IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IV. GRÁFICOS DE CONTROL POR ATRIBUTOS"

Transcripción

1 IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas, esto es, característcas o cuatfcables umércamete Ejemplos de tales característcas o medbles so la fraccó o porcetaje de udades defectuosas e la produccó (P), el úmero de udades defectuosas e la produccó (NP), el úmero de defectos por udad producda (U), y el úmero de defectos de todas las udades producdas (C) Al gual que e los gráfcos de cotrol por varables, el dagrama de atrbutos represeta u estadístco T del proceso (como puede ser el úmero de defectos) frete al úmero de la muestra o al tempo Ua líea cetral represeta el valor medo o esperado del estadístco, metras que los límtes de cotrol suele defr ua zoa de cotrol que abarca σ T por ecma y por debajo de la líea cetral Estos límtes so escogdos de maera que s el proceso está bajo cotrol, cas la totaldad de los putos muestrales se halle etre ellos Así, u puto que se ecuetra fuera de los límtes de cotrol se terpreta como ua evdeca de que el proceso está fuera de cotrol Además, cluso s todos los putos se halla compreddos etre los límtes de cotrol, pero se comporta de maera sstemátca o o aleatora, també tedríamos u proceso fuera de cotrol (veremos cómo estudar la exsteca de tales patroes o aleatoros medate los llamados tests para causas especales) Varable T * σ T Límte superor (LSC) Líea cetral Límte feror (LIC) Número de muestra o tempo Este tpo de gráfcos se suele aplcar e stuacoes e las que el proceso es ua operacó de motaje complcada, y la caldad del producto se mde e térmos de la ocurreca de dscoformdades, del fucoameto extoso o falldo del producto, etc Los dagramas de cotrol por atrbutos tee la vetaja de que hace posble cosderar varas característcas de caldad al msmo tempo y clasfcar los productos como dscoformes s o satsface las especfcacoes de cualquera de las característcas Teemos dos opcoes a la hora de realzar u gráfco de cotrol por atrbutos: Podemos comparar u producto co u estádar y clasfcarlo como defectuoso o o (gráfcos P y NP) E el caso de productos complejos, la exsteca de u defecto o ecesaramete colleva a que el producto sea defectuoso E tales casos, puede resultar coveete clasfcar u producto segú el úmero de defectos que preseta (gráfcos C y U) Es mportate otar que los gráfcos P, NP, y U permte trabajar co muestras de tamaños dferetes, metras que los gráfcos C está dseñados para muestras de gual tamaño IV -

2 Cotrol Estadístco de la Caldad co MINITAB TESTS PARA CAUSAS ESPECIALES E cualquera de los gráfcos de cotrol por atrbutos descrtos, es posble realzar cuatro tests para determar la posble exsteca de causas especales que fluya sobre la varabldad de las observacoes (comportameto o aleatoro de los datos): Cada uo de los tests detecta u determado comportameto o aleatoro e los datos Cuado alguo de los tests resulta postvo etoces hay dcos de que la varabldad de las observacoes se debe a causas especales, las cuales deberá vestgarse Es mportate otar que para realzar estos tests todas las muestras ha de ser del msmo tamaño Test : u puto stuado más allá de los límtes de cotrol sgma Zoa A Zoa B Zoa C Zoa C Zoa B Zoa A úmero de muestra IV -

3 IV Gráfcos de Cotrol por Atrbutos Test : ueve putos cosecutvos e el msmo lado s gma Zoa A Zoa B Zoa C Zoa C Zoa B Zoa A 5 5 úmero de muestra Test : ses putos cosecutvos ascedetes o descedetes sgma Zoa A Zoa B Zoa C Zoa C Zoa B Zoa A úmero de muestra Test 4: catorce putos cosecutvos alterado arrba y abajo sgma Zoa A Zoa B Zoa C Zoa C Zoa B Zoa A 5 5 úmero de muestra IV -

4 Cotrol Estadístco de la Caldad co MINITAB GRÁFICO P U gráfco P es u gráfco de cotrol del porcetaje o fraccó de udades defectuosas (cocete etre el úmero de artículos defectuosos e ua poblacó y el úmero total de artículos de dcha poblacó) Los prcpos estadístcos que srve de base al dagrama de cotrol P se basa e la dstrbucó Bomal: supógase que el proceso de produccó fucoa de maera estable, de tal forma que la probabldad de que cualquer artículo o esté coforme co las especfcacoes es p, y que los artículos producdos sucesvamete so depedetes; etoces, s seleccoamos muestras aleatoras de artículos del producto cada ua, y represetado por X al úmero de artículos defectuosos e la muestra - ésma, tedremos que X B(,p) Sabemos que: µ x p y σ X p( p) Para cada muestra, defmos la va fraccó dscoforme muestral como: pˆ segurá ua dstrbucó Bomal co meda y desvacó típca: X pˆ Observar que E E [ ] [ X ] pˆ p y Var[ pˆ ] Var [ X ] p( p) Por tato, pˆ N p, p( p) Segú el modelo de Shewart tedremos que: p( p) LSC p + Líea cetral p p( p) LIC p S p es descoocda, la podemos estmar (observar que tal estmacó se realzará a partr de las muestras obtedas, > 5, tomadas cuado se cosdera que el proceso está bajo cotrol): p pˆ E caso de que el tamaño muestral ( ) sea dferete para cada subgrupo, a la hora de calcular los límtes segú el modelo de Shewart, podemos optar por: Obteer los límtes usado el asocado a cada muestra, co lo que las líeas de cotrol o será rectas (dará saltos arrba y abajo segú dsmuya o aumete), S los o dfere mucho uos de otros, podríamos tomar IV - 4

5 IV Gráfcos de Cotrol por Atrbutos També se puede optar por tomar u comú e gual al mayor de los, co lo que obtedríamos uos límtes de cotrol bastate sesbles, ya que la ampltud de la fraja que dca proceso e estado de cotrol es versamete proporcoal al tamaño de la muestra E esta stuacó de tamaños muestrales dferetes, el estmador para p sería: p pˆ Normalmete se usa límtes de cotrol de tres sgmas e el dagrama de cotrol P Como ya cometamos e el capítulo ateror, el uso de límtes de cotrol más estrechos hace que el dagrama de cotrol sea más sesble a pequeños cambos e p, pero ello també hace aumetar la probabldad de que se produzca falsas alarmas de proceso fuera de cotrol (error de tpo II) Debe advertrse que este dagrama de cotrol se basa e el modelo probablístco bomal, e el cual se supoe que la probabldad de ocurreca de u artículo co dscoformdad es costate, y que udades sucesvas e la produccó so depedetes Por otra parte, hay que teer cudado co la terpretacó de los putos del dagrama de cotrol que se halla por debajo del límte feror de cotrol Tales putos o represeta a meudo ua mejora real e la caldad del proceso Frecuetemete so el resultado de errores e el método de speccó o recogda de datos Ejemplo gráfco P: Supogamos que trabajamos e ua plata que produce tubos de mage para televsores De cada lote producdo se extrae alguos tubos y se procede a speccoarlos, clasfcádolos e defectuosos y o defectuosos S alguo de los lotes preseta demasados tubos defectuosos, se realza ua speccó del % de las udades que lo compoe U gráfco P os permtrá, etre otras cosas, saber cuádo hemos de realzar ua speccó completa Usaremos los datos guardados e el archvo tubosmtw : Seleccoar Stat > Cotrol Charts > P Rellear los campos como se dca: IV - 5

6 Cotrol Estadístco de la Caldad co MINITAB P Chart for Defectuo,,SL,4 Proporto,, P,685, -,SL,478 Sample Number Dado que la muestra 6 cae fuera de la zoa de cotrol, sería coveete realzar ua speccó del % de los compoetes del lote IV - 6

7 IV Gráfcos de Cotrol por Atrbutos GRÁFICO NP El dagrama NP está basado e el úmero de udades defectuosas Este tpo de gráfcos permte tato aalzar el úmero de artículos defectuosos como la posble exsteca de causas especales e el proceso productvo Los prcpos estadístcos que srve de base al dagrama de cotrol NP se basa e la dstrbucó Bomal: Supógase que el proceso de produccó fucoa de maera estable, de tal forma que la probabldad de que cualquer artículo o esté coforme co las especfcacoes es p, y que los artículos producdos sucesvamete so depedetes; etoces, s seleccoamos muestras aleatoras de artículos del producto cada ua, y represetado por X al úmero de artículos defectuosos e la muestra -ésma, tedremos que X B(,p) Sabemos que: µ x p y σ X p( p) Para cada muestra, defmos la va fraccó dscoforme muestral como: pˆ segurá ua dstrbucó Bomal co meda y desvacó típca: X pˆ Observar que E E[ X ] [ pˆ ] p y Var[ pˆ ] Var [ X ] p( p) Por tato, pˆ N( p, p( p) ) Segú el modelo de Shewart tedremos que: LSC p + p( p) Líea cetral p LIC p p( p) S p es descoocda, la podemos estmar (observar que tal estmacó se realzará a partr de las muestras obtedas, > 5, tomadas cuado se cosdera que el proceso está bajo cotrol): p pˆ E caso de que el tamaño muestral ( ) sea dferete para cada subgrupo, a la hora de calcular los límtes segú el modelo de Shewart, podemos optar por: IV - 7

8 Cotrol Estadístco de la Caldad co MINITAB Obteer los límtes usado el asocado a cada muestra, co lo que las líeas de cotrol o será rectas (dará saltos arrba y abajo segú dsmuya o aumete), S los o dfere mucho uos de otros, podríamos tomar També se puede optar por tomar u comú e gual al mayor de los, co lo que obtedríamos uos límtes de cotrol bastate sesbles, ya que la ampltud de la fraja que dca proceso e estado de cotrol es versamete proporcoal al tamaño de la muestra E esta stuacó de tamaños muestrales dferetes, el estmador para p sería: p pˆ IV - 8

9 IV Gráfcos de Cotrol por Atrbutos GRÁFICO C El dagrama C está basado e el úmero total de defectos (o o coformdades) e la produccó Los prcpos estadístcos que srve de base al dagrama de cotrol C se basa e la dstrbucó de Posso: Para costrur el dagrama de cotrol C empezamos por tomar muestras X, X,,X K, de udades cada ua, e: X (X,, X ) Sea u el úmero esperado de udades defectuosas e cada ua de las muestras Para cada muestra se calcula el úmero u j de defectos de la udad X j, j,, S deotamos por c al úmero de defectos totales e la muestra -ésma, es claro que c u j Por otro lado, s deotamos por u al valor esperado de defectos e la muestra -ésma, tedremos que u uj Observar pues que u c, e: c u j [ ] [ ] [ ] u Notar además que E c E u E u Es frecuete supoer que el úmero de defectos (sucesos o habtuales) e ua poblacó grade sgue ua dstrbucó de Posso E este caso, supodremos que c Po( u) Se cumplrá que c N( u u ), Segú el modelo de Shewart tedremos que: j LSC u + Líea cetral u LIC u u u S u E[ u ] es descoocda, la podemos estmar (observar que tal estmacó se realzará a partr de las muestras obtedas, > 5, tomadas cuado se cosdera que el proceso está bajo cotrol): uˆ u Como el tamaño muestral ( ) es dferete para cada subgrupo, a la hora de calcular los límtes segú el modelo de Shewart, podemos optar por: Obteer los límtes usado el asocado a cada muestra, co lo que las líeas de cotrol o será rectas (dará saltos arrba y abajo segú dsmuya o aumete), S los o dfere mucho uos de otros, podríamos tomar També se puede optar por tomar u comú e gual al mayor de los, co lo que obtedríamos uos límtes de cotrol bastate sesbles, ya que la ampltud de la fraja que dca proceso e estado de cotrol es versamete proporcoal al tamaño de la muestra IV - 9

10 Cotrol Estadístco de la Caldad co MINITAB Ejemplo gráfco C: Supogamos que trabajamos e ua plata que produce sábaas blacas Cada ua de las pezas de tela producdas, a partr de las cuales se obtedrá las sábaas, será cosderada como válda sempre que o tega más de u úmero determado de pequeñas machas Pretedemos geerar u gráfco C que os permta vsualzar el úmero de machas de cada peza Usaremos los datos guardados e el archvo sabaasmtw : Seleccoar Stat > Cotrol Charts > C Rellear los campos como se dca: C Chart for Machas Sample Cout ,SL7,677 C,75 -,SL,E+ 4 Sample Number Dado que los putos parece segur u patró aleatoro y guo de ellos cae fuera de los límtes de cotrol de sgma, podemos coclur que el proceso está bajo cotrol IV -

11 IV Gráfcos de Cotrol por Atrbutos GRÁFICO U El dagrama U está basado e el úmero de defectos por udad de speccó producda Los prcpos estadístcos que srve de base al dagrama de cotrol U se basa e la dstrbucó de Posso: Para costrur el dagrama de cotrol U empezamos por tomar muestras X, X,,X K, de udades cada ua, e: X (X,, X ) Sea u el úmero esperado de udades defectuosas e cada ua de las muestras Para cada muestra se calcula el úmero u j de defectos de la udad X j, j,, S deotamos por c al úmero de defectos totales e la muestra -ésma, es claro que c u j Por otro lado, s deotamos por u al valor esperado de defectos e la muestra -ésma, tedremos que u uj Observar pues que u c, e: c u j [ ] [ ] [ ] u Notar además que E c E u E u Es frecuete supoer que el úmero de defectos (sucesos o habtuales) e ua poblacó grade sgue ua dstrbucó de Posso E este caso, supodremos que c Po( u) j Se cumplrá que N( u u ) c y, por tato,, u u N u, Segú el modelo de Shewart tedremos que: LSC u + Líea cetral u LIC u u u S u E[ u ] es descoocda, la podemos estmar (observar que tal estmacó se realzará a partr de las muestras obtedas, > 5, tomadas cuado se cosdera que el proceso está bajo cotrol): uˆ u Como el tamaño muestral ( ) es dferete para cada subgrupo, a la hora de calcular los límtes segú el modelo de Shewart, podemos optar por: Obteer los límtes usado el asocado a cada muestra, co lo que las líeas de cotrol o será rectas (dará saltos arrba y abajo segú dsmuya o aumete), S los o dfere mucho uos de otros, podríamos tomar També se puede optar por tomar u comú e gual al mayor de los, co lo que obtedríamos uos límtes de cotrol bastate sesbles, ya que la ampltud de la fraja que dca proceso e estado de cotrol es versamete proporcoal al tamaño de la muestra IV -

12 Cotrol Estadístco de la Caldad co MINITAB EJEMPLOS DE APLICACIÓN Ejemplo : Ua compañía electróca maufactura crcutos e lotes de 5 y quere cotrolar la proporcó de crcutos co fallos Co este f exama lotes, obteedo e cada lote el úmero de crcutos defectuosos que se dca e el archvo crcutosmtw Pretedemos aalzar s el proceso está bajo cotrol estadístco a partr de u gráfco P: P Chart for defectuo,4,sl,878 Proporto,,, P,, -,SL,7 Sample Number TEST Oe pot more tha, sgmas from ceter le Test Faled at pots: Se observa que ha fallado el cotraste para causas especales, lo cual dca que el proceso está fuera de cotrol estadístco IV -

13 IV Gráfcos de Cotrol por Atrbutos Ejemplo : Ua compañía textl utlza u gráfco del úmero de defectos por udad para cotrolar el úmero de defectos por metro cuadrado de tejdo El tejdo se preseta e rollos de u metro de achura y logtud varable, defédose la udad de speccó como u metro cuadrado de tejdo Tras la speccó de 5 rollos se obtuvero los datos de superfce (e metros cuadrados) y úmero de defectos por rollo almaceados e el archvo textlmtw Se pretede aalzar s el proceso está o o bajo cotrol usado u gráfco U,7 U Chart for defectos Sample Cout,6,5,4,,,,,SL,574 U,88 -,SL, Sample Number 5 A partr del gráfco ateror se cocluye que el proceso parece estar bajo cotrol estadístco, ya que o se observa problemas de putos fuera de cotrol, tedecas, cclos, etc Ejemplo : Se utlza u gráfco del úmero de defectos C para cotrolar el úmero de automóvles co ptura defectuosa e uevas seres fabrcadas recetemete seres del msmo modelo so speccoadas y el úmero de automóvles co ptura defectuosa se ha regstrado e el archvo autosmtw Estudar s el proceso está o o bajo cotrol C Chart for defectuo 5,SL,67 Sample Cout 5 C6, -,SL,E+ Sample Number A partr del gráfco ateror, se observa que el proceso o parece estar bajo cotrol estadístco IV -

III. GRÁFICOS DE CONTROL POR VARIABLES (1)

III. GRÁFICOS DE CONTROL POR VARIABLES (1) III. Gráfcos de Cotrol por Varables () III. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN E cualquer proceso productvo resulta coveete coocer e todo mometo hasta qué puto uestros productos cumple co

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A PRIMERA PRUEBA DE TÉCICAS CUATITATIVAS III. 14-Abrl-015. Grupo A OMBRE: DI: 1. Se quere hacer u estudo sobre gasto e ropa e ua comarca dode el 41% de los habtates so mujeres. (1 puto) Se decde tomar ua

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

Técnicas básicas de calidad

Técnicas básicas de calidad Téccas báscas de caldad E esta udad aprederás a: Idetfcar las téccas báscas de caldad Aplcar las herrametas báscas de caldad Utlzar la tormeta de deas Crear dsttos tpos de dagramas Usar hstogramas y gráfcos

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1 63 ITRODUCCIÓ AL AÁLISIS DE ECUESTAS COMPLEJAS MARCELA PIZARRO BRIOES ISTITUTO ACIOAL DE ESTADÍSTICA (IE CHILE Para presetarse e el Taller Regoal del MECOVI: La Práctca del Muestreo para el Dseño de las

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos Udad ddáctca ESTADÍSTICA. ESTADÍSTICA: COCEPTOS BÁSICOS La Estadístca surge ate la ecesdad de poder tratar y compreder cojutos umerosos de datos. E sus orígees hstórcos, estuvo lgada a cuestoes de Estado

Más detalles

Introducción a la simulación de sistemas discretos

Introducción a la simulación de sistemas discretos Itroduccó a la smulacó de sstemas dscretos Novembre de 6 Álvaro García Sáchez Mguel Ortega Mer Itroduccó a la smulacó de sstemas dscretos. Presetacó.. Itroduccó El presete documeto trata sobre las téccas

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Pága 09 PRACTICA Meda y desvacó típca 1 El úmero de faltas de ortografía que cometero u grupo de estudates e u dctado fue: 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 a) D cuál es la varable y de

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1 MUESTREO E POBLACIOES FIITAS Atoo Morllas Coceptos estadístcos báscos Etapas e el muestreo 3 Tpos de error 4 Métodos de muestreo 5 Tamaño de la muestra e fereca 6 Muestreo e poblacoes ftas 6. Muestreo

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano Valoracó de opcoes de compra y veta del qutal de café e el mercado ecuatorao Adrá Morocho Pérez, Ferado Sadoya Sachez Igeero e Estadístca Iformátca 003 Drector de Tess, Matemátco, Escuela Poltécca Nacoal,

Más detalles

( ) Tabla 2. Formulas para gráficas de control. Fórmula. Rsk = xk + 1 -Xk -------- X Rs -------------- Z USL. Gráfica (Símbolo) R, S ó Rs.

( ) Tabla 2. Formulas para gráficas de control. Fórmula. Rsk = xk + 1 -Xk -------- X Rs -------------- Z USL. Gráfica (Símbolo) R, S ó Rs. Boletí Técco Septebre No. Tabla esultados cálculos Núero edcoes Valor áxo Valor ío ago Proedo Desvacó Ídce capacdad l proceso Ídce capacdad l proceso Ídce capacdad aqua Ídce capacdad aqua Fraccó fectva

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

ANÁLISIS ESTADÍSTICO DEL CONTROL DE CALIDAD EN LAS EMPRESAS

ANÁLISIS ESTADÍSTICO DEL CONTROL DE CALIDAD EN LAS EMPRESAS UNIVERIDAD de VALLADOLID ECUELA de INGENIERÍA INDUTRIALE INGENIERO TÉCNICO INDUTRIAL, EPECIALIDAD EN MECÁNICA PROYECTO FIN DE CARRERA ANÁLII ETADÍTICO DEL CONTROL DE CALIDAD EN LA EMPREA Autor: Galca Adrés,

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL Smposo de Metrología 4 al 7 de Octubre DISTRIBUCIÓ DE LA MEDIA Y EL TEOREMA DEL LÍMITE CETRAL Wolfgag A. Schmd Cetro acoal de Metrología Tel.: (44) 4, e-mal: wschmd@ceam.mx Resume: De acuerdo al Teorema

Más detalles

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

EJERCICIOS RESUELTOS TEMA 3.

EJERCICIOS RESUELTOS TEMA 3. INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Diseños muestrales en Inventarios Forestales Introducción... 1 Distribución de las unidades muestrales.... 3

Diseños muestrales en Inventarios Forestales Introducción... 1 Distribución de las unidades muestrales.... 3 Dseños muestrales e Ivetaros Forestales Itroduccó... Dstrbucó de las udades muestrales.... 3 Dstrbucó Aleatora... 3 Dstrbucó stemátca... 4 Dstrbucó de las UM e trasectos... 5 Estmadores para udades muestrales

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadístca Matemátcas B º E.S.O. TEM 9 ESTDÍSTIC TBLS DE FRECUENCIS Y REPRESENTCIONES GRÁFICS EN VRIBLES DISCRETS EJERCICIO : l pregutar a 0 dvduos sobre el úmero de lbros que ha leído e el últmo

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se CAPÍTULO III. METODOLOGÍA III. Tpos de Medcó De acuerdo co la clasfcacó de Amartya Se (200), las meddas de desgualdad se puede catalogar e u setdo objetvo o ormatvo. E el setdo objetvo se utlza algua medda

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DERECHOS RESERVADOS

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DERECHOS RESERVADOS REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DETERMINACIÓN MEDIANTE EL ANÁLISIS REGRESIONAL DE LOS MODELOS MATEMATICOS POLINÓMICOS

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

CIRO MARTINEZ BENCARDINO

CIRO MARTINEZ BENCARDINO CIRO MARTINEZ BENCARDINO Nacdo e Covecó (Norte de Satader - Colomba). Ecoomsta de la Uversdad Jorge Tadeo Lozao de Bogotá, D.C. Bo-estadístca (Uversdad de los Ades, Bogotá, D.C.). Téccas Estadístcas (CIENES-Satago

Más detalles

Problemas de Polímeros. Química Física Avanzada Iñaki Tuñón 2010/2011

Problemas de Polímeros. Química Física Avanzada Iñaki Tuñón 2010/2011 Problemas de Polímeros Químca Físca Avazada Iñak Tuñó / POL.-U polímero moodsperso de masa molecular. gmol - está cotamado e u % e peso co ua mpureza de peso molecular. gmol -. Calcular z,, Co los datos

Más detalles

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes Ejerccos Resueltos de Estadístca: Tema : Descrpcoes uvarates . Los datos que se da a cotuacó correspode a los pesos e Kg. de ocheta persoas: (a) Obtégase ua dstrbucó de datos e tervalos de ampltud 5, sedo

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA H. Helam Estadístca -/5 ITRODUCCIÓ. COCEPTO DE ETADÍTICA ETADÍTICA DECRIPTIVA La estadístca es la rama de las matemátcas que estuda los eómeos colectvos recogedo, ordeado y clascado y smplcado los datos

Más detalles

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad Regulardad estadístca. E vrtud de la gra varabldad de muchos procesos, se recurre al estudo del comportameto e grades cojutos de elemetos. Se busca captar los aspectos sstemátcos o los aleatoros. Se pretede

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Capítulo 9 MEDIDAS DE TENDENCIA CENTRAL Ua medda de tedeca cetral, es u resume estadístco que muestra el cetro de ua dstrbucó; es decr, por lo geeral, busca el cetro de esa dstrbucó. Exste dferetes tpos

Más detalles

LECCIONES DE ESTADÍSTICA

LECCIONES DE ESTADÍSTICA LECCIONES DE ESTADÍSTICA Estos aputes fuero realzados para mpartr el curso de Métodos Estadístcos y umércos e el I.E.S. A Xuquera I de Potevedra. Es posble que tega algú error de trascrpcó, por lo que

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO CRISTIAN CABRERA TORRICO, Igeero Cvl APSA Ltda. (crstacabrera@apsa.cl) ROBINSON LUCERO, Igeero Cvl Laboratoro Nacoal de Valdad, robso.lucero@moptt.gov.cl

Más detalles

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO RESOLUCIÓN OENO 0/005 GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO LA ASAMBLEA GENERAL, Vsto el artículo, párrafo

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

Gestión de operaciones

Gestión de operaciones Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez pedro.sachez@upcomllas.es Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos

Más detalles

Bolsa Nacional de Valores, S.A. San José, Costa Rica

Bolsa Nacional de Valores, S.A. San José, Costa Rica SELECCIÓN DE CARTERAS DE INVERSIÓN (TEORÍA DEL PORTAFOLIO) RODRIGO MATARRITA VENEGAS * Bolsa Nacoal de Valores, S.A. Sa José, Costa Rca By ow t s evdet that MPT (moder Portfolo Theory), the theory frst

Más detalles

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

I n t r o d u c i ó n A l a E s t a d í s t i c a 1

I n t r o d u c i ó n A l a E s t a d í s t i c a 1 Estadístca I t r o d u c ó A l a E s t a d í s t c a INTRODUCCIÓN: La Estadístca descrptva es ua parte de la Estadístca cuyo objetvo es examar a todos los dvduos de u cojuto para luego descrbr e terpretar

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

EL DIAGRAMA DE DISPERSIÓN Y EL ANÁLISIS DE CORRELACIÓN

EL DIAGRAMA DE DISPERSIÓN Y EL ANÁLISIS DE CORRELACIÓN CAPÍTULO VIII EL DIAGRAMA DE DISPERSIÓN Y EL ANÁLISIS DE CORRELACIÓN 8. INTRODUCCIÓN A través del Dagrama Causa - Efecto establecemos las posbles causas que provoca u problema de caldad, estas aseveracoes

Más detalles