1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y"

Transcripción

1 UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono /Telefax INVESTIGACIÓN DE OPERACIONES I TAREA Problemas de Transporte, transbordo y asignación Prof. : MSc. Julio Rito Vargas Avilés 1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y C = Una posible solución sería enviar 6 unidades del primer origen al segundo destino, 6 unidades del segundo origen al primer destino, 1 unidad del segundo origen al cuarto destino, 3 unidades del tercer origen al segundo destino, 4 unidades del tercer origen al tercer destino y 1 unidad del tercer origen al cuarto destino. Si es posible, obtener la solución optima del problema por el método simplex partiendo de esta solución. 2. Una empresa de plásticos posee dos plantas de producción de bolsas que se transportan a tres fábricas Diferentes de envase. Los costes de transporte por bolsa, los datos de la demanda y disponibilidad son los siguientes: Planta\Fabrica Oferta 1 2 Demanda Plantear, mediante un modelo de programación lineal, el problema de encontrar la forma menos costosa de realizar el transporte. Después, resolverlo por el método simplex de transporte. 3. Una empresa necesita cubrir una demanda contratada de tres productos A, B, C de 230, 260 y 190 unidades semanales, respectivamente. Los productos pueden elaborarse mediante cinco métodos diferentes, cuyas características son las Siguientes: Producción Ganancia neta Método semanal unitaria A B C Formular como un modelo de programación lineal el problema de determinar la producción por cada método que maximice la ganancia neta total. Resolverlo por el método simplex de transporte. 4. Una fábrica de piensos compuestos dispone de tres plantas diferentes de fabricación y cinco almacenes para la distribución mensual. Las cantidades fabricadas en cada planta son de 60, 80 y 90 t. al mes. Las cantidades mensuales solicitadas por los almacenes son 20, 60, 80, 40 y 10 t., respectivamente. La matriz de costes por unidad de transporte es Cuál es el precio mínimo para transportar la demanda solicitada al mes?

2 5. Una empresa dispone de tres almacenes desde donde distribuir sus productos a cuatro tiendas. La distancia en km desde cada almacén a cada una de las tiendas es Cada tienda necesita 100 productos mensuales. El coste de transporte por producto es de 1000 u.m. por embarque más 5 u.m. por km. Resolver por el método simplex de transporte usando método de la esquina noroeste y Vogel. Comparar ambos resultados. 6. Resolver el siguiente problema de transporte Oferta F F F F Demanda Utilizar el método de Vogel, y comenzar con la SBF de menor valor para la función objetivo. 7. Las tarifas aéreas por t. entre siete ciudades son las siguientes: Almacén\Tienda Disponibilidad Ciudad Oferta Demanda Cierta empresa debe embarcar un determinado artículo desde las ciudades 1,2 y 3, hacia las ciudades 4,5,6 y 7. Deben enviarse, respectivamente, 70, 80 y 50 toneladas de las tres primeras ciudades y deben recibirse, respectivamente, 30, 60, 50 y 60 toneladas. en las cuatro últimas. El transporte puede realizarse a través de las ciudades intermedias con un coste igual a la suma de los costes para cada una de las etapas del trayecto. Determinar el plan óptimo de transporte. (Utilize Vogel). 8. Una empresa de transporte debe enviar desde las localidades A y B, 70 y 80 t. de carga, respectivamente, a las localidades X, Y, Z donde deben recibirse 35, 65 y 50 t., respectivamente. Los embarques pueden realizarse a través de puntos intermedios a un coste igual a la suma de los costes de los tramos de la ruta que son: A B X Y Z Oferta A B X Y Z Demanda Resolver por Vogel.

3 9. Cierta compañía posee un centro comercial en cada una de las ciudades 1, 2 y 3. A cada uno de estos centros llegan mensualmente 10 camiones que se enviarán desde dos centros de distribución A y B, los cuales disponen de 15 camiones cada uno. El transporte se realiza por carretera pero como el peso de los camiones supera el límite permitido por la carretera de acceso desde A hasta la ciudad 3, no hay posibilidad de abastecer el centro comercial de la ciudad 3 desde A. Los costes de transporte, por camión, entre los centros de distribución y los centros comerciales vienen expresados en la siguiente tabla: Oferta A B Demanda a) Cómo realizar el transporte para que el coste total sea mínimo? b) En la ciudad 2, se instala en periodo experimental un sistema que permite cambiar cada remolque de camión por un vagón de ferrocarril. Desde 2 hacia 1 y 3 se podría utilizar el transporte por ferrocarril. El centro A decide utilizar este sistema experimental. En principio sólo lo utilizaría el centro A pues existe la sospecha de que se ocasionarían retrasos en los envíos. Necesitas tener en cuenta el coste de transporte por ferrocarril desde 2 hasta 1 y 3 que es de 4 u.m. y 1 u.m. por vagón utilizado, respectivamente. Determinar el número de camiones y vagones que se envían desde cada centro de distribución a cada ciudad, para que el coste del transporte sea mínimo. c) Una vez comprobado que los retrasos no son excesivos el centro B decide estudiar la posibilidad de utilizar, junto con A, el transporte por ferrocarril >Cómo se modifica el coste de transporte? 10. Una compañía manufacturadora tiene un ciclo fijo de demanda cuyo periodo es de una semana. Se sabe que el patrón de demanda es el siguiente: Día L M X J V Unidades La compañía puede producir 10 unidades/día pero no trabaja los miércoles ni los fines de semana. La producción está lista para su venta el mismo día que se produce y se puede almacenar a lo largo de tres días (incluyendo sábados y domingos) a un coste de 4$/unidad/día. El coste de producción es de 5$/unidad. Las demandas no satisfechas llevan consigo una penalización de 3$/unidad los lunes Solamente. Se quiere determinar la planificación de producción que minimice los costes de fabricación y los de almacenamiento. Formular el problema como un problema de transporte y encontrar la solución óptima. 11. Considerar el problema de asignación cuya matriz de costes es la siguiente: Técnico/Trabajo T1 T2 T3 T4 A B C D Resolverlo por el método húngaro.

4 12. Resolver el problema de asignación cuya matriz de costes es A B C D E F G H Considerar el problema de asignar cuatro operadores a cuatro maquinas. Los costes de asignación en unidades monetarias se dan a continuación. El operador 1 no puede asignarse a la maquina 3. También el operador 3 no puede asignarse a la maquina 4. Operador Máquina a) Encontrar la asignación óptima y dar el coste asociado. b) Suponer que se tiene disponible una quinta máquina. Sus costes de asignación respectivos a los cuatro operadores son 2, 1, 2 y 8. La nueva máquina reemplazaría a una existente si la sustitución puede justificarse económicamente. Reformular el problema como un modelo de asignación y encontrar la solución óptima indicando el coste asociado >Es económico reemplazar una de las máquinas? Si es así, cuál de ellas? 14. Un agricultor posee cuatro fincas en las que cultiva en la forma que mejor le parece trigo, melones, tabaco y tomates, con cuya venta obtiene 300, 000 u.m. El agricultor decide implantar el monocultivo en sus fincas pero para poder obtener el mejor resultado contrata a un perito agrícola, que tras analizar las fincas le da la siguiente tabla, en donde se reflejan las cosechas máximas (en toneladas) que puede dar cada finca de cada uno de los productos. Tabaco Melones Trigos Tomate A B C D Si al año siguiente los precios por kg. de los anteriores productos fueron: tomates 10 u.m., tabaco 40 u.m., melones 10 u.m. y trigo 3 u.m., podríamos afirmar que el experimento le resultó ventajoso? Razona la respuesta.

5 15. Un organismo saca a concurso la ejecución de siete proyectos. Al concurso se presentan siete empresas constructoras con las ofertas (en 6000 euros) que se detallan en la tabla siguiente: Proyecto Constructor A B C D E F G

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3.

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3. UNIVERSIDAD DE MANAGUA CURSO: PROGRAMACIÓN LINEAL TAREA # 2 Problemas de Transporte, transbordo y asignación Prof. : MSc. Julio Rito Vargas Avilés III C 2015 1. Considerar el problema de transporte definido

Más detalles

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 1.1 Modelo de transporte Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos TEMA N

Más detalles

Práctica Método Dual simplex y Método de transporte

Práctica Método Dual simplex y Método de transporte Práctica Método Dual simplex y Método de transporte a) Resolver con el método Dual Simplex: 1. Maximizar Z= 2000X1 + 1000X2 3X1 + X2 >= 40 2X1 + 2X2 >= 60 X1 + X2 >= 0 2. Maximizar Z= 5X1 + 6X2 X1 + 9X2

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono /Telefax

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono /Telefax UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES EJERCICIOS PARA RESOLVER Problemas de Transporte y Transborde Profesor:

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1 Un fabricante desea encontrar la producción semanal óptima de los artículos A, B y C para maximizar sus beneficios. Las ganancias por unidad de estos artículos son:

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN

Más detalles

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés.

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. Universidad Nacional de Ingeniería Sede: UNI-Norte II Semestre 2008 Investigación de Operaciones I El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. martes, 21 de octubre de 2008 El Problema

Más detalles

Trabajo Práctico Nº 8: Programación Lineal

Trabajo Práctico Nº 8: Programación Lineal Trabajo Práctico Nº 8: Programación Lineal 1. Utilice el método gráfico para resolver los siguientes problemas: a. Maximizar Z = x1 + x2 x 1 + 5x 2 = 0 b. Maximizar

Más detalles

PROBLEMAS DE PROGRAMACIÓN ENTERA I

PROBLEMAS DE PROGRAMACIÓN ENTERA I Problemas de Programación Entera I 1 PROBLEMAS DE PROGRAMACIÓN ENTERA I 1. Un departamento ha dispuesto 2 millones de pesetas de su presupuesto general para la compra de material informático, con el que

Más detalles

TRANSPORTE Y TRANSBORDO

TRANSPORTE Y TRANSBORDO TRANSPORTE Y TRANSBORDO En ésta semana estudiaremos un modelo particular de problema de programación lineal, uno en el cual su resolución a través del método simplex es dispendioso, pero que debido a sus

Más detalles

Problema 1. Oferta /15/ /20/0 5 40/30/0. Demanda 45/30/10/0 20/0 30/0 30/

Problema 1. Oferta /15/ /20/0 5 40/30/0. Demanda 45/30/10/0 20/0 30/0 30/ Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura UNIDAD III. ANÁLISIS DE REDES OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Modelos de transporte

Más detalles

UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I. Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012

UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I. Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012 UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012 Problemas de PL con varias variables Análisis de Sensibilidad Problema 1: Ken & Larry

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Presentación del Programa de Investigación de Operaciones Estudiantes:

Más detalles

PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015

PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015 PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015 1. (S2015) Un heladero artesano elabora dos tipos de helados A y B que vende cada día. Los helados tipo A llevan 1 gramo de nata

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Investigación de Operaciones I Problemas de Programación Lineal (Solución Gráfica, Analítica, Sensibilidad Y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIC- 2016 Resolver

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

Fundamentos de Investigación de Operaciones Certamen # 2

Fundamentos de Investigación de Operaciones Certamen # 2 Certamen # 2 Profesores: María Cristina Riff & Esteban Sáez 6 de junio de 2003 1. Una pequeña empresa constructora debe construir 3 casas en los próximos 5 meses. Una vez que alguna de las casas está terminada,

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Programación Lineal Encuentro #9 Tema: PROBLEMA DE ASIGNACIÓN Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /201 Objetivos: Resolver problemas de asignación

Más detalles

Práctico N 5 Parte a: Programación lineal

Práctico N 5 Parte a: Programación lineal U.N.C.P.B.A FACULTAD DE INGENIERÍA PROCESOS QUÍMICOS II Práctico N 5 Parte a: Programación lineal Planteo n 1: Supóngase que una compañía fabrica 2 conjuntos xx e yy. Cada unidad de los respectivos productos

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías

Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías Modelos de Transporte: método de la esquina noroeste M. En C. Eduardo Bustos Farías as LA REGLA DE LA ESQUINA NOROESTE 2 Esta regla nos permite encontrar una solución n factible básica b inicial (SFBI),

Más detalles

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías Modelos de Transporte: Problemas de asignación M. En C. Eduardo Bustos Farías as Problemas de Asignación Problemas de Asignación: Son problemas balanceados de transporte en los cuales todas las ofertas

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.

Más detalles

Métodos de distribución

Métodos de distribución Métodos de distribución Ejercicios: 1)Que es una red de distribución. Describa sus componentes. 2)Enuncie las condiciones que debe satisfacer una solución inicial factible básica. 3)Detalle el procedimiento

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Programación Lineal Encuentro #6 Tema: Actividad Práctica de Análisis de Sensibilidad y Dualidad Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos:

Más detalles

El Problema de Transporte

El Problema de Transporte El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Octubre 2008 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el

Más detalles

Práctico No 7 Programación Dinámica

Práctico No 7 Programación Dinámica U.N.C.P.B.A FACULTAD DE INGENIERÍA PROCESOS QUÍMICOS II Práctico No 7 Programación Dinámica Planteo n 1: Supondremos un proceso en tres etapas para cada una de las cuales está definida una función objetivo,

Más detalles

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI Carrera: Ingeniería de Sistemas Nombre de la asignatura: Investigación de Operaciones I Año académico: Tercer año Semestre: Sexto - Contenido I-

Más detalles

UNIDAD II. PROGRAMACIÓN LINEAL

UNIDAD II. PROGRAMACIÓN LINEAL UNIDAD II. PROGRAMACIÓN LINEAL OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Introducción

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

El Problema de Transporte

El Problema de Transporte El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Julio 202 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el cual

Más detalles

ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO. ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL

ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO. ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO TEMA: ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL 1) Un taller fabrica y vende dos tipos de alfombras, de seda y de lana. Para la elaboración de una unidad se necesita

Más detalles

AlumnosA N AlumnosB AlumnosC

AlumnosA N AlumnosB AlumnosC Ejercicios de matrices como expresiones de tablas y grafos: Ejemplo. Sean los grafos siguientes: a) Escriba la matriz de adyacencia asociada a los grafos y de la figura anterior. b) Si las matrices y D

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA PROBLEMAS RESUELTOS DE PROGRAMACIÒN LINEAL POR METODO GRAFICO CON POM-QM. Profesor: MSc. Julio Rito Vargas Avilés Elaborado por: Yucep Gutiérrez Baltodano. Carlos Reynaldo Guevara.

Más detalles

Dirección de Operaciones

Dirección de Operaciones Dirección de Operaciones 1 Sesión No. 9 Nombre: Problemas de transporte y asignación. Primera parte. Objetivo Al finalizar la sesión, el alumno será capaz de Contextualización Cuál es el valor de estudiar

Más detalles

Formule un modelo de programación lineal binaria que minimice la distancia máxima entre un distrito y su respectiva estación.

Formule un modelo de programación lineal binaria que minimice la distancia máxima entre un distrito y su respectiva estación. Profesores: Daniel Espinosa, Roberto Cominetti. Auxiliares: Victor Bucarey, Pablo Lemus, Paz Obrecht. Coordinador: Matías Siebert. IN3701 - Modelamiento y Optimización Auxiliar 2 22 de Marzo de 2012 P1.

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I

PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Julio Rito Vargas Avilés. Método Húngaro: Los problemas de asignación incluyen aplicaciones tales como

Más detalles

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla COLEGIO SANTÍSIMA TRINIDAD Sevilla Dpto de Matemáticas Curso 2009-10 Boletín de Programación Lineal Matemáticas 2º Bach CC.SS. 1. Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas.

Más detalles

{x 3 y 3. Ejercicios. y la función objetivo que hay que maximizar es

{x 3 y 3. Ejercicios. y la función objetivo que hay que maximizar es Ejercicios 1. [S/97]Cada mes una empresa puede gastar, como máximo, un millón de pesetas en salarios y un millón ochocientas mil pesetas en energía (electricidad y gasóleo). La empresa sólo elabora dos

Más detalles

Problemas de PL con varias variables Análisis de Sensibilidad

Problemas de PL con varias variables Análisis de Sensibilidad UNIVERSIDAD NACIONAL DE INGENIERIA UN-NORTE SEDE-ESTELI Asignatura: Investigación de Operaciones I Problemas de PL con varias variables Análisis de Sensibilidad M.C. Ing. Julio Rito Vargas Avilés 1 P.

Más detalles

PLANIFICACIÓN LANZAMIENTO Y PROGRAMACIÓN DE LA FABRICACIÓN

PLANIFICACIÓN LANZAMIENTO Y PROGRAMACIÓN DE LA FABRICACIÓN CAPÍTULO 9: PLANIFICACIÓN LANZAMIENTO Y PROGRAMACIÓN DE LA FABRICACIÓN Página 134 9. PLANIFICACIÓN, LANZAMIENTO Y PROGRAMACIÓN DE LA FABRICACIÓN 9.1 Lote económico de pedido de las piezas fabricadas En

Más detalles

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS 1. Los 400 alumnos de un colegio van a ir de excursión. Para ello se contrata el viaje a una empresa que dispone de 8 autobuses de 40 plazas y 10

Más detalles

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato 4. PROGRAMACIÓN LINEAL 4.1. Introducción 1. Determina las variables, la función objetivo y el conjunto de restricciones de los siguientes problemas de programación lineal: a) En una empresa de alimentación

Más detalles

Introducción a la programación lineal. Modelos

Introducción a la programación lineal. Modelos Introducción a la programación lineal Modelos Antecedentes La producción industrial, el flujo de recursos en una economía a gran escala y las actividades militares son ejemplos de sistemas que envuelven

Más detalles

Esterilización 1 4. Envase 3 2

Esterilización 1 4. Envase 3 2 9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado

Más detalles

Problemas de análisis de sensibilidad

Problemas de análisis de sensibilidad Problemas de análisis de sensibilidad. Considerar el siguiente modelo lineal y la tabla óptima max z = x + x + x x x x x x x sujeto a 0 0 0 8 x + x + x a 0 0 x + x + x 0 a 0 0 x + x + x a 0 0 x, x, x 0.

Más detalles

Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución.

Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución. I.E.S. CASTILLO DE LUNA Programación lineal En un problema de programación lineal con dos variables x; y, se trata de optimizar (hacer máximo o mínimo, según los casos) una función, llamada función objetivo

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Programación Lineal Encuentro #3 Tema: Introducción a la programación lineal Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos: Obtener las

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds PROBLEMA Una empresa dedicada a la fabricación de diferentes artículos, ante la inminente llegada de la estación invernal se plantea establecer su política de fabricación almacenae de estufas de gas para

Más detalles

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6 Programación Lineal 1. Una compañía destiladora tiene dos grados de güisqui en bruto (sin mezclar), I y II, de los cuales produce dos marcas diferentes. La marca regular contiene un 0% de cada uno de los

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL (SELECTIVIDAD)

PROBLEMAS DE PROGRAMACIÓN LINEAL (SELECTIVIDAD) (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 120 euros cada uno. La capacidad máxima diaria de fabricación es de 1000 relojes,

Más detalles

Fundamentos de Investigación de Operaciones Certamen # 1

Fundamentos de Investigación de Operaciones Certamen # 1 Instrucciones: Fundamentos de Investigación de Operaciones Certamen # Profesores: Carlos Castro & Esteban Sáez 30 de abril de 2004 Responda cada pregunta en una hoja separada identificada con nombre y

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal

Más detalles

EJERCISIOS METODO SIMPLEX

EJERCISIOS METODO SIMPLEX EJERCISIOS METODO SIMPLEX 1. Un fabricante produce dos modelos de de equipos de pruebas M1 M2, que requieren de 3 etapas principales para su manufactura. Estos requerimientos, el beneficio obtenido al

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN)

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN) UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Ing. Julio Rito Vargas Avilés (SOLUCIÓN) I. Representar gráficamente la región determinada

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Práctica N o 1 Modelos de Programación Lineal

Práctica N o 1 Modelos de Programación Lineal Práctica N o 1 Modelos de Programación Lineal 1.1 Un fabricante produce dos modelos de de equipos de pruebas M 1 M 2, que requieren de 3 etapass principales para su manufactura. Estos requerimientos, el

Más detalles

Paquete 2. Nuevo precio de venta de euros la unidad. Creación de otra marca para el producto.

Paquete 2. Nuevo precio de venta de euros la unidad. Creación de otra marca para el producto. ECONOMÍA Y ORGANIZACIÓN 2º BACHILLERATO. PROBLEMAS DE PUNTO MUERTO 1.- Una empresa fabrica un producto cuyo precio de venta es de750 unidades monetarias la unidad. La empresa fabrica y vende en un año

Más detalles

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30 1.- Dado el siguiente problema mín Z = 8x 1 + 9x + 7x 3 s. a: x 1 + x + x 3 40 x 1 + 3x + x 3 10 x 1 + x x 3 30 x 1 0, x 0, x 3 0 A) Plantear el problema dual y escribir las condiciones de la holgura complementaria

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UC3M Curso 08/09 1. Una compañía de transporte dispone de 10 camiones con capacidad de 40000 libras y de 5 camiones con

Más detalles

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250 EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 3, 0 y 40 millones

Más detalles

A 2 E 4 I. Las cámaras situadas en puntos capaces de vigilar 2, 3 y 4 zonas cuestan 5, 7 y 8 unidades monetarias,

A 2 E 4 I. Las cámaras situadas en puntos capaces de vigilar 2, 3 y 4 zonas cuestan 5, 7 y 8 unidades monetarias, Programación Lineal Entera / Investigación Operativa 1 MODELIZACIÓN Y RESOLUCIÓN CON SOLVER. Hoja 3 Para los siguientes problemas, se pide: 1. Plantear el correspondiente modelo de Programación Lineal

Más detalles

LP Problems. M. En C. Eduardo Bustos Farías

LP Problems. M. En C. Eduardo Bustos Farías LP Problems M. En C. Eduardo Bustos Farías 2 Solution Decision Variables 4 Objective function 5 Constraints onstraint 3. Amount of raw material purchased determines the amount of Brute and hanelle that

Más detalles

Problema 1. Problema 1. Problema 1. Problema 1. Problema 1. Modelos Lineales

Problema 1. Problema 1. Problema 1. Problema 1. Problema 1. Modelos Lineales Modelos Lineales ANALISIS DE SENSIBILIDAD PROTAC Inc. produce dos líneas de maquinaria pesada. Una de sus líneas de productos, llamada equipo de excavación, se utiliza de manera primordial en aplicaciones

Más detalles

Programación Lineal Entera.

Programación Lineal Entera. Fundamentos de Investigación de Operaciones. S2/2003 Programación Lineal Entera. 1. El consejo directivo de la General Wheels Co. Está considerando siete grandes inversiones de capital. Estas inversiones

Más detalles

UNIDAD 5. Problema de Transporte

UNIDAD 5. Problema de Transporte UNIDAD 5 Problema de Transporte En matemáticas y economía, un problema de transporte es un caso particular de problema de programación lineal en el cual se debe minimizar el coste del abastecimiento a

Más detalles

Listado de Trabajo TRANSPORTE

Listado de Trabajo TRANSPORTE Listado de Trabajo TRANSPORTE Problema 1 Una compañía de servicios Informáticos, recibe pedidos de sus productos desde tres diferentes ciudades, en las siguientes cantidades: La ciudad A pide 18 Pc portatiles.

Más detalles

PONENCIA UNIVERSIDAD-MATEMÁTICAS APLICADAS 2º BACHILLERATO SOCIALES

PONENCIA UNIVERSIDAD-MATEMÁTICAS APLICADAS 2º BACHILLERATO SOCIALES PONENA UNVERSDAD-MATEMÁTAS APLADAS º BALLERATO SOALES Algunos ejemplos de ejercicios de matrices como expresiones de tablas y grafos: Ejemplo. Sean los grafos siguientes: a) Escriba la matriz de adyacencia

Más detalles

Investigación de Operaciones 1

Investigación de Operaciones 1 Investigación de Operaciones 1 Clase 4 Pablo Andrés Maya Mayo, 2014 Pablo Andrés Maya () Investigación de Operaciones 1 Mayo, 2014 1 / 10 Problema de portafolio La Universidad dispone de un presupuesto

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

Ejercicios de optimización

Ejercicios de optimización Ejercicios de optimización 1. Calcular los extremos locales de las siguientes funciones: i)f(x,y)=(x 1) 2 +y 2 ii)f(x,y)=x 4 +y 2 +4x iii)f(x,y)=xy iv)f(x,y)=2x 2 y 2. Consideremos las tres funciones:

Más detalles

Ciencias Básicas y Matemáticas

Ciencias Básicas y Matemáticas UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR DEPARTAMENTO ACADÉMICO DE SIS COMPUTACIONALES INGENIERÍA EN TECNOLOGÍA COMPUTACIONAL ASIGNATURA Investigación de Operaciones ÁREA DE Ciencias Básicas y Matemáticas

Más detalles

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION.

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION. UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA DE LA PRODUCCIÓN INGENIERÍA INDUSTRIAL SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE

Más detalles

Programación Lineal y Optimización Segundo Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Agosto-Diciembre 2011

Programación Lineal y Optimización Segundo Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Agosto-Diciembre 2011 Matrícula: Nombre: Programación Lineal y Optimización Segundo Examen Parcial Respuesta: : Profr. Eduardo Uresti, Agosto-Diciembre 2011 1. Suponga que tiene una empresa que produce tres tipos de productos

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles

Práctica N 6 Modelos de Programación Lineal Entera

Práctica N 6 Modelos de Programación Lineal Entera Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes

Más detalles

Porcil : 50% proteínas, 30% hidratos de carbono, 20% grasas. Megacerdina : 10% proteínas, 80% hidratos de carbono, 10% grasas.

Porcil : 50% proteínas, 30% hidratos de carbono, 20% grasas. Megacerdina : 10% proteínas, 80% hidratos de carbono, 10% grasas. 1. Supongamos una granja de ganado porcino en la cual se funciona con dos tipos de piensos: Porcil y Megacerdina. Las composiciones de dichos piensos son: Porcil : 5% proteínas, 3% hidratos de carbono,

Más detalles

Universidad de Managua Curso de Programación Lineal

Universidad de Managua Curso de Programación Lineal Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES

Más detalles

Programación Lineal y Optimización Segundo Examen Parcial Profr. Eduardo Uresti, enero-mayo 2013

Programación Lineal y Optimización Segundo Examen Parcial Profr. Eduardo Uresti, enero-mayo 2013 Programación Lineal y Optimización Segundo Examen Parcial Profr. Eduardo Uresti, enero-mayo 2013 Matrícula: Nombre: NO HAGA MÁS DE 105 PUNTOS 1. Suponga que tiene una empresa que produce tres tipos de

Más detalles

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL.

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. 1º/ Un taller de fabricación de muebles de oficina dispone de 700 kg de hierro y 1000 kg de alumnio para la producción de sillas y sillones metálicos. Cada silla

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE PROBLEMA DE FLUJO DE COSTO MINIMO. 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Componentes de la Programación Lineal

Componentes de la Programación Lineal Programación Lineal El desarrollo actual de la Programación Lineal para los negocios y la industria se debe al Dr. George Dantzig. Dantzig presentó su Método Simplex (1947) para resolver este tipo de problemas.

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN

NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN CODIGO: 092-4883 HORAS SEMANALES 4 HORAS TEORICAS: 2 UNIVERSIDAD DE ORIENTE COMISIÓN CENTRAL DE CURRÍCULA PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA:

Más detalles

POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE SEPTIEMBRE DE 2002.

POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE SEPTIEMBRE DE 2002. POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE SEPTIEMBRE DE 2002. Problema 1 (3,5 puntos): Un agricultor tiene posee 100 hectáreas para cultivar trigo y alpiste. El costo de la

Más detalles

El fabricante desea planificar el proceso de producción y para ello establece las siguientes metas ordenadas por orden de importancia:

El fabricante desea planificar el proceso de producción y para ello establece las siguientes metas ordenadas por orden de importancia: Titulación: Ingeniero en Organización Industrial Asignatura: Investigación Operativa Curso: 2010/2011 RECOPILACIÓN EXÁMENES PRÁCTICAS Programación Multiobjetivo 1. [JUNIO 2010] (4.5 puntos) En el proceso

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

MAXIMOS Y MINIMOS DE FUNCIONES DE DOS VARIABLES

MAXIMOS Y MINIMOS DE FUNCIONES DE DOS VARIABLES UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS, ADMINISTRATIVAS Y CONTABLES DEPARTAMENTO DE MÉTODOS CUANTITATIVOS Métodos Cuantitativos IV MAXIMOS Y MINIMOS DE FUNCIONES DE DOS

Más detalles

EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL

EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (001-M1;Sept-B-1) (3 puntos) Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no

Más detalles

SOLVER PLANTEAR EL SIGUIENTE EJERCICIO CON SUS PASOS A SEGUIR Y DISEÑAR UN MODELO MATEMATICO CON SUS RESPECTIVAS FUNCIONES

SOLVER PLANTEAR EL SIGUIENTE EJERCICIO CON SUS PASOS A SEGUIR Y DISEÑAR UN MODELO MATEMATICO CON SUS RESPECTIVAS FUNCIONES SOLVER PLANTEAR EL SIGUIENTE EJERCICIO CON SUS PASOS A SEGUIR Y DISEÑAR UN MODELO MATEMATICO CON SUS RESPECTIVAS FUNCIONES 1. Analizar el problema ya que se tiene que realizar 2 tablas una para plantear

Más detalles

MODELOS DE PROGRAMACIÓN LINEAL I. Juan Antonio Torrecilla García

MODELOS DE PROGRAMACIÓN LINEAL I. Juan Antonio Torrecilla García MODELOS DE PROGRAMACIÓN LINEAL I 2.1. Construcción del Modelo P.L. 2.2. Solución Gráfica. 2.3. El Método SIMPLEX. 2.1. Construcción del Modelo P.L. MODELADO: EJEMPLO Una empresa fabrica dos tipos de cinturones

Más detalles

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN. Asignación y Transporte

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN. Asignación y Transporte Asignación y Transporte Objetivo: Utilizar modelos matemáticos para la solución de problemas que contemplen la asignación y transporte. Introducción: La metodología de asignación y transporte está relacionada

Más detalles