Ejemplo de un Péndulo Simple:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejemplo de un Péndulo Simple:"

Transcripción

1 Preparadopor:Prof.AlejandraZ.MatamorosS. UniversidaddeLosAndes.FacultaddeIngeniería.EscueladeSistemas,Dpto.SistemasdeControl. Mérida,Venezuela.Febrero,2009. EjemplodeunPénduloSimple: Uno de los problemas más simples en robótica es el de controlar la posición de un brazo de robot empleando un motor ubicado en el punto de giro. En términos matemáticos,estonoesmásqueunpéndulo,comoelquesemuestraenlafigura1. Figura1 Esquemadelpéndulo. UnmodelomatemáticoobtenidoutilizandolasegundaleydeNewtonparadescribirla ecuacióndemovimientoangulardelamasamy,expresadoenvariablesdeestadoes elquesepresenta: x 1 (t) = x 2 (t) x 2 (t) = g l sen(x 1(t)) k m x 2(t) τ Θ Siendo los estados la posición angular (medida entre la vertical y la cuerda) y la velocidadangular,respectivamentesegúnlasecuaciones.donde:meslamasadela bola, l es la longitud de la cuerda, g es la aceleración de la gravedad, y k es el coeficientedefricción. Segúnelsistemadeecuacionesplanteado,elpéndulotendrásólounadinámicalibre, donde el torque mostrado en la figura será despreciado sólo para propósitos de estudiarunpocolaestabilidaddelospuntosdeequilibrio. l mg LassimulacionesfueronrealizadasutilizandoMatlab (Mathworks).

2 Preparadopor:Prof.AlejandraZ.MatamorosS. UniversidaddeLosAndes.FacultaddeIngeniería.EscueladeSistemas,Dpto.SistemasdeControl. Mérida,Venezuela.Febrero,2009. CálculodelosPuntosdeEquilibrio: Si, x 1 (t) = x 2 (t) = 0 x 2 (t) = g l sen(x (t)) k 1 m x 2 (t) = 0 x 2 (t) = 0 sen(x 1 (t)) = 0 x 1 (t) = ±kπ, k = 0,1, 2,... Sinembargo,esevidentequelospuntosdeequilibrio(0,0)y(π,0),replicanatodos losdemáspuntosobtenidos.portanto,bastaconestudiarlosdosantesmencionados. Seasignaránvaloresnuméricosalosparámetrosfísicosdelsistema,conlafinalidad desimulareldiagramadefasedelsistemaparadichosvalores.luego,secomparará conotrojuegodevalores.(enesteejemplo,sedesprecianlasunidadesfísicassólopor efectosilustrativosdeloqueenestemomentosequiererecalcar). A) g/l=1yk/m=0.5 B) g/l=1yk/m=1 C) g/l=1yk/m=2-3π -2π -π 0π π 2π 3π Figura2.DiagramadeFasedelsistemaconlosparámetrosdescritosena).Seseñalan conflechasrojasalgunospuntosdeequilibrioinestables:focosinestablesy,con flechasazulesalgunospuntosdeequilibrioestables:focosestables.piénseseenlo querepresentaestoenlafísicadelpéndulo. LassimulacionesfueronrealizadasutilizandoMatlab (Mathworks).

3 Preparadopor:Prof.AlejandraZ.MatamorosS. UniversidaddeLosAndes.FacultaddeIngeniería.EscueladeSistemas,Dpto.SistemasdeControl. Mérida,Venezuela.Febrero,2009. Figura3.DiagramadeFasevs.t Figura4.Analicequésucedeahoraenlospuntosdeequilibrioquese reflejanenestediagramadefase,cuandolarelaciónentrelosparámetros esladeb). LassimulacionesfueronrealizadasutilizandoMatlab (Mathworks).

4 Preparadopor:Prof.AlejandraZ.MatamorosS. UniversidaddeLosAndes.FacultaddeIngeniería.EscueladeSistemas,Dpto.SistemasdeControl. Mérida,Venezuela.Febrero,2009. Figura5.Analicetambiénestediagramadefase,cuandolarelaciónentre losparámetrosesladec). Quéinfluenciatienenlosvaloresdelos parámetrosentérminosfísicos? Cómoloasociaconlaexperienciaque ustedhatenidoobservandounpéndulo? Figura6.Respuestatemporaldelaposiciónangulardelpéndulo,antelasdistintas condicionesiniciales(superpuestas) Observeque,adiferenciadelossistemas lineales,lascaracterísticasdinámicassetornanunpocodistintasencadacaso. LassimulacionesfueronrealizadasutilizandoMatlab (Mathworks).

5 Preparadopor:Prof.AlejandraZ.MatamorosS. UniversidaddeLosAndes.FacultaddeIngeniería.EscueladeSistemas,Dpto.SistemasdeControl. Mérida,Venezuela.Febrero,2009. Cómorealizaríaunbosquejodeldiagramadefasedeunsistemanolineal, asabiendasdequecadaexpresiónloquerepresentaeslavelocidadconla cualcambiacadaestado? Quésucederásiustedlinealizaalrededordecadaunodelosdospuntosde equilibrio:(0,0)y(π,0)? Podríadecirsesiseobtienencambiosrelevantes entérminosdelaestabilidaddecadapuntodeequilibrioenlosdiagramas defasedetalrepresentaciónlinealizada? LassimulacionesfueronrealizadasutilizandoMatlab (Mathworks).

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que

Más detalles

El presente reporte de tesis describe los procesos llevados acabo para el diseño y

El presente reporte de tesis describe los procesos llevados acabo para el diseño y CAPITULO 1.-INTRODUCCIÓN El presente reporte de tesis describe los procesos llevados acabo para el diseño y construcción de un prototipo de sensor de torque. El primer paso, consistió en realizar un estudio

Más detalles

1 Yoyó con cuerda despreciable 1

1 Yoyó con cuerda despreciable 1 1 Yoyó con cuerda despreciable 1 En este documento se describe el problema clásico de la Física elemental en el que un yoyó, modelado como un disco, cae bajo la acción de la gravedad, sujeto con una cuerda

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA PAU FÍSICA LA RIOJA - CUESTIONES 1. Si un cuerpo pesa 100 N cuando está en la superficie terrestre, a qué distancia pesará la mitad? Junio 95 2. Sabiendo que M Luna = M Tierra

Más detalles

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS- ESCUELA DE FÍSICA FÍSICA MECÁNICA (00000) TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO Preparado por: Diego Luis Aristizábal Ramírez

Más detalles

Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría.

Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría. Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría. Como proceder: a.-imprima los contenidos de esta guía, el mismo contiene tablas y gráficas importantes para el desarrollo de

Más detalles

Péndulo simple. Curso 2010/11. Comprobar los factores que determinan el periodo de un péndulo simple.

Péndulo simple. Curso 2010/11. Comprobar los factores que determinan el periodo de un péndulo simple. Prácticas de laboratorio de Física I 1 Objetivos Péndulo simple Curso 2010/11 Comprobar los factores que determinan el periodo de un péndulo simple. Determinar la aceleración de la gravedad a través del

Más detalles

11 knúmero de publicación: 2 141 353. 51 kint. Cl. 6 : F16H 37/04. Número de solicitud europea: 95919718.7 86 kfecha de presentación : 12.05.

11 knúmero de publicación: 2 141 353. 51 kint. Cl. 6 : F16H 37/04. Número de solicitud europea: 95919718.7 86 kfecha de presentación : 12.05. k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 knúmero de publicación: 2 141 33 1 kint. Cl. 6 : F16H 37/04 F16H 7/02 B2J 18/00 B2J 9/ H02K 7/116 12 k TRADUCCION DE PATENTE EUROPEA T3 86 k Número

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

ESPECIALIDADES : GUIA DE PROBLEMAS N 3

ESPECIALIDADES : GUIA DE PROBLEMAS N 3 ASIGNATURA : ESPECIALIDADES : Ing. CIVIL Ing. MECANICA Ing. ELECTROMECANICA Ing. ELECTRICA GUIA DE PROBLEMAS N 3 2015 1 GUIA DE PROBLEMAS N 3 PROBLEMA Nº1 Un carro de carga que tiene una masa de 12Mg es

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

SOBRE PALANCAS, POLEAS Y

SOBRE PALANCAS, POLEAS Y SOBRE PALANCAS, POLEAS Y GARRUCHAS Por Ignacio Cristi 1. PALANCAS 2. POLEAS 3. APAREJOS O GARRUCHAS SANTIAGO DE CHILE AGOSTO 2003 1 1. PALANCAS: La palanca es una barra rígida que puede girar alrededor

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

Practica No. 02 LEVANTAMIENTO TOPOGRÁFICO DE UN TERRENO CON WINCHA Y JALÓNES AGRIMENSURA

Practica No. 02 LEVANTAMIENTO TOPOGRÁFICO DE UN TERRENO CON WINCHA Y JALÓNES AGRIMENSURA Practica No. 02 LEVANTAMIENTO TOPOGRÁFICO DE UN TERRENO CON WINCHA Y JALÓNES AGRIMENSURA C D B A Canal de riego Parcela de Cultivo Objetivo: Realizar el levantamiento de una pequeña parcela usando instrumentos

Más detalles

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

Características Morfológicas. Principales características de los Robots.

Características Morfológicas. Principales características de los Robots. Características Morfológicas Principales características de los Robots. Se describen las características más relevantes propias de los robots y se proporcionan valores concretos de las mismas, para determinados

Más detalles

Mecánica. Ingeniería Civil. Curso 11/12 Hoja 8

Mecánica. Ingeniería Civil. Curso 11/12 Hoja 8 Mecánica. Ingeniería ivil. urso 11/12 Hoja 8 71) Un automóvil está viajando a una velocidad de módulo 90 km/h por una autopista peraltada que tiene un radio de curvatura de 150 m. Determinar el ángulo

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

Int. Cl. 6 : B23C 1/08. 22 kfecha de presentación: 22.07.94 71 k Solicitante/s: Noran S.L. C. Saconi, 18 Arriegas Erandio, Vizcaya, ES

Int. Cl. 6 : B23C 1/08. 22 kfecha de presentación: 22.07.94 71 k Solicitante/s: Noran S.L. C. Saconi, 18 Arriegas Erandio, Vizcaya, ES k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 k Número de publicación: 2 118 016 21 k Número de solicitud: 9401634 1 k Int. Cl. 6 : B23C 1/08 B23C 1/16 B23Q 3/10 k 12 SOLICITUD DE PATENTE A1 22

Más detalles

y su derivada respecto de 0, en este instante, es 3 rd/s. O1O2= 0,5 m. O1A=0,2m. O 2 MAQUINAS Y MECANISMOS.Dinámica.

y su derivada respecto de 0, en este instante, es 3 rd/s. O1O2= 0,5 m. O1A=0,2m. O 2 MAQUINAS Y MECANISMOS.Dinámica. Calcular en el mecanismo de la figura la aceleración n angular de 1 respecto de 0, la de 2 respecto de 0, así como la fuerza de la clavija A, de dimensión n despreciable, sobre la guía a y las reacciones

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

Def.: Energía Potencial gravitatoria: la que tiene un cuerpo como consecuencia de su posición en el campo gravitatorio terrestre.

Def.: Energía Potencial gravitatoria: la que tiene un cuerpo como consecuencia de su posición en el campo gravitatorio terrestre. TEMA 5 TRABAJO, ENERGÍA Y POTENCIA Objetivos / Criterios de evaluación O.5.1 Identificar el concepto de trabajo mecánico y sus unidades O.5.2 Conocer el concepto de energía y sus unidades y tipos. O.5.3

Más detalles

11 knúmero de publicación: 2 127 379. 51 kint. Cl. 6 : B25J 9/04

11 knúmero de publicación: 2 127 379. 51 kint. Cl. 6 : B25J 9/04 k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 knúmero de publicación: 2 127 379 51 kint. Cl. 6 : B25J 9/04 B25J 9/10 B25J 18/00 12 k TRADUCCION DE PATENTE EUROPEA T3 86 knúmero de solicitud europea:

Más detalles

MATERIA: PESO Y BALANCE A

MATERIA: PESO Y BALANCE A MATERIA: PESO Y BALANCE A 1. QUÉ EFECTOS CAUSA LA POSICIÓN ATRASADA DEL CG EN UN AVIÓN? a. NARIZ ABAJO, SE REQUERIRÁ MAYOR FUERZA SOBRE EL ELEVADOR PARA MANTENER LA NARIZ ARRIBA b. EL AVIÓN SE HACE MÁS

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

Una vez descrita la constitución general de un robot, podemos empezar con la

Una vez descrita la constitución general de un robot, podemos empezar con la CAPÍTULO 2 Construcción y Mecanismo de Operación del Brazo Robótico Una vez descrita la constitución general de un robot, podemos empezar con la descripción de nuestro robot, cómo fue construido y cómo

Más detalles

V. FRICCIÓN. que actúan sobre él son su peso y la reacción de la superficie; en este caso la reacción es perpendicular o normal a dicha

V. FRICCIÓN. que actúan sobre él son su peso y la reacción de la superficie; en este caso la reacción es perpendicular o normal a dicha V. FRICCIÓN La fricción o rozamiento es una fuerza de importancia singular. La estudiaremos en este lugar como una aplicación concreta de los proble-mas de equilibrio, aun cuando la fricción aparece también

Más detalles

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que:

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que: Las fuerzas concurrentes son todas las fuerzas que actúan cuyas líneas de acción pasan a través de un punto común. Las fuerzas que actúan sobre un objeto puntual son concurrentes porque toas ellas pasan

Más detalles

Ejercicios resueltos de cinemática

Ejercicios resueltos de cinemática Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe

Más detalles

FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. OBJETIVOS DEL APRENDIZAJE:

FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. OBJETIVOS DEL APRENDIZAJE: UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. OBJETIVOS DEL APRENDIZAJE: IDENTIFICAR LAS FUERZAS QUE ACTÚAN SOBRE UN OBJETO. REPRESENTAR

Más detalles

Problemas resueltos. Problema 1. Problema 2. Problema 3. Problema 4. Solución. Solución. Solución.

Problemas resueltos. Problema 1. Problema 2. Problema 3. Problema 4. Solución. Solución. Solución. Problemas resueltos Problema 1. Con una llave inglesa de 25 cm de longitud, un operario aplica una fuerza de 50 N. En esa situación, cuál es el momento de torsión aplicado para apretar una tuerca? Problema

Más detalles

Fig. 3.1 Brazo Mecánico Utilizado. que es capaz de girar igualmente 180º, (Fig. 3.1).

Fig. 3.1 Brazo Mecánico Utilizado. que es capaz de girar igualmente 180º, (Fig. 3.1). Capítulo 3 El Brazo Mecánico. En este capítulo se hablará de los aspectos generales del robot, en cuanto a su arquitectura respecta. Es importante dar crédito al Ing. Luís Maus Bolaños del departamento

Más detalles

Trabajo Investigativo

Trabajo Investigativo Trabajo Investigativo Título: PROYECTO DE UN SISTEMA DE ELEVACIÓN NAVAL (PESCANTE) PARA LANCHA RÁPIDA Autores: Mst. C.T. Inv.Auxiliar. Elpidio Pérez Rivero Ing. Ariel Pereira Arcos Resumen En el presente

Más detalles

TRABAJO EXPERIMENTAL. Temas 1: CHORROS DE AGUA. Curso virtual sobre Energías renovables_ Energía hidráulica

TRABAJO EXPERIMENTAL. Temas 1: CHORROS DE AGUA. Curso virtual sobre Energías renovables_ Energía hidráulica TRABAJO EXPERIMENTAL Temas 1: CHORROS DE AGUA La energía hidráulica está basada en la acumulación de energía en el agua por estar ésta a una cierta altura. Veamos el efecto de la altura sobre la energía

Más detalles

Motores Paso a Paso(I) Laboratorio de Ingeniería Eléctrica

Motores Paso a Paso(I) Laboratorio de Ingeniería Eléctrica Motores Paso a Paso(I) Laboratorio de Ingeniería Eléctrica INTRODUCCIÓN Son motores que reciben un impulso de corriente que transforman en un movimiento preciso del eje paso. Según la secuencia de impulsos

Más detalles

Protocolo de Experiencias de Mecánica

Protocolo de Experiencias de Mecánica Torreón de la Física de Cartes y Aula Espacio Tocar la Ciencia J. Güémez Aula de la Ciencia Universidad de Cantabria Septiembre 9, 2010 Protocolo de Experiencias de Mecánica La mecánica tiene que ver con:

Más detalles

Quién ejerce la fuerza? Quién la recibe?

Quién ejerce la fuerza? Quién la recibe? Araucaria2000 Fuerza www.araucaria2000.cl Si observamos a los seres humanos, vemos que generalmente están en constante movimiento: caminan, corren, bailan, hacen deporte. También podemos observar la nieve

Más detalles

APLICACIONES DE LOS ESPEJOS PLANOS:

APLICACIONES DE LOS ESPEJOS PLANOS: ESPEJOS ANGULARES. Cuando entre dos espejos planos que forman un ángulo y entre ellos se coloca un objeto, se tiene cierto número de imágenes, cuyo número depende del ángulo que forman los espejos. Se

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012

Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Unidad 1: Fuerzas Programa analítico Medidas de una fuerza. Representación gráfica de fuerzas. Unidad de

Más detalles

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos.

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos. SERVOMOTORES Un servomotor (también llamado Servo) es un dispositivo similar a un motor DC, que tiene la capacidad de ubicarse en cualquier posición dentro de su rango de operación y mantenerse estable

Más detalles

Figura 3.1.1 Vector AP en la trama {A}

Figura 3.1.1 Vector AP en la trama {A} 3 Desarrollo 3.1 Vector de posición Un punto en el espacio puede ser ubicado utilizando un vector de posición, el cual tiene una dirección y magnitud. Estableciendo un sistema de coordenadas de dos ejes

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

4. Tipos de servomotores. Clasificación según su topología:

4. Tipos de servomotores. Clasificación según su topología: 4. Tipos de servomotores. Clasificación según su topología: Motor Inducido de Tres fases AC Motor Tipo Brush DC Brushless Servo Motor (AC & DC) Motor Paso a Paso SwitchedReluctance Motors Motor Lineal

Más detalles

Mecánica. Ingeniería Civil. Curso 11/12

Mecánica. Ingeniería Civil. Curso 11/12 Mecánica. Ingeniería ivil. urso / ) eterminar la dirección θ del cable y la tensión F que se requiere para que la fuerza resultante sobre el bidón de la figura sea vertical hacia arriba de módulo 800 N.

Más detalles

Segunda Ley de Newton

Segunda Ley de Newton Segunda Ley de Newton Laboratorio de Mecánica y fluidos Objetivos El alumno entenderá la relación entre las fuerzas de la naturaleza y el movimiento. El estudiante encontrará la relación entre las fuerzas

Más detalles

1. Principios Generales

1. Principios Generales Física aplicada a estructuras Curso 13/14 Aquitectura Estática 1. Principios Generales P 1.1 Redondee cada una de las siguientes cantidades a tres cifras significativas: (a) 4,65735 m, (b) 55,578 s, (c)

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

INSTITUCION EDUCATIVA DISTRITAL CAFAM LOS NARANJOS Plan de mejoramiento grado undécimo

INSTITUCION EDUCATIVA DISTRITAL CAFAM LOS NARANJOS Plan de mejoramiento grado undécimo Competencia: INSTITUCION EDUCATIVA DISTRITAL CAFAM LOS NARANJOS Plan de mejoramiento grado undécimo Reconoce la importancia que tiene las ondas en nuestra cotidianidad, e interpreta todas las características

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante

Más detalles

Cálculo de las Acciones Motoras en Mecánica Analítica

Cálculo de las Acciones Motoras en Mecánica Analítica Cálculo de las Acciones Motoras en Mecánica Analítica 1. Planteamiento general El diseño típico de la motorización de un sistema mecánico S es el que se muestra en la figura 1. Su posición viene definida

Más detalles

Instituto de Física, Facultad de Ciencias, Universidad de la República Mecánica clásica 2015. Mecánica clásica

Instituto de Física, Facultad de Ciencias, Universidad de la República Mecánica clásica 2015. Mecánica clásica Mecánica clásica Práctico I Cinemática de la Partícula y Movimiento Relativo Parte : Ejercicios de Cinemática de la Partícula Ejercicio 1 H C B v B Una cuerda flexible, inextensible y sin peso 1 de longitud

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA PÉNDULO BALÍSTICO

UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA PÉNDULO BALÍSTICO 3 PÉNDULO BALÍSTICO OBJETIVOS Investigar el péndulo alístico. Revisar la teoría física y los principios fundamentales que estan detrás del experimento planeado. Determinar la velocidad de disparo de un

Más detalles

Sistemas con masa variable

Sistemas con masa variable ar Sistemas con masa variable d(m vr) FR= = ṁvr+ m vr dt Ejemplo 1. Satélite en el polvo ínterplanetario. Un satélite en un espacio libre de fuerzas recoge residuos interplanetarios estacionarios en una

Más detalles

Diseño y Construcción de un Generador de Van de Graaff

Diseño y Construcción de un Generador de Van de Graaff Diseño y Construcción de un Generador de Van de Graaff ASIGNATURA: Física Electromagnética TEMA DEL PROYECTO: Electrostática OBJETIVOS Afianzar los conceptos de la fuerza eléctrica a nivel de la interacción

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

ESTUDIO DE CARGAS SOBRE CUBIERTA FOTOVOLTAICA

ESTUDIO DE CARGAS SOBRE CUBIERTA FOTOVOLTAICA ENERGÍA SOLAR FOTOVOLTAICA I Módulo Estructuras ESTUDIO DE CARGAS SOBRE CUBIERTA FOTOVOLTAICA Ejemplo: Ubicación en zona 1 según el mapa de vientos y zona urbana Altura de la cubierta: 15 m Dimensiones

Más detalles

FASE ESPECÍFICA RESPUESTAS FÍSICA

FASE ESPECÍFICA RESPUESTAS FÍSICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 2013 FASE ESPECÍFICA RESPUESTAS FÍSICA En cada Bloque elija una Opción: Bloque 1.- Teoría

Más detalles

PRIMERA EVALUACIÓN. Física del Nivel Cero A

PRIMERA EVALUACIÓN. Física del Nivel Cero A PRIMERA EVALUACIÓN DE Física del Nivel Cero A Marzo 9 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 70 puntos, consta de 32 preguntas de opción múltiple

Más detalles

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg. CAPIULO 1 COMPOSICIO Y DESCOMPOSICIO DE VECORES Problema 1.2 SEARS ZEMASKY Una caja es empujada sobre el suelo por una fuerza de 20 kg. que forma un ángulo de con la horizontal. Encontrar las componentes

Más detalles

Programa de Física General I

Programa de Física General I Programa de Física General I Primer semestre - Años 2013 y 2014 I - Introducción: qué es la Física, áreas de la Física y ubicación de la Mecánica Newtoniana en este contexto, métodos de la Física y relación

Más detalles

Lección 20: Gráficas de frecuencia

Lección 20: Gráficas de frecuencia Lección : Gráficas de frecuencia En la lección anterior vimos cómo organizar en una tabla de frecuencias, un conjunto de datos que contiene la información sobre alguna variable. Esas tablas permiten una

Más detalles

) = cos ( 10 t + π ) = 0

) = cos ( 10 t + π ) = 0 UNIDAD Actividades de final de unidad Ejercicios básicos. La ecuación de un M.A.S., en unidades del SI, es: x = 0,0 sin (0 t + π ) Calcula la velocidad en t = 0. dx π La velocidad es v = = 0,0 0 cos (

Más detalles

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase.

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase. Taller 1 para el curso Mecánica I. Pág. 1 de 11 UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA Taller No 1 - Curso: Mecánica I Grupo: Encuentre la respuesta para cada uno de los ejercicios

Más detalles

ANEXO A MANUAL DEL USUARIO

ANEXO A MANUAL DEL USUARIO ANEXO A MANUAL DEL USUARIO MANUAL DEL USUARIO MÓDULO DIDÁCTICO PARA EL CONTROL DE FLUJO DE AGUA UTILIZANDO LA VARIACIÓN DE VELOCIDAD DE LOS MOTORES DE LAS BOMBAS El módulo didáctico para el control de

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 2 2013 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2013. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio)

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO BOLILLA 5 MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO Sistemas de referencia Inerciales y No-inerciales En la bolilla anterior vimos que las leyes de Newton se cumplían en marcos de referencia inercial.

Más detalles

Campo Gravitatorio Profesor: Juan T. Valverde

Campo Gravitatorio Profesor: Juan T. Valverde 1.- Energía en el campo gravitatorio -1 http://www.youtube.com/watch?v=cec45t-uvu4&feature=relmfu 2.- Energía en el campo gravitatorio -2 http://www.youtube.com/watch?v=wlw7o3e3igm&feature=relmfu 3.- Dos

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

Fig. 1. F 1 x d 1 = F 2 x d 2. d 1 = d 2 F 1 = F 2

Fig. 1. F 1 x d 1 = F 2 x d 2. d 1 = d 2 F 1 = F 2 UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL PRACTICO DE DETECCIÓN DE MASAS BALANZA METTLER TRABAJO PRÁCTICO Nº:... NOMBRE Y

Más detalles

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos

Más detalles

INFORME PERFORMANCE WEB SITIOS IAB Mes Octubre. Realizado por Atentus para IAB Chile Noviembre 2013

INFORME PERFORMANCE WEB SITIOS IAB Mes Octubre. Realizado por Atentus para IAB Chile Noviembre 2013 INFORME PERFORMANCE WEB SITIOS IAB Mes Octubre Realizado por Atentus para IAB Chile Noviembre 2013 Presentación El presente informe corresponde al reporte de resultados del mes de Octubre de la medición

Más detalles

Este programa mueve cada motor de forma independiente, y cuando termina una línea pasa a la siguiente.

Este programa mueve cada motor de forma independiente, y cuando termina una línea pasa a la siguiente. 1 Programa 1 Utilizando el icono añadimos un movimiento a por cada línea de programa. Podremos usar 8 posibles líneas de programa (Base, Hombro, Codo, Muñeca, Pinza, Salida 1, Salida 2 y línea en blanco).

Más detalles

PROBLEMAS DE EQUILIBRIO

PROBLEMAS DE EQUILIBRIO PROBLEMAS DE EQUILIBRIO NIVEL BACHILLERATO Con una honda Curva con peralte Tomar una curva sin volcar Patinador en curva Equilibrio de una puerta Equilibrio de una escalera Columpio Cuerda sobre cilindro

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS PROBLEMAS M.A.S. 1. De un resorte elástico de constante k = 500 N m -1 cuelga una masa puntual de 5 kg. Estando el conjunto en equilibrio, se desplaza

Más detalles

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando: PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento

Más detalles

CATALOGO TRANSPORTADORES CINTAS

CATALOGO TRANSPORTADORES CINTAS CATALOGO TRANSPORTADORES CINTAS www.maskepack.com www.pdvnhsdfn FRP www.maskepack.com CINTAS TRANSPORTADORAS DE BANDA TKB-03... TKB-06... TKBM-06... TKB-06/03... TKB-06-MT... TKB-10... TKBM-10... TKB-15...

Más detalles

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d W F d Fd cos Si la fuerza se expresa en newton (N) y el desplazamiento

Más detalles

Figura 1. Servomotores

Figura 1. Servomotores DISEÑO Y CONSTRUCCIÓN DE UNA MESA POSICIONADORA DE SOLDADURA EN DOS EJES PARA EL BRAZO ROBÓTICO KUKA KR5ARC DEL LABORATORIO DE ROBÓTICA INDUSTRIAL DE LA ESPE EXTENSIÓN LATACUNGA Autores: Investigador Principal:

Más detalles

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé? 2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que

Más detalles

Olimpiada Online de Física - OOF 2013

Olimpiada Online de Física - OOF 2013 1. La figura muestra una pieza metálica apoyada sobre une superficie horizontal. Respecto de la tercera ley de Newton, indique verdadero (V) o falso (F) según corresponda. I. El peso y la normal son fuerzas

Más detalles

Diagramas del UML. A continuación se describirán los diagramas más comunes del UML y los conceptos que representan: Diagrama de Clases

Diagramas del UML. A continuación se describirán los diagramas más comunes del UML y los conceptos que representan: Diagrama de Clases El UML está compuesto por diversos elementos gráficos que se combinan para conformar diagramas. Debido a que el UML es un lenguaje, cuenta con reglas para combinar tales elementos. La finalidad de los

Más detalles

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.

Más detalles

Consejos Prácticos Pro. Determine la potencia del motor DC. Selección del motor DC. Cargas lineales. Cargas giratorias.

Consejos Prácticos Pro. Determine la potencia del motor DC. Selección del motor DC. Cargas lineales. Cargas giratorias. Motor brushless DC con reductora planetaria de 52 mm de diámetro, freno de seguridad y encoder. Junto con una electrónica de control formaría un servosistema. Entonces la unidad se denominaría servomotor.

Más detalles

ES 1 011 178 U. Número de publicación: 1 011 178 REGISTRO DE LA PROPIEDAD INDUSTRIAL. Número de solicitud: U 8902460. Int. Cl.

ES 1 011 178 U. Número de publicación: 1 011 178 REGISTRO DE LA PROPIEDAD INDUSTRIAL. Número de solicitud: U 8902460. Int. Cl. k 19 REGISTRO DE LA PROPIEDAD INDUSTRIAL ESPAÑA 11 k Número de publicación: 1 011 178 21 k Número de solicitud: U 89024 1 k Int. Cl. 4 : A63F 3/06 k 12 SOLICITUD DE MODELO DE UTILIDAD U k 22 Fecha de presentación:

Más detalles

BALANZA BARTOLO PAREDES ROBERTO

BALANZA BARTOLO PAREDES ROBERTO BALANZA Es un instrumento que mide la masa de una sustancia o cuerpo, utilizando como medio de comparación la fuerza de la gravedad que actúa sobre dicha masa. Se debe tener en cuenta que el peso es la

Más detalles