Tema 1 Movimiento Armónico Simple

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 1 Movimiento Armónico Simple"

Transcripción

1 Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación al caso del resorte... Conceptos de movimiento oscilatorio: el movimiento armónico simple (M.A.S.). Movimiento oscilatorio, vibratorio o periódico: movimiento caracterizado por:. recorrer la misma trayectoria, siempre en torno a la posición de equilibrio;. tardar el mismo tiempo (periodo) en recorrer la trayectoria; 3. estar originados por las fuerzas recuperadoras. Posición de equilibrio: lugar en el que el móvil que oscila no recibe fuerza y donde se quedaría en reposo si se dejase inicialmente. Periodo: tiempo que tarda un móvil en completar una oscilación completa en los movimientos oscilatorios. Estos movimientos se llaman periódicos. Fuerza recuperadora: fuerza que origina los movimientos oscilatorios y que siempre está dirigida hacia la posición de equilibrio, donde es nula. Amortiguamiento: fenómeno consistente en que un movimiento oscilatorio se ve frenado por rozamientos hasta detenerse. Movimiento armónico simple (M.A.S.): en un movimiento oscilatorio que se caracteriza porque se puede representar matemáticamente mediante las funciones seno o coseno.

2 Tema : Movimiento Armónico Simple Física º Bachillerato Posición de equilibrio Figura.. Dos ejemplos de movimiento oscilatorio. Ejemplos de movimientos oscilatorios son el del péndulo, el de una masa conectada a un muelle, una regla con un extremo fijo y el otro libre, el de una cuerda de un instrumento musical, las cuerdas vocales, etc. En la figura. se muestran dos ejemplos típicos de movimiento oscilatorio... Ecuación general del MAS La ecuación general de un MAS es: π A sen t + ϕ T = donde: - recibe el nombre de elongación; representa la separación del móvil de la posición de equilibrio. Se mide en metros. - A es la amplitud; representa el valor máximo de la elongación. La elongación siempre estará comprendida entre A y +A. Se mide en metros. - T es el periodo; representa el tiempo necesario para que ocurra una oscilación completa. Su unidad son los segundos. - ϕ es la fase inicial; permite calcular la posición inicial del oscilador y se mide en radianes. π - t + ϕ recibe el nombre de fase; es el argumento de la función trigonométrica. T Se mide en radianes. Tema -

3 Colegio Sagrado Corazón T 3 A t - A Figura.. Representación de un MAS La magnitud inversa del periodo se denomina frecuencia lineal o simplemente frecuencia (f), se mide en hercios (Hz) y representa el número de oscilaciones que tienen lugar en un segundo. f = T Otra magnitud muy importante es la frecuencia angular o pulsación (ω), que se mide en rad/s y se relaciona con la anterior mediante la expresión: π ω = π f = T Haciendo uso de estas expresiones el MAS se puede expresar de las siguientes formas siendo la última las más usual: = A sen π f = A sen ωt ( t + ϕ ) ( + ϕ ) La gráfica posición-tiempo de un MAS consiste en representar en el eje vertical la separación de la posición de equilibrio (elongación) y en el eje horizontal el tiempo, de modo que en cada instante se conoce la posición de la partícula. La figura. muestra un ejemplo de MAS donde se han tomado los valores siguientes (A=5m, T=8s, ϕ =.44rad), con lo que la ecuación del MAS resulta ser: = 5 sen(.79 t +.44) Tema -3

4 Tema : Movimiento Armónico Simple Física º Bachillerato Inicialmente la partícula está en la posición: x() = 5 sen (.44),3m a medida que aumenta t se va alejando de ella hasta que llega al extremo superior donde la posición vale 5m. Después la partícula retorna y alcanza la posición de equilibrio y continúa hacia el otro extremo de su trayectoria moviéndose hacia valores negativos hasta llegar a = 5m. Los valores negativos sólo significan estar por debajo del eje o a la izquierda de la posición de equilibrio si el movimiento es horizontal. Después el móvil vuelve a la posición de equilibrio, la supera y pasa por =.3m de manera que es ese instante ha completado un ciclo completo, es decir, está en el mismo lugar en el que empezó y va a iniciar otro ciclo idéntico al anterior. La partícula ha tardado 8 segundos en completar el ciclo. La representación matemática de un MAS también se puede expresar en función del coseno e incluso un mismo MAS admite las dos representaciones mediante los cambios: = A sen ωt = A cos ( + ϕ ) = A cos ωt + ϕ = A cos( ωt + ϕ' ) ( ωt + ϕ ) = A sen ωt + ϕ + = A sen( ωt + ϕ' ) π π.3. Cinemática del MAS Se ha visto en el apartado anterior que la posición de un móvil que tiene un MAS se puede expresar de forma general mediante: = A sen( ωt + ϕ ) Sabiendo que la velocidad de cualquier móvil se puede calcular mediante la derivada de la posición y teniendo en cuenta que, al ser el movimiento es rectilíneo, queda definido por una sola coordenada: d v(t) = dt Sustituyendo y operando se obtiene: v(t) = A ω cos ( ωt + ϕ ) expresión que permite calcular la velocidad del móvil en cualquier instante. Se considerarán las velocidades positivas en el sentido izquierda derecha (o abajo arriba) y las negativas en el contrario. Tema -4

5 Colegio Sagrado Corazón Aplicando a la expresión anterior la definición de aceleración para movimientos rectilíneos: dv(t) a(t) = dt se obtiene: a(t) = Aω sen ωt a(t) = ω ( + ϕ ) El signo de la aceleración sigue el mismo criterio que el de la velocidad. Todas las expresiones anteriores cambian si la ecuación de la posición está expresada por la función coseno: x v () t = A cos( ωt + ϕ ) () t = A ω sen( ωt + ϕ ) a(t) = A ω cos ( ωt + ϕ ) = ω Como se puede observar la aceleración es proporcional a la elongación y de sentido contrario. Esta condición se tiene que cumplir en cualquier MAS. La figura.3 están representadas la posición, la velocidad y la aceleración de un móvil que describe un MAS. Por simplicidad se ha supuesto que la fase inicial sea nula, de manera que en el instante inicial el móvil está pasando por el origen, su velocidad es máxima y su aceleración es nula (ya que en la posición de equilibrio la fuerza recuperadora vale cero). El análisis detallado del movimiento consiste en describir en diferentes puntos el estado de vibración, es decir, la posición, velocidad y aceleración. (a) El móvil llega a un extremo de su trayectoria [=A], y en ese punto su velocidad es cero porque se detiene para volver. La aceleración es máxima porque está en el extremo de la trayectoria, donde la fuerza recuperadora es máxima. (b) El móvil está retornando al origen y su velocidad está aumentando. La velocidad es negativa para indicar el sentido de la misma. La aceleración está disminuyendo porque la fuerza va siendo menor conforme el móvil se aproxima a la posición de equilibrio. (c) El móvil está pasando por el origen, su velocidad es máxima y la aceleración es nula porque no hay fuerza recuperadora. (d) El móvil se va acercando a [ A] y su velocidad va disminuyendo porque la aceleración lleva sentido contrario a la misma. La aceleración aumenta conforme el móvil se acerca al extremo de su trayectoria. Tema -5

6 Tema : Movimiento Armónico Simple Física º Bachillerato v(t) a(t) a) b) c) d) Figura.3. Posición, velocidad y aceleración de un MAS Las tres gráficas representan: - la primera la elongación que oscila entre +A y A, se mide en m; - la segunda la velocidad, que varía entre +Aω y Aω y se mide en m/s; - la tercera es la aceleración, que toma valores entre +Aω y Aω y se mide en m/s..4 Dinámica del MAS Como ya se ha dicho, en los movimientos oscilatorios existe una fuerza recuperadora que es la que origina el movimiento. Si se aplica la ley fundamental de la dinámica al movimiento armónico simple de una partícula se obtiene lo siguiente: Tema -6

7 Colegio Sagrado Corazón F = ma F = m ( ω x) F = mω x F = C x Del resultado obtenido se extraen las características de la fuerza recuperadora.. Siempre apunta a la posición de equilibrio, ya que los signos de x y F son contrarios.. Es nula en la posición de equilibrio (x=) y máxima en los extremos (x=±a). 3. Es directamente proporcional a la elongación y de sentido contrario. 7 F r x(+) F(-) 5 6 F r máx F r x(+) F(-) F r x(-) F(+) F r 4 t F r máx 3 Figura.3. Sentido de la fuerza recuperadora.5 Energía del MAS Se ha visto ya cómo en los movimientos oscilatorios existen fuerzas y desplazamientos, por lo tanto, las fuerzas recuperadoras deben realizar trabajo sobre la masa que oscila. Las fuerzas recuperadoras suelen ser elásticas o gravitatorias por lo tanto son conservativas, lo que significa que existe una energía potencial asociada a los movimientos del oscilador. Además, la velocidad del oscilador varía entre cero y un valor máximo, por lo que existen variaciones de energía cinética. En estos movimientos tiene lugar una transformación continua entre energía cinética y energía potencial. La energía cinética del oscilador armónico simple se puede calcular partiendo de la expresión general de la energía cinética sustituyendo la velocidad del MAS: Tema -7

8 Tema : Movimiento Armónico Simple Física º Bachillerato Ec = mv Ec = m A Ec = mω ( ω cos( ωt + ϕ )) ( A A sen ( ωt + ϕ )) con lo que se obtiene la expresión de la energía cinética del oscilador: Ec = mω ( A x ) La energía mecánica del oscilador es la suma de la energía cinética más la energía potencial. Sabemos que en la posición de equilibrio (x=), la velocidad es máxima, por lo que la energía cinética debe ser máxima y la potencial nula. En este caso: Em = mω A La expresión de la energía potencial se obtiene a partir de la diferencia entre la energía mecánica y la cinética. Ep = Em Ec Ep = mω A mω Ep = mω x ( A x ) La representación gráfica de las tres energías sería: E Em Ep Ec A -6 x A 6 Figura.4. Representación de las energías cinética, potencial y mecánica en un oscilador armónico. Tema -8

9 Colegio Sagrado Corazón Las transferencias de energía tienen lugar del siguiente modo: cuando la partícula se va aproximando al extremo de la trayectoria va perdiendo velocidad y, por lo tanto, la energía cinética va disminuyendo. Al mismo tiempo la energía potencial aumenta al alejarse la partícula de la posición de equilibrio, ya que la fuerza se va haciendo mayor. Cuando se alcanza el extremo la partícula se detiene y, durante ese instante, su energía cinética se anula mientras que la energía potencial es máxima. A medida que la partícula se vuelve a acercar a la posición de equilibrio aumenta su velocidad (ya que la fuerza actúa en el sentido del movimiento) y por lo tanto también aumenta su energía cinética, mientras que disminuye su energía potencial. En la posición de equilibrio, la velocidad es máxima, por lo que la energía cinética es máxima, y la energía potencial es nula porque no actúan las fuerzas recuperadoras. Durante todo el movimiento la energía está continuamente transformándose de cinética a potencial y viceversa pero el valor total permanece constante ya que no se tienen en cuenta las fuerzas de rozamiento. Posición E c E p Posición de equilibrio Máxima; al ser la velocidad máxima Nula; al no haber fuerzas Extremos Nula; al estar en reposo Máxima; al ser nula la velocidad Puntos intermedios Intermedia Intermedia En todo caso la suma E c +E p es constante ya que la energía mecánica se conserva En los osciladores amortiguados la energía no se conserva porque actúan fuerzas de rozamiento que van restando energía al sistema, y las oscilaciones son cada vez menores hasta que finalmente el oscilador se detiene..6 Aplicación al caso del resorte Un ejemplo muy frecuente de MAS es el caso de una masa m conectada a un muelle de constante elástica k que oscila en un plano horizontal. Los resultados obtenidos son plenamente aplicables al caso de la masa suspendida del muelle y las oscilaciones sean verticales. Figura.5. Sistema muelle-masa oscilante Tema -9

10 Tema : Movimiento Armónico Simple Física º Bachillerato Dado que el movimiento tiene lugar en una sola dimensión se prescinde del carácter vectorial y se emplearán solamente las expresiones escalares. La fuerza que ejerce el muelle sobre la masa vale: F = kx Aplicando la ley fundamental de la dinámica se obtiene: F = kx = ma kx = m( ω x) ω = k m Aplicando la conocida relación entre pulsación y periodo se puede obtener la relación entre el periodo (T) y las características del sistema (k y m) y comprobar cómo el periodo de oscilación depende únicamente de la masa y de la constante elástica del muelle. π k ω = = T = π T m m k Para calcular la energía del oscilador se sustituye la expresión de la frecuencia angular en las expresiones obtenidas en el apartado anterior y se obtiene para la energía cinética: E c = k ( A x ) para la energía mecánica: E = m ka y para la energía potencial: E = p kx Tema -

11 Colegio Sagrado Corazón Relación de ejercicios ECUACIÓN GENERAL DEL MAS. Comprueba qué valores se obtienen en la expresión π = A sen t (S.I.) T para los valores de tiempo, T/4, T/, 3T/4, y T. Explica ayudándote de una gráfica dichos valores. Sol. x() = m, x(t/4) = A, x(t/) =, x(3t/4) = A, x(t)=m.. Una partícula oscila con un MAS de 3cm de amplitud. Determina la fase inicial sabiendo que en el instante inicial estaba 6cm a la derecha del origen. Sol. ϕ =.rad 3. La fase inicial de una partícula que describe un MAS es.35rad. Determina la amplitud si inicialmente la partícula está en la posición x()=.m. Sol. A =.58m 4. La ecuación de un MAS es la siguiente: = cos (45t +.5) (S.I.) calcula: la amplitud, el periodo, la frecuencia lineal, la frecuencia angular y la fase inicial. Sol. A = m, T =.4s, f = 7.6Hz, ω = 45 rad/s, ϕ =.5 rad. 5. Representa en un gráfico el valor de la elongación (eje vertical) frente al tiempo (eje horizontal) para el siguiente MAS. = 3 cos(πt) (S.I.) Usa el intervalo t [s, 4s] 6. Calcula la amplitud, el periodo, la fase inicial, la fase y la frecuencia del siguiente MAS: = 3 sen (6t+) (S.I.) Sol. A = 3m, T =.5s, f =.95Hz, ω = 6rad/s, ϕ = rad. 7. Una partícula inicia un MAS en el extremo izquierdo de su trayectoria y tarda.s en ir al centro de la misma. Si la distancia entre ambas posiciones es cm calcula la posición de la partícula tras s y.7s de iniciar el movimiento. Sol. x() =.m, x(.7) =.6m. CINEMÁTICA DEL MAS. 8. a) Demuestre que en un oscilador armónico simple la aceleración es proporcional al desplazamiento pero de sentido contrario. b) Una partícula realiza un movimiento armónico simple sobre el eje OX y en el instante inicial pasa por la posición de equilibrio. Escriba la ecuación del movimiento y razone cuándo es máxima la aceleración. 9. Calcular las expresiones de la posición, velocidad y la aceleración de una partícula que se mueve con un M.A.S. de mm de amplitud y Hz de frecuencia. Calcular el valor de dichas magnitudes en el instante t= s. Sol. = sen(4πt), v(t) =.4π cos(4πt), a(t) = 6π sen(4πt), x( ) =.95m, v( ) =.39m/s, a( ) = 5.848m/s.. Una masa oscila con un M.A.S. entre dos puntos separados 5m. Si tarda 4s en ir de un extremo a otro y en el instante inicial estaba a.5m hacia la derecha de la posición de equilibrio, calcular las ecuaciones que rigen el movimiento, la velocidad y la aceleración. π π π Sol. x () t =.5 sen t +.5, v() t =.96 cos t +.5, a() t =.5 sen t Cómo cambiaría la solución del problema anterior si la masa estuviera a la izquierda de la posición inicial? Tema -

12 Tema : Movimiento Armónico Simple Física º Bachillerato. Calcula la expresión del MAS correspondiente a un movimiento que tarda 3s en ir de un extremo al otro de la trayectoria si la distancia entre extremos es cm y en el instante inicial el móvil está a 3cm del extremo de la izquierda. Calcula, además, la velocidad y la aceleración máximas. π Sol. x () t =.5 sen t. 4, v máx =.5m/s, a máx =.55m/s a) Qué características debe tener una fuerza para que al actuar sobre un cuerpo le produzca un movimiento armónico simple? b) Represente gráficamente el movimiento armónico simple de una partícula dado por: y = 5 cos ( t + π/ ) (S I) y otro movimiento armónico que tenga una amplitud doble y una frecuencia mitad que el anterior. 4. Demuestra que en un MAS la velocidad se puede calcular mediante la expresión: v = ω ENERGÍA DEL MAS. 5. Supóngase que se duplica la amplitud de un MAS. Qué ocurre con las siguientes magnitudes? Frecuencia, periodo, velocidad máxima, energía total. 6. Indique si son verdaderas o falsas las siguientes afirmaciones, razonando las respuestas: a) Si la aceleración de una partícula es proporcional a su desplazamiento respecto de un punto y de sentido opuesto, el movimiento de la partícula es armónico simple. b) En un movimiento armónico simple la amplitud y la frecuencia aumentan si aumenta la energía. 7. A a) Represente gráficamente las energías cinética, potencial y mecánica de una partícula que vibra con movimiento armónico simple. b) Se duplicaría la energía mecánica de la partícula si se duplicase la frecuencia del movimiento armónico simple? Razone la respuesta. 8. Una partícula de,kg describe un movimiento armónico simple a lo largo del eje x, de frecuencia Hz. En el instante inicial la partícula pasa por el origen, moviéndose hacia la derecha, y su velocidad es máxima. En otro instante de la oscilación la energía cinética es,j y la energía potencial es,6j. a) Escriba la ecuación de movimiento de la partícula y calcule su aceleración máxima. b) Explique, con ayuda de una gráfica, los cambios de energía cinética y de energía potencial durante una oscilación. Sol. a) =.3 sen(4πt), a máx =355.43m/s. 9. Una partícula describe un movimiento armónico simple de amplitud A y frecuencia f. a) Represente en un gráfico la posición, la velocidad y la aceleración de la partícula en función del tiempo y comente sus características. b) Explique cómo varían la amplitud y la frecuencia del movimiento y la energía mecánica de la partícula al duplicar el periodo de oscilación.. Una partícula de 5g vibra a lo largo del eje X, alejándose como máximo cm a un lado y a otro de la posición de equilibrio (x = ). El estudio de su movimiento ha revelado que existe una relación sencilla entre la aceleración y la posición que ocupa en cada instante: a = -6 π x. a) Escriba las expresiones de la posición y de la velocidad de la partícula en función del tiempo, sabiendo que este último se comenzó a medir cuando la partícula pasaba por la posición x = cm. b) Calcule las energías cinética y potencial de la partícula cuando se encuentra a 5 cm de la posición de equilibrio. Sol. a) =. cos (4πt), v(t) =.4π sen(4πt); b) Ep = J, Ec =.96 J. x Tema -

13 Colegio Sagrado Corazón APLICACIÓN AL CASO DEL RESORTE. Cómo se modifica la energía total de un oscilador formado por una masa conectada a un muelle si... a)...se reduce la masa a la mitad? b)...se reduce la constante elástica a la mitad? c)...se reduce la amplitud a la mitad?. Calcular para qué valor de x la energía cinética es igual a la potencial en un sistema masa-muelle. A Sol. x = 3. Un cuerpo de masa.4kg se conecta a un muelle de constante elástica 5Nm. El sistema oscila en la horizontal con una amplitud de 5cm. Calcula: a) La energía total del sistema. b) Las energías cinética y potencial cuando pasa por los puntos P y P situados a.3cm y.3cm de la posición de equilibrio. c) La fuerza que ejerce el muelle en el punto P. d) El periodo de las oscilaciones. Sol. a) Em =.88 J; b) Ep P = Ep P = J, Ec P = Ec P =.48 J; c) F =.35N; d) T =.9s 4. Sobre un plano horizontal sin rozamiento se encuentra un bloque de masa m=kg, sujeto al extremo libre de un resorte horizontal fijo por el otro extremo. Se aplica al bloque una fuerza de 3N, produciéndose un alargamiento del resorte de cm y en esta posición se suelta el cuerpo, que inicia un movimiento armónico simple. a) Escriba la ecuación de movimiento del bloque. b) Calcule las energías cinética y potencial cuando la elongación es de 5cm. Sol. a) =. cos (.5t); b) Ec =.3J, Ep =.38J. 5. Un objeto de,kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de,πs de período y su energía cinética máxima es de,5j. a) Escriba la ecuación de movimiento del objeto y determine la constante elástica del resorte. b) Explique cómo cambiarían las características del movimiento si: i) se sustituye el resorte por otro de constante elástica doble; ii) se sustituye el objeto por otro de masa doble. Sol. a) =. sen(t); k = 8N/m. 6. Un muelle (k=5n/m) conectado a una masa (m=4kg) oscila entre dos puntos separados 5cm. a) Calcular la ecuación que describe el MAS si en el instante inicial la masa está 3cm a la izquierda de la posición de equilibrio. b) Calcular la energía total del sistema y el punto en el que la energía cinética y la potencial valen lo mismo. Sol. a) =.75 sen(.5t.4); b) Em =.7J, x =.53m. 7. Un cuerpo de masa.5kg se conecta a un muelle, se separa 6cm de la posición de equilibrio y se suelta, oscilando con una frecuencia de.8hz. Calcular: a) la constante elástica del muelle; b) el módulo de la velocidad a los s de iniciarse el movimiento; c) el módulo de la velocidad cuando está a cm del extremo derecho de la trayectoria. Sol. a) k =.63N/m; b) v =.8m/s; c) v =.7m/s Tema -3

Movimiento armónico simple

Movimiento armónico simple Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Movimiento armónico simple. Movimiento armónico simple Cuestiones

Movimiento armónico simple. Movimiento armónico simple Cuestiones Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 1. En un movimiento oscilatorio, Qué se entiende por periodo? Y por frecuencia? Qué relación existe entre ambas magnitudes? 2. Una partícula

Más detalles

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. 1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una pared. Si en el instante inicial

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTO ARMÓNICO SIMPLE. MOVIMIENTO ARMÓNICO SIMPLE. JUNIO 1997. 1.- Un cuerpo de masa m = 10 kg describe un movimiento armónico simple de amplitud A = 30 mm y con un periodo de T = 4 s. Calcula la energía cinética máxima de dicho

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo A. Pregunta 2.- Un objeto está unido a un muelle horizontal de constante elástica 2 10 4 Nm -1. Despreciando el rozamiento: a) Qué masa ha de tener el objeto si se desea que oscile con una

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Problemas Movimiento Armónico Simple

Problemas Movimiento Armónico Simple Problemas Movimiento Armónico Simple 1. Una partícula describe un M.A.S de pulsación w=π rad/s. En un instante dado se activa el cronómetro. En ese momento la elongación que tiene un sentido de recorrido

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π ONDAS. 1. Considere la siguiente ecuación de una onda : y ( x, t ) = A sen ( b t - c x ) ; a. qué representan los coeficientes A, b, c? ; cuáles son sus unidades? ; b. qué interpretación tendría que la

Más detalles

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2. MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones 1) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por una

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2010

PRUEBA ESPECÍFICA PRUEBA 2010 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2010 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos. (Cada

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com VIBRACIONES Y ONDAS 1- La ecuación de una onda en una cuerda es: yx,t0,02sen8x96t S.I. a) Indique el significado físico de las magnitudes que aparecen en esa ecuación y calcule el periodo, la longitud

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

Unidad 12: Oscilaciones

Unidad 12: Oscilaciones Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 12: Oscilaciones Movimiento armónico simple: x(t), v(t) y a(t) 10,0 x(t) a(t) 8,0 6,0

Más detalles

1. Las gráficas nos informan

1. Las gráficas nos informan Nombre y apellidos: Puntuación: 1. Las gráficas nos informan Una partícula de 50 g de masa está realizando un movimiento armónico simple. La figura representa la elongación en función del tiempo. 0,6 0,5

Más detalles

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = 10-10 m; v sonido = 340

Más detalles

Tema 8 Trabajo potencia y energía

Tema 8 Trabajo potencia y energía 1. Trabajo Tema 8 Trabajo potencia y energía En física, decimos que hay trabajo cuando una fuerza provoca un desplazamiento En la naturaleza se produce transferencia de energía entre unos sistemas y otros.

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Ejercicio resuelto nº 1 Un electrón penetra perpendicularmente desde la izquierda en un campo magnético uniforme vertical hacia el techo

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1.- Halla la velocidad de propagación de un movimiento ondulatorio sabiendo que su longitud de onda es 0,25 m y su frecuencia es 500 Hz. R.- 125 m/s. 2.- La velocidad del sonido

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través

Más detalles

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2 Examen 2 1. Diga si es cierto o falso y razone la respuesta: La frecuencia con la que se percibe un sonido no depende de la velocidad del foco emisor. 2. Dibujar, superponiendo en la misma figura, dos

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

Movimiento Armónico Simple (M.A.S.)

Movimiento Armónico Simple (M.A.S.) Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios.

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA A) Trabajo de fuerzas constantes y trayectoria rectilínea. Cuando sobre una partícula actúa una fuerza constante, y esta partícula describe una trayectoria rectilínea, definimos trabajo realizado por la

Más detalles

dy v 4 cos 100 t 20 x v a 400 sen 100 t 20 x amax dt

dy v 4 cos 100 t 20 x v a 400 sen 100 t 20 x amax dt Moimientos periódicos 01. Una onda transersal se propaga a lo largo de una cuerda horizontal, en el sentido negatio del eje de abscisas, siendo 10 cm la distancia mínima entre dos puntos que oscilan en

Más detalles

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( ) DESARROLLO DE LA PARTE TEÓRICA DE LA UNIDAD DIDÁCTICA. 1. Cinemática del movimiento armónico simple. Dinámica del movimiento armónico simple 3. Energía del movimiento armónico simple 4. Aplicaciones: resorte

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e Opción A. Ejercicio 1 [a] Eplique el fenómeno de interferencia entre dos ondas. (1 punto) Por una cuerda tensa se propagan dos ondas armónicas: y 1 (, t) = +0, 0 sen( t + 0 ) e y (, t) = 0, 0 sen( t 0

Más detalles

PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO.

PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO. Problemas de Física. 2º de Bachillerato. I.E.L. Curso 2015-2016 1 PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO. ECUACION DEL MOVIMIENTO VIBRATORIO 1 Una partícula de masa m = 20g oscila armónicamente

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 007/008 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple mailto:lortizdeo@hotmail.com 17/10/007 Física ªBachiller 6.- La ecuación de un movimiento armónico es: Movimiento Armónico Simple 1.- La ecuación de un movimiento armónico es: x = 50sen(10t+5). Calcular

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas

Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas Profesor : Eduardo Menéndez Ayudantes : Patricio Figueroa Carolina Gálvez Gabriel Paredes Guía N 5. Movimiento

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Movimiento armónico simple M.A.S. y movimiento circular Slide 2 / 53 Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1 OPCIÓN A Cuestión 1.- Un sistema elástico, constituido por un cuerpo de masa 00 g unido a un muelle, realiza un movimiento armónico simple con un periodo de 0,5 s. Si la energía total del sistema es 8

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 PROYECTO FÍSICA OSCILACIONES JUAN PEDRO BARREIRA ENZO FROGONI MARCELO SANGUINETTI INTRODUCCIÓN En este informe presentamos el estudio de un sistema físico relacionado

Más detalles

Respuesta correcta: c)

Respuesta correcta: c) PRIMER EXAMEN PARCIAL DE FÍSICA I 04/11/016 MODELO 1 1.- La posición de una partícula que se mueve en línea recta está definida por la relación x=t -6t -15t+40, donde x se expresa en metros y t en segundos.

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2012. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio) y otros

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. Conteste razonadamente a las siguientes preguntas: a) Puede asociarse una energía potencial a una fuerza de rozamiento? b) Qué tiene más sentido físico, la energía potencial en un punto o la variación

Más detalles

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS 1.- a.- Un hombre rema en un bote contra corriente, de manera que se encuentra en reposo respecto a la orilla. Realiza trabajo? b.- Se realiza trabajo cuando se

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

EJERCICIOS DE FÍSICA III. MSc. José Fernando Pinto Parra

EJERCICIOS DE FÍSICA III. MSc. José Fernando Pinto Parra Profesor: José Fernando Pinto Parra Ejercicios de Movimiento Armónico Simple y Ondas: 1. Calcula la amplitud, el periodo de oscilación y la fase de una partícula con movimiento armónico simple, si su ecuación

Más detalles

Estática y dinámica de un muelle vertical

Estática y dinámica de un muelle vertical Prácticas de laboratorio de Física I Estática y dinámica de un muelle vertical Curso 2010/11 1. Objetivos Determinación de la constante del muelle. Estudio de un muelle oscilante como ejemplo de movimiento

Más detalles

Opción B ANDALUCÍA CONVOCATORIA JUNIO GM T m s (3R T ) 2 Despejando la velocidad orbital: m s v 0 (3R T ) F g F c

Opción B ANDALUCÍA CONVOCATORIA JUNIO GM T m s (3R T ) 2 Despejando la velocidad orbital: m s v 0 (3R T ) F g F c Física 1 Física SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Opción A a) I 1 B B 1 F 1, F, 1 Vemos que la lente divergente desvía los rayos paralelos al eje óptico y que los rayos que

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico

UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico a) Indica en los siguientes casos si se realiza o no trabajo mecánico: Un cuerpo en caída libre (fuerza de gravedad Un cuerpo apoyado en una meda

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 2014 SOLUCIÓN Pregunta 1 (2 puntos) Un grifo

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

Oscilaciones amortiguadas.

Oscilaciones amortiguadas. PROBLEMAS DE OSCILACIONES. Oscilaciones amortiguadas. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons 3.0, BY-SA (Atribución-CompartirIgual) Problema 1 Un oscilador armónico amortiguado,

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.)

MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) Clase 2-1 Clase 2-2 MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) Cinemática de la Partícula - 1 Clase 2-3 MOVIMIENTOS PERIÓDICOS En la naturaleza hay ciertos movimientos que se producen con asiduidad. Entre ellos

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento

Más detalles