ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009"

Transcripción

1 ELO211: Sistemas Digitales Tomás Arredondo Vidal 1er Semestre 2009 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz. Prentice Hall, 1994, 2005 material del curso ELO211 del Prof. Leopoldo Silva material en el sitio 3: Canónicas 1

2 3-Formas Canonicas 3.1 Expresiones canónicas: minterminos y maxterminos 3.2 Expansión a las formas canónicas 3.3 Síntesis de las formas canónicas 3.4 Diseño lógico y simplificación 3: Canónicas 2

3 Expresiones Canónicas Existen dos formas básicas de expresiones canónicas que pueden ser implementadas en dos niveles de compuertas: suma de productos o expansión de minterminos producto de sumas o expansión de maxterminos Permiten asociar a una función una expresión algebraica única La tabla de verdad también es una representación única para una función booleana 3: Canónicas 3

4 Suma de productos También conocida como expansión de minterminos F = F = A B C + A BC + AB C + ABC + ABC A B C F F F = A B C + A BC + AB C 3: Canónicas 4

5 Suma de productos Términos son productos (o minterms) productos AND de literales para las combinacion de input para los que el output es verdad en cada producto cada variable aparece exactamente una ves (puede estar invertida) A B C minterms A B C m A B C m A BC m A BC m AB C m AB C m ABC m ABC m7 forma corta de escribir minterms (ejemplo de 3 terminos o 2 3 = 8 minterms) F en forma canónica: F(A, B, C) = Σm(1,3,5,6,7) = m1 + m3 + m5 + m6 + m7 = A B C + A BC + AB C + ABC + ABC forma canónica forma minima F(A, B, C) = A B C + A BC + AB C + ABC + ABC = (A B + A B + AB + AB)C + ABC = ((A + A)(B + B))C + ABC = C + ABC = ABC + C = AB + C 3: Canónicas 5

6 Producto de sumas También conocida como expansión de maxterminos A B C F F F = F = (A + B + C) (A + B + C) (A + B + C) F = (A + B + C ) (A + B + C ) (A + B + C ) (A + B + C) (A + B + C ) 3: Canónicas 6

7 Producto de sumas Términos son sumas (o maxterminos) suma OR de literales para las combinacion de input para los que el output es falso en cada producto cada variable aparece exactamente una ves (puede estar invertida) A B C maxterms A+B+C M A+B+C M A+B +C M A+B +C M A +B+C M A +B+C M A +B +C M A +B +C M7 F en forma canónica: F(A, B, C) = ΠM(0,2,4) = M0 M2 M4 = (A + B + C) (A + B + C) (A + B + C) forma canónica forma minima F(A, B, C) = (A + B + C) (A + B + C) (A + B + C) = (A + B + C) (A + B + C) (A + B + C) (A + B + C) = (A + C) (B + C) forma corta de escribir minterminos (ejemplo de 3 términos o 2 3 = 8 minterminos) 3: Canónicas 7

8 Conversión entre formas canónicas Es posible convertir entre ambas formas canónicas Para n variables (0 i 2 n -1) m i = M i M i = m i m i = M i M i = m i 3: Canónicas 8

9 Conversión entre formas canónicas Suma de productos F = A B C + A BC + AB C Usando de Morgan s: f (X1,X2,...,Xn,0,1,+, ) = f(x1,x2,...,xn,1,0,,+) (F ) = (A B C + A BC + AB C ) F = (A + B + C) (A + B + C) (A + B + C) Producto de sumas F = (A + B + C ) (A + B + C ) (A + B + C ) (A + B + C) (A + B + C ) Usando de Morgan s (F ) = ( (A + B + C )(A + B + C )(A + B + C )(A + B + C)(A + B + C ) ) F = A B C + A BC + AB C + ABC + ABC 3: Canónicas 9

10 Conversión entre formas canónicas Conversión de minterminos a maxterminos usar maxterminos cuyos índices no aparecen en expansión de minterminos e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4) Conversión de maxterminos a minterminos usar minterminos cuyos índices no aparecen en expansión de maxterminos e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7) Conversión de expansión de minterminos de F a F usar minterminos cuyos índices no aparecen e.g., F(A,B,C) = Σm(1,3,5,6,7) F (A,B,C) = Σm(0,2,4) Conversión de expansión de maxterminos de F a F usar maxterminos cuyos índices no aparecen e.g., F(A,B,C) = ΠM(0,2,4) F (A,B,C) = ΠM(1,3,5,6,7) 3: Canónicas 10

11 Implementaciones alternativas en dos niveles Ejemplo: F=ab+c A B C F1 suma de productos suma de productos minimizada F2 F3 producto de sumas producto de sumas minimizada F4 3: Canónicas 11

12 Señales para las cuatro alternativas Esencialmente idénticas excepto por perturbaciones retardos son muy similares otros ejemplos mas adelante 3: Canónicas 12

13 3-Formas Canonicas 3.1 Expresiones canónicas: minterminos y maxterminos 3.2 Expansión a las formas canónicas 3.3 Síntesis de las formas canónicas 3.4 Diseño lógico y simplificación 3: Canónicas 13

14 Expansión a las formas canónicas Cualquier función booleana puede ser representada en forma canónica. El proceso de obtener la forma canónica se denomina expansión Un método directo consiste en obtener la tabla de verdad, y luego identificar los mintérminos o los maxtérminos Otra posibilidad, que se estudia a continuación, es mediante un desarrollo algebraico basado en los postulados y teoremas del álgebra de Boole 3: Canónicas 14

15 Expansión a suma de productos Basado en el uso repetitivo del teorema de unificación: a = ab + ab Ejemplo: f(a, b, c) = a + bc + abc Término a: a = ab + ab = (ab + ab )c + (ab + ab )c = abc + ab c + abc + ab c Término bc : = m 7 + m 5 + m 6 + m 4 bc = abc + a bc = m 6 + m 2 Entonces, f(a, b, c) = m 2 + m 4 + m 5 + m 6 + m 7 3: Canónicas 15

16 Expansión a productos de sumas Basado en el uso repetitivo del teorema de unificación: a = (a + b)(a + b ) Ejemplo: f(a, b, c) = (a + b)(b + c ) Término (a+b): (a+b) = (a+b+c)(a+b+c ) = M 0 M 1 Término (b+c ): (b+c ) = (a+b+c )(a +b+c ) = M 1 M 5 Entonces, f(a, b, c) = M 0 M 1 M 5 3: Canónicas 16

17 3-Formas Canonicas 3.1 Expresiones canónicas: minterminos y maxterminos 3.2 Expansión a las formas canónicas 3.3 Síntesis de las formas canónicas 3.4 Diseño lógico y simplificación 3: Canónicas 17

18 Síntesis usando suma de productos Dada una función mediante una suma de productos, ésta puede implementarse usando un OR de AND's Ejemplo: implementación en dos niveles de f(a, b, c, d) = ab + cd, se logra directamente 3: Canónicas 18

19 Síntesis usando suma de productos Una red es de n niveles, cuando una señal de entrada debe pasar a través de n compuertas para llegar a la salida. La señal de entrada que recorra más compuertas hasta llegar a la salida, es la que define la cantidad de niveles; el recorrido se denomina ruta crítica y define el retardo de propagación de la red. Debe notarse que se considera que se dispone de entradas invertidas (e.g. b ) ya que si sólo se dispone de variables (e.g. b) se requiere un nivel adicional. 3: Canónicas 19

20 Síntesis usando suma de productos También puede implementarse usando solamente compuertas NAND Ejemplo: f = ab +cd 3: Canónicas 20

21 Síntesis usando suma de productos La técnica anterior se denomina método de doble complementación: Se puede visualizar en forma gráfica según: El siguiente es el equivalente grafico del Teorema de De Morgan: 3: Canónicas 21

22 Conversión de producto de sumas a suma de productos Si tenemos una función de tipo producto de sumas se puede convertir usando doble complementación en suma de productos A B C D f A B C D f Aplicando De Morgan y complementando: A B C D A f B f C D 3: Canónicas 22

23 Conversión de producto de sumas a suma de productos Hay que notar que la implementación como suma de productos tiene todas las variables de entrada y salida complementadas respecto a su forma inicial. También se puede convertir una expresión de tipo suma de productos a la forma producto de sumas al cambiar los ANDs del primer nivel por ORs y en el segundo nivel los ORs por ANDs además de complementar variables de entrada y salida. 3: Canónicas 23

24 3-Formas Canonicas 3.1 Expresiones canónicas: minterminos y maxterminos 3.2 Expansión a las formas canónicas 3.3 Síntesis de las formas canónicas 3.4 Diseño lógico y simplificación 3: Canónicas 24

25 Diseño lógico: fan-in y fan-out Las compuertas lógicas tienen ciertas características concretas dadas por su implementación física. Dos de ellas son el fan- in y el fan- out. Fan- in es el numero de circuitos o compuertas de entrada (e.g. de dos entradas) que puede soportar una compuerta. Una compuerta con un fan- in mayor tienden a ser mas lentas por que se incrementa la capacitancia de la compuerta. 3: Canónicas 25

26 Diseño lógico: fan-in y fan-out Fan- out es el numero de compuertas que pueden ser alimentadas o comandada por una salida de la compuerta. Un mayor numero de niveles en un circuito causa que este tenga un comportamiento mas lento ya que la conmutación debe propagarse a través de mas compuertas. Un menor numero de niveles requiere compuertas con un mayor fan- in lo que generalmente implica ocupar mas pastillas en la implementación. 3: Canónicas 26

27 Funciones incompletamente especificadas Ejemplo: Numero binarios codificados (BCD) incrementado por 1 BCD codifica números decimales 0 9 en los patrones de bits A B C D W X Y Z X X X X X X X X X X X X X X X X X X X X X X X X off-set de W on-set de W don t care (DC) set d W estos patrones de input nunca se deberían encontrar en la practica "don t care" sobre sus valores de salida se pueden utilizar en la minimización 3: Canónicas 27

28 Descripción de funciones incompletamente especificadas Formas canónicas y don t cares (X) hasta ahora solo han representado on-set formas canónicas también representan conjunto don t-care se necesitan dos de los tres conjuntos (on-set, off-set, dc-set) Representación canónicas de la función BCD incrementada por 1: Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15 Z = Σ [ m(0,2,4,6,8) + d(10,11,12,13,14,15) ] Z = M1 M3 M5 M7 M9 D10 D11 D12 D13 D14 D15 Z = Π [ M(1,3,5,7,9) D(10,11,12,13,14,15) ] 3: Canónicas 28

29 Simplificación de lógica combinacional de dos niveles Encontrar una realización mínima de suma de productos o productos de suma explotar información X (don t care) en el proceso Simplificación algebraica no hay procedimiento algorítmico/sistemático como se sabe cuando la mínima realización se encontró? Herramientas computacionales soluciones precisas requieren tiempos de computación largos especialmente para funciones con muchos inputs (> 10) heurísticas se usan para encontrar buenos resultados (generalmente no son el optimo global) 3: Canónicas 29

30 Simplificación de lógica combinacional de dos niveles Métodos a mano son relevantes para encontrar las herramientas automáticas y sus fuerzas y debilidades se pueden verificar resultados (en casos pequeños) 3: Canónicas 30

31 Simplificación de lógica combinacional de dos niveles Teorema de unificación, clave para la simplificación : A (B + B) = A Esencia de la simplificación de lógica de dos niveles encontrar (o crear) subconjuntos de dos elementos del onset en los cuales solo una variable cambia de valor esta variable puede ser eliminada y un termino puede remplazar al los dos termimos previos A B F F = A B +AB = (A +A)B = B B tiene el mismo valor en las dos filas B se mantiene A tiene valores diferentes en ambas filas A se elimina 3: Canónicas 31

32 Simplificación de lógica combinacional de dos niveles Usando teoremas para minimizar (e.g. idempotencia, commutatividad, distributividad, unificación, complementariedad, identidad,...) Ejemplo: Cout = A B Cin + A B Cin + A B Cin + A B Cin = A B Cin + A B Cin + A B Cin + A B Cin + A B Cin = A B Cin + A B Cin + A B Cin + A B Cin + A B Cin = (A + A) B Cin + A B Cin + A B Cin + A B Cin = (1) B Cin + A B Cin + A B Cin + A B Cin = B Cin + A B Cin + A B Cin + A B Cin + A B Cin = B Cin + A B Cin + A B Cin + A B Cin + A B Cin = B Cin + A (B + B) Cin + A B Cin + A B Cin = B Cin + A (1) Cin + A B Cin + A B Cin = B Cin + A Cin + A B (Cin + Cin) = B Cin + A Cin + A B (1) = B Cin + A Cin + A B sumar terminos para factorizar 3: Canónicas 32

33 Diseño lógico: perturbaciones Implementaciones de circuitos lógicos pueden incluir condiciones que causan perturbaciones (como resultados de carreras) en los outputs de implementaciones de circuitos En circuitos con mas de dos niveles pueden generarse perturbaciones con mas de un cambio momentáneo 3: Canónicas 33

34 Ejemplo: perturbaciones Implementaciones de circuitos lógicos pueden incluir condiciones que causan perturbaciones (como resultados de carreras) en los outputs de implementaciones de circuitos Una perturbación estática es un cambio momentáneo de un nivel constante en el output (un falso cero o un falso uno) En circuitos con mas de dos niveles pueden generarse perturbaciones con mas de un cambio momentáneo Una perturbación dinámica es una perturbación que ocurre durante el cambio de una variable de salida 3: Canónicas 34

35 Diseño lógico: perturbaciones Ejemplo: P = (((A +B) + (D +C) ) +A) = A (AB +C D) Con {B=0 y C=1} o {B=0 y D=0} se presentan perturbaciones en el canto de bajada de A atrasado A B P C D Actividad: Mostrar porque y como ocurre esto e indicar como eliminar el problema 3: Canónicas 35

36 Actividad: Diseño lógico y perturbaciones Porque ocurre las perturbaciones? Recordemos que las perturbaciones ocurren cuando una misma señal tiene múltiples caminos que causan carreras en los inputs a una compuerta. X X X X 3: Canónicas 36

37 Actividad: Diseño lógico y perturbaciones Ejemplo: z = x + x En una tabla de verdad se aprecia que y nunca debería ser 0 Pero dado que hay carreras z si es 0 en el diagrama temporal (perturbación) X X Z Carrera en señales de entrada X X Z t perturbación 3: Canónicas 37

38 Actividad: Diseño lógico y perturbaciones Análisis: Si se hace una tabla de verdad se puede apreciar que la salida P nunca es igual a 1 A B Y X X' P C D Z Cuando A = 1 y {B=0 y C=1} o {B=0 y D=0} después de un tiempo de propagación X = 1 y X = 0 Después del cambio de a A = 0 y de una propagación en la ruta mas rápida X = 0 y X = 0 Es durante este tiempo de propagación que P se convierte en 1 causando la perturbación 3: Canónicas 38

39 Actividad: Diseño lógico y perturbaciones Solución: Para eliminar la perturbación se puede simplificar más (para eliminar la carreras de X con X...): P = (((A +B) + (D +C) ) +A) = A (AB +C D) = A AB + A C D = A C D A B C D P A C D P Mas ejemplos en los apuntes... 3: Canónicas 39

ELO211: Sistemas Digitales. Tomás Arredondo Vidal

ELO211: Sistemas Digitales. Tomás Arredondo Vidal ELO211: Sistemas Digitales Tomás Arredondo Vidal Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz. Prentice Hall,

Más detalles

Tema 3 : Algebra de Boole

Tema 3 : Algebra de Boole Tema 3 : Algebra de Boole Objetivo: Introducción al Algebra de Boole 1 INTRODUCCIÓN George Boole creó el álgebra que lleva su nombre en el primer cuarto del siglo XIX. Pretendía explicar las leyes fundamentales

Más detalles

DE SISTEMAS: ANALÓGICOS:

DE SISTEMAS: ANALÓGICOS: Fundamentos de Electrónica 1 Sistema Digital Paso de mundo analógico a digital Tipos de Sistemas Digitales Representación de la información Sistemas de Numeración Cambios de Base Sistema Binario, hexadecimal

Más detalles

D.I.I.C.C Arquitectura de Sistemas Computacionales

D.I.I.C.C Arquitectura de Sistemas Computacionales CAPITULO 6.- ÁLGEBRA DE BOOLE INTRODUCCIÓN. En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2008

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2008 ELO211: Sistemas Digitales Tomás Arredondo Vidal 1er Semestre 2008 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd Borriello and Randy Katz. Prentice Hall,

Más detalles

I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ).

I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ). I. I.1 DEFINICION. El Algebra de Boole es toda clase o conjunto de elementos que pueden tomar dos valores perfectamente diferenciados, que designaremos por 0 y 1 y que están relacionados por dos operaciones

Más detalles

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

TEMA II: ÁLGEBRA DE CONMUTACIÓN

TEMA II: ÁLGEBRA DE CONMUTACIÓN TEMA II: ÁLGEBRA DE CONMUTACIÓN En este capítulo veremos los métodos matemáticos que se disponen para las operaciones relacionadas con los circuitos digitales, así como las funciones más básicas de la

Más detalles

CIRCUITOS DIGITALES -

CIRCUITOS DIGITALES - CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:

Más detalles

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen Tema 7.- Los circuitos digitales. Resumen Desarrollo del tema.. Introducción al tema. 2. Los sistemas de numeración.. El sistema binario. 4. Códigos binarios. 5. El sistema octal y hexadecimal. 6. El Álgebra

Más detalles

Fundamentos de los Computadores. Álgebra de Boole. 1 3. ÁLGEBRA DE BOOLE

Fundamentos de los Computadores. Álgebra de Boole. 1 3. ÁLGEBRA DE BOOLE Fundamentos de los Computadores. Álgebra de oole. 1 3. ÁLGER DE OOLE Un sistema de elementos y dos operaciones binarias cerradas ( ) y (+) se denomina LGER de OOLE siempre y cuando se cumplan las siguientes

Más detalles

38.1. Principios de electrónica digital. 38.1.1. Sistemas digitales y analógicos

38.1. Principios de electrónica digital. 38.1.1. Sistemas digitales y analógicos Tema 8. Principios de electrónica digital. Álgebra de Boole. Puertas lógicas. Funciones básicas combinacionales: decodificadores, codificadores, multiplexores y otras. Simbología, tipología, función y

Más detalles

Capítulo 5. Álgebra booleana. Continuar

Capítulo 5. Álgebra booleana. Continuar Capítulo 5. Álgebra booleana Continuar Introducción El álgebra booleana fue desarrollada por George Boole a partir del análisis intuición y deducción. En su libro An investigation of the laws of Thought,

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN I. P. N. ESIME Unidad Culhuacan INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO

Más detalles

ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ

ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ Sistemas Numéricos 1.-Sistema Numérico. a) Definición: Llamaremos sistema numéricos base M el conjunto de M símbolos que nos sirven

Más detalles

Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL. Fundamentos de Electrónica.2

Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL. Fundamentos de Electrónica.2 Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL Fundamentos de Electrónica.2 Sistema Digital. Paso de mundo analógico a digital. Tipos de Sistemas Digitales. Representación de la información. Sistemas

Más detalles

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2007

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2007 ELO211: Sistemas Digitales Tomás Arredondo Vidal 1er Semestre 2007 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz.

Más detalles

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos).

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos). 1. ÁLGEBRA DE BOOLE. El álgebra de Boole se llama así debido a George Boole, quien la desarrolló a mediados del siglo XIX. El álgebra de Boole denominada también álgebra de la lógica, permite prescindir

Más detalles

TEMA III TEMA III. Circuitos Digitales 3.1 REPRESENTACIÓN DE LA INFORMACIÓN 3.2 ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS

TEMA III TEMA III. Circuitos Digitales 3.1 REPRESENTACIÓN DE LA INFORMACIÓN 3.2 ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS TEMA III Circuitos Digitales Electrónica II 9- TEMA III Circuitos Digitales 3. REPRESENTACIÓN DE LA INFORMACIÓN 3. ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS 3. REPRESENTACIÓN DE LA INFORMACIÓN.

Más detalles

UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE

UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE GERMAN ISAAC SOSA MONTENEGRO EJERCICIOS 3. Escriba en notación expandida los siguientes numerales : a) 2375 b) 110111

Más detalles

Temario de Electrónica Digital

Temario de Electrónica Digital Temario de Electrónica Digital TEMA 1. INTRODUCCIÓN A LOS SISTEMAS DIGITALES. Exponer los conceptos básicos de los Fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre Sistemas

Más detalles

OR (+) AND( ). AND AND

OR (+) AND( ). AND AND Algebra de Boole 2.1.Introducción 2.1. Introducción El Algebra de Boole es un sistema matemático que utiliza variables y operadores lógicos. Las variables pueden valer 0 o 1. Y las operaciones básicas

Más detalles

Tema 5: Álgebra de Boole Funciones LógicasL

Tema 5: Álgebra de Boole Funciones LógicasL Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las

Más detalles

Tema 11: Sistemas combinacionales

Tema 11: Sistemas combinacionales Tema 11: Sistemas combinacionales Objetivo: Introducción Generador Comprobador de paridad Comparadores Semisumador (HA) Sumador Completo (FA) Expansión de sumadores Sumador paralelo con arrastre serie

Más detalles

TEMA 1: Control y programación de sistemas automáticos

TEMA 1: Control y programación de sistemas automáticos Esquema: TEMA : Control y programación de sistemas automáticos TEMA : Control y programación de sistemas automáticos....- Introducción.....- Representación de las señales digitales...2 2.- Sistemas de

Más detalles

Representación digital de los datos

Representación digital de los datos Capítulo Representación digital de los datos Conceptos básicos Dato Digital Sistema decimal Sistemas posicionales Sistema Binario Sistemas Octal y Hexadecimal Conversiones de base Números con signo Números

Más detalles

Figura 1: Suma binaria

Figura 1: Suma binaria ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales

Más detalles

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?

Más detalles

FUNCIONES ARITMÉTICAS Y

FUNCIONES ARITMÉTICAS Y Tema 3 FUNCIONES ARITMÉTICAS Y LÓGICAS 3.. INTRODUCCIÓN Hasta ahora hemos visto como se podían minimizar funciones booleanas, y como se podían implementar a partir de puertas discretas. En los temas siguientes

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

circuitos digitales Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007

circuitos digitales Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Oliverio J. Santana Jaria Sistemas Digitales 8. Análisis lógico l de los circuitos digitales Ingeniería Técnica en Informática de Sistemas Los Curso 26 27 El conjunto circuitos de puertas digitales lógicas

Más detalles

Compuertas lógicas Álgebra de Boole

Compuertas lógicas Álgebra de Boole Electrónica Digital Departamento de Electrónica Compuertas lógicas Álgebra de Boole Facultad de Ingeniería Bioingeniería Universidad Nacional de Entre Ríos 26/03/2013 0 Temario del día Compuertas lógicas

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS

DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS Circuitos Combinacionales Un circuito combinacional es un circuito digital cuyas salidas, en un instante determinado son función, exclusivamente, de la combinación

Más detalles

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003 Álgebras de Boole Juan Medina Molina 25 de noviembre de 2003 Introducción Abordamos en este tema el estudio de las álgebras de Boole. Este tema tiene una aplicación directa a la electrónica digital ya

Más detalles

Tabla de verdad. La función lógica es aquella que relaciona las entradas y salidas de un circuito lógico. Puede expresarse mediante:

Tabla de verdad. La función lógica es aquella que relaciona las entradas y salidas de un circuito lógico. Puede expresarse mediante: T-2 Álgebra de oole. ógica combinacional TM - 2 ÁGR D OO. ÓGI OMINION. l control digital, y en particular el binario, está presente en todos los campos de la vida, desde los sistemas de refrigeración hasta

Más detalles

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN Un sistema de numeración es el conjunto de símbolos y reglas que se utilizan para la representación de datos numéricos o cantidades. Un sistema de numeración se caracteriza

Más detalles

decir de las funciones f g. Posteriormente se obtienen los términos independientes

decir de las funciones f g. Posteriormente se obtienen los términos independientes 4.8. EJERCICIOS DEL CAPÍTULO 157 decir de las funciones f g. Posteriormente se obtienen los términos independientes para cada función. fg2, 3 =dcb f4, 5, 6, 7 =dc f0, 2, 4, 6 =da g0, 2, 8, 10 =ca g2, 6,

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

Carrera: SCB-9335 4-2-10. Proporciona conocimientos básicos para la programación de dispositivos de control digital.

Carrera: SCB-9335 4-2-10. Proporciona conocimientos básicos para la programación de dispositivos de control digital. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Sistemas Digitales Ingeniería en Sistemas Computacionales SCB-9335 4-2-10 2.- UBICACIÓN

Más detalles

Circuitos combinacionales. Álgebra de Boole

Circuitos combinacionales. Álgebra de Boole Circuitos combinacionales. Álgebra de Boole Salvador Marcos González salvador.marcos@uah.es Sistemas de numeración Introducción Un Sistema de numeración es una forma de representar cualquier cantidad numérica,

Más detalles

Curso Completo de Electrónica Digital

Curso Completo de Electrónica Digital CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE 3.1. Introducción

Más detalles

Circuitos Electrónicos Digitales. Tema III. Circuitos Combinacionales

Circuitos Electrónicos Digitales. Tema III. Circuitos Combinacionales Circuitos Electrónicos Digitales Tema III Circuitos Combinacionales Universidad de Sevilla Índice 1. Análisis de circuitos combinacionales 2. Diseño de circuitos combinacionales Análisis de Circuitos Combinacionales

Más detalles

ELO311 Estructuras de Computadores Digitales. Unidad Aritmética

ELO311 Estructuras de Computadores Digitales. Unidad Aritmética ELO3 Estructuras de Computadores Digitales Unidad Aritmética Tomás Arredondo Vidal Este material está basado en: material de apoyo del texto de David Patterson, John Hennessy, "Computer Organization &

Más detalles

PARTE II LÓGICA COMPUTACIONAL

PARTE II LÓGICA COMPUTACIONAL PARTE II LÓGICA COMPUTACIONAL Lógica de proposiciones INTRODUCCION Teniendo en mente que queremos presentar los sistemas deductivos de la lógica como una herramienta práctica para los informáticos, vamos

Más detalles

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos:

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos: ELECTRÓNICA DIGITAL INDICE 1. TIPOS DE SEÑALES... 3 1.1. SEÑALES ANALÓGICAS... 3 1.2. SEÑALES DIGITALES... 3 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES... 3 2.1. CRONOGRAMAS... 3 2.2. TABLA DE VERDAD...

Más detalles

CIRCUITOS DIGITALES 1. INTRODUCCIÓN. 2. SEÑALES Y TIPOS DE SEÑALES.

CIRCUITOS DIGITALES 1. INTRODUCCIÓN. 2. SEÑALES Y TIPOS DE SEÑALES. TEMA 7: CIRCUITOS DIGITALES 1. INTRODUCCIÓN. La utilización creciente de circuitos digitales ha dado lugar en los últimos tiempos a una revolución sin precedentes en el campo de la tecnología. Basta observar

Más detalles

UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS 1. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH 1-1. R. ESPINOSA R. y P. FUENTES R.

UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS 1. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH 1-1. R. ESPINOSA R. y P. FUENTES R. UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH - . INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS. ÁLGEBRA DE BOOLE. ÁLGEBRA DE BOOLE El álgebra de Boole

Más detalles

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL ELECTRÓNICA DIGITAL La electrónica es la rama de la ciencia que se ocupa del estudio de los circuitos y de sus componentes, que permiten modificar la corriente eléctrica amplificándola, atenuándola, rectificándola

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA FACULTAD DE INGENIERÍA Diseño de Sistemas Digitales M.I. Norma Elva Chávez Rodríguez OBJETIVO El alumno comprenderá la importancia de los sistemas digitales, por lo que al terminar la it introducción ió

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS LICENCIATURA EN SISTEMAS COMPUTACIONALES

UNIVERSIDAD AUTÓNOMA DE CHIAPAS LICENCIATURA EN SISTEMAS COMPUTACIONALES UNIVERSIDAD AUTÓNOMA DE CHIAPAS LICENCIATURA EN SISTEMAS COMPUTACIONALES Área de formación: Disciplinaria Unidad académica: Sistemas digitales Ubicación: Segundo semestre Clave: 1977 Horas semana-mes:

Más detalles

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles

Los circuitos lógicos combinacionales

Los circuitos lógicos combinacionales Los circuitos lógicos combinacionales Montse Peiron Guàrdia Fermín Sánchez Carracedo PID_63599 CC-BY-SA PID_63599 Los circuitos lógicos combinacionales Índice Introducción... 5 Objetivos... 6. Fundamentos

Más detalles

CODIFICADORES CON PRIORIDAD. Grupo 2

CODIFICADORES CON PRIORIDAD. Grupo 2 CODIFICADORES CON PRIORIDAD Grupo 2 Descripción Los codificadores son circuitos combinacionales generalmente de 2 N entradas y N salidas, donde las salidas son el código binario correspondiente al valor

Más detalles

Tema 3: Representación y minimización de

Tema 3: Representación y minimización de Tema 3: Representación y minimización de funciones lógicas 3.. Teoremas y postulados del álgebra de Boole Definiciones El álgebra de Boole se utiliza para la resolución de problemas de tipo lógico-resolutivo,

Más detalles

http://ingenieros.sitio.net

http://ingenieros.sitio.net SISTEMAS DIGITALES Version Inicial: 13-06-05 Modificando 1-1 CONTENIDO CONTENIDO... 1-2 1 SISTEMAS NUMERICOS... 1-3 UNIDAD II 2 ALGEBRA DE BOOLE... 2-22 UNIDAD III 3 FAMILIAS LOGICAS DE CIRCUITOS INTEGRADOS...

Más detalles

SISTEMAS NATURALES.. ARTIFICIALES.. ELÉCTRICOS.. ELECTRÓNICOS ANALÓGICOS DIGITALES COMBINACIONALES SECUENCIALES

SISTEMAS NATURALES.. ARTIFICIALES.. ELÉCTRICOS.. ELECTRÓNICOS ANALÓGICOS DIGITALES COMBINACIONALES SECUENCIALES UNIDAD 3: Circuitos lógicos y digitales Introducción Un Sistema es un conjunto de elementos que guardan una relación entre sí, a su vez un elemento del sistema puede ser otro sistema (subsistema). Los

Más detalles

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a:

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a: Contenidos Objetivos En esta quincena aprenderás a: Distinguir entre una señal analógica y una digital. Realizar conversiones entre el sistema binario y el decimal. Obtener la tabla de la verdad de un

Más detalles

UNIDAD 2: ELECTRÓNICA DIGITAL

UNIDAD 2: ELECTRÓNICA DIGITAL UNIDAD 2: ELECTRÓNICA DIGITAL 2.1. Señales analógicas y digitales Señales analógicas son aquellas que pueden variar de una forma progresiva o gradual sobre un intervalo continuo: Ejemplo: luz, temperatura,

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

TEMA 3. Álgebra de Boole

TEMA 3. Álgebra de Boole Fundamentos de los Computadores. Álgebra de oole. T3-1 INDICE: TEM 3. Álgebra de oole EL ÁLGER DE OOLE TEOREMS DEL ÁLGER DE OOLE REPRESENTCIÓN DE FUNCIONES LÓGICS o TL DE VERDD o FORMS CNÓNICS o CONVERSIÓN

Más detalles

TECNICO SUPERIOR UNIVERSITARIO EN TECNOLOGIAS DE LA INFORMACION Y COMUNICACIÓN ÁREA REDES Y TELECOMUNICACIONES.

TECNICO SUPERIOR UNIVERSITARIO EN TECNOLOGIAS DE LA INFORMACION Y COMUNICACIÓN ÁREA REDES Y TELECOMUNICACIONES. TECNICO SUPERIOR UNIVERSITARIO EN TECNOLOGIAS DE LA INFORMACION Y COMUNICACIÓN ÁREA REDES Y TELECOMUNICACIONES. HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Sistemas

Más detalles

COMPUERTAS LÓGICAS. Tabla de verdad. Es una representación en forma tabular de todas las combinaciones posibles de las variables de entrada.

COMPUERTAS LÓGICAS. Tabla de verdad. Es una representación en forma tabular de todas las combinaciones posibles de las variables de entrada. I.P.N. ESIME Unidad Culhuacan 14 DEFINICIONES: COMPUERTAS LÓGICAS Circuitos digitales electrónicos. Se llaman circuitos lógicos, ya que con las entradas adecuadas establecen caminos de manipuleo lógico.

Más detalles

UNIVERSIDAD NACIONAL DE PIURA INFORME FINAL TRABAJO DE INVESTIGACION

UNIVERSIDAD NACIONAL DE PIURA INFORME FINAL TRABAJO DE INVESTIGACION UNIVERSIDAD NACIONAL DE PIURA FACULTAD DE INGENIERIA INDUSTRIAL INFORME FINAL TRABAJO DE INVESTIGACION MODULO DE APOYO PARA EL CURSO ARQUITECTURA DE COMPUTADORAS EJECUTORES : INGº JORGE L. SANDOVAL RIVERA

Más detalles

Notas de Diseño Digital

Notas de Diseño Digital Notas de Diseño Digital Introducción El objetivo de estas notas es el de agilizar las clases, incluyendo definiciones, gráficos, tablas y otros elementos que tardan en ser escritos en el pizarrón, permitiendo

Más detalles

METODOLOGÍAS PARA DISEÑO DE CIRCUITOS LADDER CON BASE EN SISTEMAS SECUENCIALES Y COMBINACIONALES

METODOLOGÍAS PARA DISEÑO DE CIRCUITOS LADDER CON BASE EN SISTEMAS SECUENCIALES Y COMBINACIONALES METODOLOGÍAS PARA DISEÑO DE CIRCUITOS LADDER CON BASE EN SISTEMAS SECUENCIALES Y COMBINACIONALES MARIO ALBERTO BRITO SALDARRIAGA JOAN SEBASTIÁN GIRALDO BETANCOURT UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD

Más detalles

Naturaleza binaria. Conversión decimal a binario

Naturaleza binaria. Conversión decimal a binario Naturaleza binaria En los circuitos digitales sólo hay 2 voltajes. Esto significa que al utilizar 2 estados lógicos se puede asociar cada uno con un nivel de tensión, así se puede codificar cualquier número,

Más detalles

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales.

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales. ELECTRÓNICA DIGITAL El tratamiento de la información en electrónica se puede realizar de dos formas, mediante técnicas analógicas o mediante técnicas digitales. El analógico requiere un análisis detallado

Más detalles

Unidad didáctica: Electrónica Digital

Unidad didáctica: Electrónica Digital Unidad didáctica: Electrónica Digital CURSO 4º ESO versión 1.0 1 Unidad didáctica: Electrónica Digital ÍNDICE 1.- Introducción. 2.- Sistemas de numeración. 2.1.- Sistema binario. 2.2.- Sistema hexadecimal.

Más detalles

Unidad didáctica: Electrónica Digital

Unidad didáctica: Electrónica Digital 1 de 36 07/09/2012 0:59 Autor: Antonio Bueno Unidad didáctica: "Electrónica Digital" CURSO 4º ESO Autor: Antonio Bueno ÍNDICE Unidad didáctica: "Electrónica Digital" 1.- Introducción. 2.- Sistemas de numeración.

Más detalles

TE.1010 Sistemas Digitales

TE.1010 Sistemas Digitales TE.1010 Sistemas Digitales Dr. Andrés David García García Departamento de Mecatrónica TE 1010 1 TE 1001 Objetivo de la materia: Al finalizar este curso el alumno será capaz de: Diseñar un sistema computacional

Más detalles

ELECTRÓNICA DIGITAL.

ELECTRÓNICA DIGITAL. ELECTRÓNIC DIGITL. Una señal analógica es aquella que puede tener infinitos valores, positivos y/o negativos. Mientras que la señal digital sólo puede tener dos valores 1 o 0. En el ejemplo de la figura,

Más detalles

2 FUNCIONES BOOLEANAS Y SU SIMPLIFICACION

2 FUNCIONES BOOLEANAS Y SU SIMPLIFICACION FUNCIONES BOOLENS Y SU SIMPLIFICCION.. Funciones Lógicas.. Simplificación de funciones booleanas: mapas de Karnaugh.3. Ejercicios de síntesis y simplificación de funciones booleanas.4. Decodificadores

Más detalles

PROGRAMA DE ESTUDIO. Programas académicos en los que se imparte: Ingeniería Eléctrica-Electrónica 1. DESCRIPCIÓN Y CONCEPTUALIZACIÓN DE LA ASIGNATURA:

PROGRAMA DE ESTUDIO. Programas académicos en los que se imparte: Ingeniería Eléctrica-Electrónica 1. DESCRIPCIÓN Y CONCEPTUALIZACIÓN DE LA ASIGNATURA: PROGRAMA DE ESTUDIO Nombre de la asignatura: SISTEMAS DIGITALES 1 Clave: IEE18 Fecha de elaboración: marzo 2015 Horas Horas Semestre semana Ciclo Formativo: Básico ( ) Profesional ( X ) Especializado (

Más detalles

PROGRAMA DE CURSO Modelo 2009

PROGRAMA DE CURSO Modelo 2009 REQUISITOS: HORAS: 3 Horas a la semana CRÉDITOS: PROGRAMA(S) EDUCATIVO(S) QUE LA RECIBE(N): IETRO PLAN: 2009 FECHA DE REVISIÓN: Mayo de 2011 Competencia a la que contribuye el curso. DEPARTAMENTO: Departamento

Más detalles

DISEÑO COMBINACIONAL

DISEÑO COMBINACIONAL DISEÑO COMBINACIONAL Asignatura: DIGITAL I Carrera: Ingeniería Electrónica Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario Año 2011 DISEÑO LÓGICO RESOLUCIÓN DE PROBLEMAS

Más detalles

Figura 1. Símbolo que representa una ALU. El sentido y la funcionalidad de las señales de la ALU de la Figura 1 es el siguiente:

Figura 1. Símbolo que representa una ALU. El sentido y la funcionalidad de las señales de la ALU de la Figura 1 es el siguiente: Departamento de Ingeniería de Sistemas Facultad de Ingeniería Universidad de Antioquia Arquitectura de Computadores y Laboratorio ISI355 (2011 2) Práctica No. 1 Diseño e implementación de una unidad aritmético

Más detalles

CIRCUITOS COMBINACIONALES

CIRCUITOS COMBINACIONALES Escuela Universitaria de Ingeniería Técnica Industrial de Bilbao Universidad del País Vasco / Euskal Herriko Unibertsitatea ELECTRONICA INDUSTRIAL CIRCUITOS COMBINACIONALES SANCHEZ MORONTA, M - UGALDE

Más detalles

3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS

3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS TEMA 12: MODELADO CON VARIABLES BINARIAS 1.- MOTIVACIÓN 2.- INTRODUCCIÓN 3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS 5.- MODELADO

Más detalles

UNIVERSIDAD DEL CARIBE UNICARIBE. Escuela de Informática. Programa de Asignatura

UNIVERSIDAD DEL CARIBE UNICARIBE. Escuela de Informática. Programa de Asignatura UNIVERSIDAD DEL CARIBE UNICARIBE Escuela de Informática Programa de Asignatura Nombre de la asignatura : Matemática Binaria y Circuitos Lógicos Carga académica : créditos Modalidad : Semi-presencial Clave

Más detalles

INDICE CYNTHIA P.GUERRERO SAUCEDO PALOMA G. MENDOZA VILLEGAS 1

INDICE CYNTHIA P.GUERRERO SAUCEDO PALOMA G. MENDOZA VILLEGAS 1 INDICE UNIDAD 1: SISTEMAS NUMERICOS 1 SISTEMA BINARIO...3 1.1 CONVERSION DE DECIMAL A BINARIO...4 1.2 CONVERSION DE BINARIO A DECIMAL...6 1.3 ARITMETICA BINARIA.. 102 2. SISTEMA HEXADECIMAL......7 2.1

Más detalles

CIRCUITOS ARITMÉTICOS. Tema 5: CIRCUITOS ARITMÉTICOS

CIRCUITOS ARITMÉTICOS. Tema 5: CIRCUITOS ARITMÉTICOS Tema 5: CIRCUITOS ARITMÉTICOS Contenido: * Aritmética binaria. * Circuito semisumador. Sumador completo. * Operaciones con n bits. Sumador paralelo con arrastre serie. * Circuito sumador-restador. * Sumador

Más detalles

ELO311 Estructuras de Computadores Digitales. Números

ELO311 Estructuras de Computadores Digitales. Números ELO311 Estructuras de Computadores Digitales Números Tomás Arredondo Vidal Este material está basado en: material de apoyo del texto de David Patterson, John Hennessy, "Computer Organization & Design",

Más detalles

FORMATO DE CONTENIDO DE CURSO

FORMATO DE CONTENIDO DE CURSO PÁGINA: 1 de 8 FACULTAD DE.CIENCIAS BÁSICAS PROGRAMA DE: FÍSICA PLANEACIÓN DEL CONTENIDO DE CURSO 1. IDENTIFICACIÓN DEL CURSO NOMBRE : ELECTRÓNICA II CÓDIGO : 210080 SEMESTRE : VII NUMERO DE CRÉDITOS :

Más detalles

Generación de funciones lógicas mediante decodificadores binarios con salidas activas a nivel alto

Generación de funciones lógicas mediante decodificadores binarios con salidas activas a nivel alto Generación de funciones lógicas mediante decodificadores binarios con salidas activas a nivel alto Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informática de Sistemas

Más detalles

Compuertas Lógicas. M. en C. Erika Vilches

Compuertas Lógicas. M. en C. Erika Vilches Compuertas Lógicas M. en C. Erika Vilches El Inversor El inversor (circuito NOT) lleva a cabo la operación llamada inversión o complemento. Cambia un 1 por 0 y un 0 por 1 El indicador de negación es una

Más detalles

Tema 4: Circuitos combinacionales

Tema 4: Circuitos combinacionales Estructura de computadores Tema 4: Circuitos combinacionales Tema 4: Circuitos combinacionales 4.0 Introducción Los circuitos lógicos digitales pueden ser de dos tipos: combinacionales secuenciales. Circuitos

Más detalles

Guía de ejercicios y trabajos prácticos. - 2014 -

Guía de ejercicios y trabajos prácticos. - 2014 - Escuela técnica N 9 D.E. I Alejandro Volta Guía de ejercicios y trabajos prácticos. - 24 - T.C.E. Ávalos, Matías S. Área electrónica. T.C.E. (Tecnología de los Componentes Electrónicos) Área: Electrónica.

Más detalles

TEMA 3: IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES CON PUERTAS LÓGICAS.

TEMA 3: IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES CON PUERTAS LÓGICAS. TEM 3: IMPLEMENTCIÓN DE CIRCUITOS COMBINCIONLES CON PUERTS LÓGICS. 3.1. Representación de funciones: mapas de Karnaugh de hasta 5 variables. El Mapa de Karnaugh es una representación gráfica de una función

Más detalles

Electrónica Digital (Parte 1)

Electrónica Digital (Parte 1) Electrónica Digital (Parte 1) Dr. C. Evaristo González Milanés 1, Ing. Carlos Molina 2 1. Universidad de Matanzas Camilo Cienfuegos, Vía Blanca Km.3, Matanzas, Cuba. 2. Profesor Adjunto Universidad de

Más detalles

1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S.

1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. ELECTRONICA DECIMO (10 ) CUARTO 6 DOCENTE(S) DEL AREA: Esp. Arnulfo Arias, Ing. Electrónico Jairo García Barreto. 2. INTRODUCCION Los sistemas digitales

Más detalles

Tema : ELECTRÓNICA DIGITAL

Tema : ELECTRÓNICA DIGITAL (La Herradura Granada) Departamento de TECNOLOGÍA Tema : ELECTRÓNICA DIGITAL.- Introducción. 2.- Representación de operadores lógicos. 3.- Álgebra de Boole. 3..- Operadores básicos. 3.2.- Función lógica

Más detalles

Nombre de la asignatura : Sistemas Digitales. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCC-9335

Nombre de la asignatura : Sistemas Digitales. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCC-9335 1. D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Sistemas Digitales Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : SCC-95 Horas teoría-horas práctica-créditos

Más detalles

Diseño Digital para Ingeniería 1 DISEÑO DIGITAL PARA INGENIERIA. Autor:

Diseño Digital para Ingeniería 1 DISEÑO DIGITAL PARA INGENIERIA. Autor: 1 DISEÑO DIGITAL PARA INGENIERIA Autor: Rubén Darío Cárdenas Espinosa Matrícula Profesional CL20633345 rdcardenas@gmail.com Candidato a Doctor en Ciencias con especialidad en Ingeniería Eléctrica Master

Más detalles

: CIRCUITOS DIGITALES

: CIRCUITOS DIGITALES SÍLABO I. DATOS GENERALES: 1.1. Asignatura : CIRCUITOS DIGITALES I 1.2. Carácter : Obligatorio 1.3. Carreras Profesionales : Ingeniería Electrónica y Telecomunicaciones 1.4. Código : IE0306 1.5. Semestre

Más detalles

Índice general. 1. Introducción a la técnica digital... 1. 1.1 Introducción... 1 1.2 Señales analógicas y digitales... 1

Índice general. 1. Introducción a la técnica digital... 1. 1.1 Introducción... 1 1.2 Señales analógicas y digitales... 1 Índice general 1. Introducción a la técnica digital... 1 1.1 Introducción... 1 1.2 Señales analógicas y digitales... 1 1.2.1 Señales analógicas... 1 1.2.2 Señales digitales... 2 1.3 Procesos digitales...

Más detalles

INSTITUTO TECNOLÓGICO PASCUAL BRAVO TECNOLOGÍA ELECTRÓNICA PRACTICAS DE LABORATORIO SOFTWARE APLICADO I

INSTITUTO TECNOLÓGICO PASCUAL BRAVO TECNOLOGÍA ELECTRÓNICA PRACTICAS DE LABORATORIO SOFTWARE APLICADO I INSTITUTO TECNOLÓGICO PASCUAL BRAVO TECNOLOGÍA ELECTRÓNICA PRACTICAS DE LABORATORIO SOFTWARE APLICADO I Objetivos Adquirir destreza en el manejo de equipos de medida Familiarizarse con programas de computadores

Más detalles