permanente Tea 6. Análisis de Circuitos en Régien Sinusoidal Peranente 6. ntroducción 6. Fuentes sinusoidales 6.3 Respuesta sinusoidal en estado estable 6.4 Fasores 6.5 Relaciones fasoriales para R, L y C 6.6 pedancia

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

EJERCICIOS RESUELTOS GASES

EJERCICIOS RESUELTOS GASES EJERCICIOS RESUELTOS GASES - Una cantidad de gas ocupa un vouen de 80 c a una presión de 750 g Qué vouen ocupará a una presión de, si a teperatura no cabia? Coo a teperatura y a asa peranecen constantes

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físic Generl Proyecto PMME - Curso 00 Instituto de Físic Fcultd de Inenierí UdelR TITULO DINÁMICA DE LA PARTÍCULA - MÁQUINA DE ATWOOD DOBLE. AUTORES: Gonzlo d Ros, Jvier Belzren, Dieo Aris. INTRODUCCIÓN

Más detalles

Unidad didáctica: Electricidad, electromagnetismo y medidas

Unidad didáctica: Electricidad, electromagnetismo y medidas Unidad didáctica: Electricidad, electroagnetiso y edidas CURSO 3º ESO versión 1.0 1 Unidad didáctica: Electricidad, electroagnetiso y edidas ÍNDICE 1.- Introducción..- Corriente eléctrica..1.- Corriente

Más detalles

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Las leyes de Newton Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Diagrama de cuerpo libre (DCL) Esquema que sirve para representar y visualizar las fuerzas que actúan en un cuerpo.

Más detalles